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Abstract. We prove a convergence result for a natural discretization of the Dirich-
let problem of the elliptic Monge-Ampère equation using finite dimensional spaces
of piecewise polynomial C1 functions. Discretizations of the type considered in this
paper have been previously analyzed in the case the equation has a smooth solu-
tion and numerous numerical evidence of convergence were given in the case of non
smooth solutions. Our convergence result is valid for non smooth solutions, is given
in the setting of Aleksandrov solutions, and consists in discretizing the equation in
a subdomain with the boundary data used as an approximation of the solution in
the remaining part of the domain. Our result gives a theoretical validation for the
use of a non monotone finite element method for the Monge-Ampère equation.

1. Introduction

Let Ω ⊂ Rd, d = 2, 3 be a convex domain with polygonal boundary ∂Ω. In this paper
we prove a convergence result for the numerical approximation of solutions to the
Dirichlet problem for the Monge-Ampère equation

(1.1) detD2u = f in Ω, u = g on ∂Ω,

by elements of a space Vh of piecewise polynomial functions of some degree k ≥ d
which are globally C1. The expression detD2u should be understood in the sense of

Aleksandrov c.f. section 2.5. For a smooth function u, D2u =

(
(∂2u)/(∂xi∂xj)

)
i,j=1,...,d

is the Hessian of u and f is a given function on Ω satisfying f ∈ C(Ω) with 0 < c0 ≤
f ≤ c1 for constants c0, c1 ∈ R. We assume that g ∈ C(∂Ω) can be extended to a
function g̃ ∈ C(Ω) which is convex on Ω.

Let fm, gm ∈ C∞(Ω) such that 0 < c2 ≤ fm ≤ c3, fm converges uniformly to f on Ω
and gm converges uniformly to g̃ on Ω. See for example [3]. Let um ∈ C(Ω) denote
the Aleksandrov solution of the problem

(1.2) detD2um = fm in Ω, um = gm on ∂Ω.

Finally let Ω̃ be a convex polygonal subdomain of Ω. We prove that the problem:

find uh ∈ Vh(Ω̃), uh = um on Ω \ Ω̃ and

(1.3)
∑

K∈Th(Ω̃)

∫
K

(detD2uh − fm)vh dx = 0,∀vh ∈ Vh(Ω̃) ∩H1
0 (Ω̃),

1
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has a (locally unique) piecewise strictly convex solution uh on Ω̃ which converges

uniformly on compact subsets of Ω̃ to the solution ũ of

(1.4) detD2ũ = fm in Ω̃, ũ = um on Ω \ Ω̃,

which is convex on Ω̃ and continuous up to the boundary of Ω̃.

Here Th(Ω̃) denotes a quasi-uniform triangulation of the domain Ω̃ and Vh(Ω̃) denotes

a finite element space on Ω̃ of piecewise polynomial C1 functions of degree k ≥ d. We
make the abuse of notation of writing uh = um to mean that our approximations are
discontinuous on the boundary and that uh coincides with um at the Lagrange points

on ∂Ω̃. For simplicity, we do not indicate the dependence of ũ on m.

A piecewise strictly convex function which is C1 is strictly convex as a consequence of
[27, Theorem 6, p. 1091] and [41, Lemma 8.32]. Thus our approximations are strictly
convex.

1.1. Relevance of the convergence result for practical computations. Prob-
lems in affine geometry motivated the study of the Dirichlet problem for the Monge-
Ampère equation. See for example [7] for a numerical study of the Gauss-curvature
equation which is a Monge-Ampère type equation. The Monge-Ampère equation also
appears in several applications, e.g. optimal transport and reflector design, but with
the so-called second boundary condition, a term used to indicate that this type of
boundary condition was studied much later than the Dirichlet problem. Formally,
the numerical study of the second boundary condition can be reduced to a sequence
of Dirichlet problems using a fixed point algorithm.

Recently, several researchers have used a standard discretization of the type conside-
red in this paper for the numerical study of the reflector design problem [13]. Even
if one uses the same type of discretization for the Dirichlet problem (1.1), there is
not yet a convergence theory. The convergence result of this paper, as stated above,
addresses this issue.

Let δ > 0. It is known, c.f. Theorem 2.15, that the Aleksandrov solution um of
(1.2) converges uniformly on compact subsets of Ω to the Aleksandrov solution u of

(1.1). We choose m such that |u(x) − um(x)| < δ/2 for all x ∈ Ω̃. By unicity of the

Aleksandrov solution um of (1.2), we have ũ = um in Ω̃. Thus our results give on each

compact subset of Ω̃, |uh(x)−um(x)| < δ/2 for h sufficiently small. The solution u of
(1.1) can then be approximated within a prescribed accuracy by first choosing m and
then h sufficiently small. We emphasize that the solution ũ of (1.4) is not necessarily
smooth.

It remains to chose the data to compute the local solution of (1.3). We may assume
that |f(x)−fm(x)| < δ, |g̃(x)−gm(x)| < δ and since um = gm on ∂Ω and um ∈ C(Ω),

we may choose Ω̃ such that |um − gm| < δ on Ω \ Ω̃. Thus, from a practical point of

view, for the implementation, we see that one can take Ω̃ = Ω, fm = f with uh = g on
∂Ω. A similar situation arises in the routine use in the finite element literature of the
approximation of a smooth domain by a polygonal domain. Numerical experiments
with the discretization considered in this paper were given in [2] for both smooth
and non smooth solutions. For that reason, they are not reproduced here. Another
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possibility, but with results of less accuracy, is to actually implement the method on
a subdomain. This can be easily tested on a code for (1.1) by extending g to a larger

domain Ω̂ and using the restriction of g on ∂Ω̂ as boundary value. For the extension
of the framework of this paper to the second boundary condition, only the choice of

fm and Ω̃ is needed. We wish to address this in a separate work.

1.2. Methodology. The purpose of this section is to explain the need for regula-
rization of the data and the need of a subdomain for our convergence result. The
methodology of this paper may be applied to other settings where one has numerical
evidence of convergence for discretizations of (1.1). The general methodology consists
in

1- Prove the convergence and local uniqueness of the solution of the discrete
problem (1.3) when (1.1) has a smooth solution. See [5]. Under the assump-
tion that the discrete problem (1.3) has a solution which is piecewise strictly
convex, prove local uniqueness using the continuity of the eigenvalues of a
matrix as a function of its entries. See section 6.2.

2- Verify that the numerical method is robust enough to handle the standard
tests for non smooth solutions. In [2], we prove the convergence of iterative
methods which preserve weakly convexity and their effectiveness in capturing
a convex solution of (1.3) was illustrated with numerical experiments.

3- Choose m, fm, gm and Ω̃ as specified in section 1.1.
4- Consider a sequence of smooth uniformly convex domains Ωs increasing to Ω

[9], with the property that Ω̃ ⊂ Ωs for all s, and the problems with smooth
solutions [43]

detD2ums = fm in Ωs, ums = gm on ∂Ωs.(1.5)

From Theorem 2.15, ums converges uniformly on Ω̃ to the solution um of (1.2)
and hence to ũ as s→∞.

5- Establish that the discrete approximation ums,h of the smooth function ums,

on Ω̃ and with boundary data ums, converges uniformly to ums on Ω̃ as h →
0. This takes the form of an error estimate with constants depending on
derivatives of ums.

6- Because Ω̃ is an interior domain, interior Schauder estimates allow to get a
uniform bound on the derivatives of ums. In other words, ums,h converges

uniformly to ums on compact subsets of Ω̃ at a rate which depends on Ω̃ but
is independent of s.

7- The local equicontinuity of convex functions allows to take a subsequence
in s. This gives a convex finite element function uh which solves the finite
element problem (1.3). The approximation uh is shown to converge uniformly

on compact subsets of Ω̃ to the solution ũ of (1.4). Local uniqueness of the
discrete solution is a consequence of the work done in Step 1.

1.3. Possible disadvantages of the approach in this paper. We prove that
(1.3) has a strictly convex solution which is locally unique. Even when (1.1) has
a smooth solution, global uniqueness of the discrete approximation has not been
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addressed in previous work. In the standard finite difference context, a variational
approach presented in [6] allows to select a special discrete solution. Numerical results
reported therein indicate that such an approach is effective when the right hand side
of the Monge-Ampère equation is a sum of Dirac masses. The analysis in [6] uses
heavily results on the existence of local solutions.

The convergence result in the paper uses results available for the approximation of
smooth solutions of (1.1) using standard discretizations. See for example [5]. When
(1.1) has a smooth strictly convex solution, these results say that the discrete problem
has a solution for h ≤ h0 where h0 → 0 as a high order Sobolev norm of u approaches
infinity. Thus for example when ||u||Ck+1(Ω) is very big, existence of a discrete solution
would hold for h close to machine precision. And this is just for smooth solutions.
The interior Schauder estimates give a possibly large upper bound on ||ums||Ck+1(Ω̃) as

the latter depends on the distance of Ω̃ to Ω. Thus it is not possible, in this setting,
to quantify how small h should be for the existence of ums,h. We recall that ums and
ums,h were introduced in step 5 of the methodology described in section 1.2.

Results for the numerical approximation of viscosity solutions for (1.1) in the degene-
rate case f ≥ 0 are stated in terms of uniform convergence on compact subsets with
no quantification of how small h can be. Thus no information is given about how
small h should be for a reasonable reduction of the error, although in that setting
there is no restriction on the size of h for the existence of a discrete solution.

1.4. Relation with other work. A convergence analysis for a discretization of (1.1)
starts with a choice of a notion of weak solution. For an analysis based on the notion
of viscosity solution, we refer to [24] in the finite difference context, and to [23] in
the finite element context for radial solutions with a biharmonic regularization. The
discretization proposed in [24] is a monotone scheme and thus enjoys a discrete max-
imum principle. One of the advantages of a monotone scheme is that one can prove
existence of a discrete solution with no restriction on the size of the mesh. Netherthe-
less, the reader should be aware that there are many non monotone schemes for
problems given in the setting of viscosity solutions e.g. [28]. The lack of a maximum
principle for the discretizations analyzed in this paper is related to the difficulty of
proving stability of the discretization for smooth solutions without assuming a bound
on a high order norm of the solution. For that reason, we introduced the theoretical

computational domain Ω̃ and fix the parameter m in the regularization of the data.

The weak solution in the viscosity sense is known to be equivalent to the weak solution
in the sense of Aleksandrov for f ∈ C(Ω) and f > 0 on Ω. The arguments of this
paper are based on the notion of Aleksandrov solution. To the best of our knowledge,
a proven convergence result for the numerical resolution of (1.1) via the notion of
Aleksandrov solution was only considered in [36] for the two dimensional problem.
The approach in [36] uses geometric arguments and is different from the one taken
here.

When the weak smooth solution of (1.1) is a smooth strictly convex function, Böhmer
[10] studied C1 approximations and his method has been implemented in [18]. See
also [17]. Böhmer’s method requires a modification of the Argyris space and nume-
rical results in [18] used Newton’s method and did not address some of the standard
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test cases for non smooth solutions. In [13], it is shown that with a standard C1

approximation based on B-splines, Newton’s method coupled with trust region me-
thods is effective for these standard test cases. Newton’s method was also used in
[22] in the vanishing moment methodology. See also [4]. In [5], we analyzed the dis-
cretization (1.3) for C1 approximations and gave numerical evidence of convergence
for non smooth solutions if one uses Lagrange elements and a time marching method.
We previously gave the corresponding numerical results with C1 approximations in
[2]. In [34] it is shown that Newton’s method is effective if one uses a mixed formu-
lation and implement the resulting method in primal form. See [33] for a description
of the method for linear non variational problems. However in all these works, i.e.
[10, 18, 13, 22, 4, 34, 5], no proof of convergence is given in the case the solution of
(1.1) is not in H2(Ω).

In this paper, we present a theory which explains why standard discretizations of the
type considered in this paper exhibit numerical convergence for non smooth solutions
of the Monge-Ampère equation. The easiest way to get insight into the problem,
is through the approach which consists in regularizing the exact solution [3]. The
latter approach is less general in the sense that it does not apply to collocation
type discretizations such as the standard finite difference method. In fact, it is a
standard technique in the analysis of Aleksandrov solutions of the Monge-Ampère
equation, e.g. [19, Lemma 3.1], to regularize the data f , g and take a sequence
of smooth uniformly convex domains approximating the given domain. It is then
natural, following principles of compatible discretization, that a similar approach can
be followed for a discretization. Spaces of piecewise polynomials C1 functions can
be constructed using Argyris elements, the spline element method [2] or isogeometric
analysis.

Regularization of the data has been used in [26]. If one assumes that the domain

Ω is smooth and uniformly convex, we can take Ω̃ = Ω and use global Schauder
estimates c.f. [43], and a bootstrapping argument, to implement the compactness
argument described in section 1.2. To address the practical issue of dealing with
curved boundaries, one should use the approach in [11] which consists in a penalization
of the boundary condition and the use of curvilinear coordinates for elements near
the boundary. The boundary condition can now be taken as ũ = gm. The approach of
this paper can be easily adapted to explain the numerical results with singular data
presented in [1].

Without loss of generality, in subsequent papers on the analysis of schemes for (1.1),
one may assume that f and g are smooth. In fact, one can even also assume that the
solution is smooth, as the techniques of this paper can be applied to handle the non
smooth case.

1.5. Organization of the paper. We organize the paper as follows. In the next
section, we introduce some notation, recall the main results on the convergence of the
discretization (1.3) when (1.1) has a smooth solution and the notion of Aleksandrov
solution of (1.1). In section 3 we give preliminary results on smooth and polygonal
exhaustions of the domain. In section 4 we give the proof of existence of a convex
solution of (1.3). The proof of the convergence of the discretization is given in section
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5. In section 6 we prove that our approximations are strictly convex and give a local
uniqueness result. The proof of some technical results are given in section 7.

2. Notation and preliminaries

2.1. General notation. For two subsets S and T of Rd, we use the usual notation
d(S, T ) for the distance between them. Moreover, diamS denotes the diameter of S.

We use the standard notation for the Sobolev spaces W t,p(Ω) with norms ||.||t,p,Ω
and semi-norm |.|t,p,Ω. In particular, H t(Ω) = W t,2(Ω) and in this case, the norm
and semi-norms will be denoted respectively by ||.||t,Ω and |.|t,Ω. When there is no
confusion about the domain Ω, we will omit the subscript Ω in the notation of the
norms and semi-norms. We recall that H1

0 (Ω) is the subspace of H1(Ω) of elements
with vanishing trace on ∂Ω.

We make the usual convention of denoting constants by C but will occasionally index
some constants. We assume that the triangulation Th(Ω) of the domain Ω is shape
regular in the sense that there is a constant C > 0 such that for any element K,
hK/ρK ≤ C, where hK denotes the diameter of K and ρK the radius of the largest
ball contained in K. We also require the triangulation to be quasi-uniform in the
sense that h/hmin is bounded where h and hmin are the maximum and minimum
respectively of {hK , K ∈ Th}.

2.2. Finite dimensional subspaces. We will need the broken Sobolev norms and
semi-norms

||v||t,p,h =

( ∑
K∈Th(Ω)

||v||2t,p,K
) 1

2

, 1 ≤ p <∞

||v||t,∞,h = max
K∈Th(Ω)

||v||t,∞,K ,

with a similar notation for |v|t,p,h.
We let Vh(Ω) denote a finite dimensional space of piecewise polynomial C1(Ω) func-
tions, of local degree k ≥ d, i.e., Vh is a subspace of

{v ∈ C1(Ω), v|K ∈ Pk, ∀K ∈ Th(Ω)},

and Pk denotes the space of polynomials of degree less than or equal to k. We make
the assumption that the following approximation properties hold:

(2.1) ||v − Πhv||t,p,h ≤ Caph
l+1−t|v|l+1,p,

where Πh is a projection operator mapping the Sobolev space W l+1,p(Ω) into Vh,
1 ≤ p ≤ ∞ and 0 ≤ t ≤ l ≤ k. We require that the constant Cap does not depend on
h and v. We also make the assumption that the following inverse inequality holds

(2.2) ||v||t,p,h ≤ Cinvh
l−t+min(0, d

p
− d

q
)||v||l,q,h, ∀v ∈ Vh,

and for 0 ≤ l ≤ t, 1 ≤ p, q ≤ ∞. We require that the constant Cinv be independent of
h and v. The approximation property and inverse estimate assumptions are realized
for standard finite element spaces [12].
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2.3. Approximations of smooth solutions of the Monge-Ampère equation.
Next, we summarize the results of [5, 2, 10] of estimates for C1 finite element appro-
ximations of smooth solutions of (1.1).

Theorem 2.1. Let Os be a convex polygonal subdomain of Ω with a quasi-uniform
triangulation Th(Os). Assume that us ∈ C∞(Os) is a strictly convex function which
solves

detD2us = fs inOs, us = gs on ∂Os,

with fs, gs ∈ C∞(Os) and fs ≥ C > 0. We consider the problem: find us,h ∈ Vh(Os),
us,h = gs on ∂Os and

(2.3)
∑

K∈Th(Os)

∫
K

(detD2us,h − fs)vh dx = 0,∀vh ∈ Vh(Os) ∩H1
0 (Os).

Problem (2.3) has a (locally unique) piecewise convex solution us,h with

||us − us,h||2,h,Os ≤ Csh
l−1, 2 ≤ l ≤ k,

and the constant Cs is uniformly bounded if ||us||l+1,∞,Os is uniformly bounded.

The result of Theorem 2.1 follows from [10, Theorems 5.1 and 8.7] and an inverse
estimate. Equation (2.3) differs from (1.3) in the sense that we assume here that us
is smooth whereas the solution ũ of (1.4) is not necessarily smooth.

Corollary 2.2. Under the assumptions (and notation) of Theorem 2.1, the approxi-
mate solution us,h converges uniformly on compact subsets of Os to us as h→ 0.

Proof. For each element K ∈ Th(Os), by the embedding of H2(K) into L∞(K), we
obtain

||us − us,h||0,∞,K ≤ ||us − us,h||2,K ≤ Csh
l−1||us||l+1,∞,Os .

Therefore
||us − us,h||0,∞,Os ≤ Csh

l−1||us||l+1,∞,Os ,

and the result follows. �

2.4. Interior Schauder estimates. Recall that Ωs ⊂ Ω is a smooth uniformly
convex domain. Recall also that the solution of (1.1) is not in general smooth unless
f and g̃ are smooth and Ω is a smooth uniformly convex domain. Thus ||u||C2(Ω) if
defined is not finite in general. We will need estimates which depend on derivatives
away from ∂Ωs as we assume that Ω is a polygonal domain. This is the main reason

for introducing the theoretical computational domain Ω̃. Recall that we make the
assumption that

Ω̃ ⊂ Ωs, for all s,

and thus the closure of Ω̃ is a compact subset of Ω. The proof of the following lemma
is given in section 7.

Lemma 2.3. Let ums solve (1.5). We have the uniform interior Schauder estimates

||ums||Ck+1(Ω̃) ≤ Cm,

where Cm depends only on m, d, c2, ||fm||Ck(Ω), Ω̃ and d(Ω̃, ∂Ω).
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2.5. The Aleksandrov solution. In this part of the section, we recall the notion
of Aleksandrov solution of (1.1) and state several results that will be needed in our
analysis. We follow the presentation in [29] to which we refer for further details.

Let Ω be an open subset of Rd. Given a real valued convex function v defined on Ω,
the normal mapping of v, or subdifferential of v, is a set-valued mapping Nv from Ω
to the set of subsets of Rd such that for any x0 ∈ Ω,

Nv(x0) = { q ∈ Rd : v(x) ≥ v(x0) + q · (x− x0), for all x ∈ Ω }.
Given E ⊂ Ω, we define Nv(E) = ∪x∈ENv(x) and denote by |E| the Lebesgue measure
of E when the latter is measurable.

If v is a convex continuous function on Ω, the class

S = {E ⊂ Ω, Nv(E) is Lebesgue measurable },

is a Borel σ-algebra and the set function M [v] : S → R defined by

M [v](E) = |Nv(E)|,
is a measure, finite on compact sets, called the Monge-Ampère measure associated
with the function v.

We are now in a position to define generalized solutions of the Monge-Ampère equa-
tion. Let the domain Ω be open and convex. Given a Borel measure µ on Ω, a convex
function v ∈ C(Ω), is an Aleksandrov solution of

detD2v = µ,

if the associated Monge-Ampère measure M [v] is equal to µ. If µ is absolutely conti-
nuous with respect to the Lebesgue measure and with density f , i.e.

µ(B) =

∫
B

f dx, for any Borel setB,

we identify µ with f . We have

Theorem 2.4 ([31] Theorem 1.1). Let Ω be a bounded convex domain of Rd. Assume
f ∈ L1(Ω) and g ∈ C(∂Ω) can be extended to a function g̃ ∈ C(Ω) which is convex in
Ω. Then the Monge-Ampère equation (1.1) has a unique convex Aleksandrov solution
in C(Ω).

Remark 2.5. The assumption that g ∈ C(∂Ω) can be extended to a convex function
g̃ ∈ C(Ω) can be removed if the domain Ω is uniformly convex, [29].

We recall that for a convex function v in C2(Ω), the Monge-Ampère measure M [v]
associated with v is given by

M [v](E) =

∫
E

detD2v(x) dx,

for all Borel sets E ⊂ Ω.

Lemma 2.6. Let v ∈ W 2,d(Ω) be a piecewise C2 convex function such that detD2v ≥
0 a.e. Then M [v](E) =

∫
E

detD2v(x) dx for all Borel sets E ⊂ Ω.

The proof of the above lemma is given in section 7.
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Definition 2.7. A sequence µm of Borel measures is said to converge weakly to a
Borel measure µ if and only if∫

Ω

p(x) dµm →
∫

Ω

p(x) dµ,

for every continuous function p with compact support in Ω.

For the special case of absolutely continuous measures µm with density am with respect
to the Lebesgue measure, we have

Definition 2.8. Let am, a ≥ 0 be given functions. We say that am converges weakly
to a as measures if and only if ∫

Ω

amp dx→
∫

Ω

ap dx,

for all continuous functions p with compact support in Ω.

We have the following weak continuity result of Monge-Ampère measures with respect
to local uniform convergence.

Lemma 2.9 (Lemma 1.2.3 [29]). Let um be a sequence of convex functions in Ω such
that um → u uniformly on compact subsets of Ω. Then the associated Monge-Ampère
measures M [um] tend to M [u] weakly.

Remark 2.10. It follows that if um is a sequence of C2(Ω) convex functions such
that um → u uniformly on compact subsets of Ω, with u solving (1.1), then detD2um
converges weakly to f as measures.

We will often use the following lemma, the proof of which is given in section 7.

Lemma 2.11. Let uj denote a uniformly bounded sequence of convex functions on a
convex domain Ω. Then the sequence uj is locally uniformly equicontinuous and thus
has a pointwise convergent subsequence.

2.6. Approximations by solutions on subdomains. For a function b defined on
∂Ω, we denote by b∗ its convex envelope, i.e. the supremum of all convex functions
below b. If b can be extended to a continuous convex function on Ω, then b∗ = b on
∂Ω.

Following [39], we define a notion of convergence for functions defined on different
subdomains. Recall that Ω ⊂ Rd is bounded and convex. For a function z : Ω → R,
its upper graph Z is given by

Z := { (x, xd+1) ∈ Ω× R, xd+1 ≥ v(x) }.

For a function b : ∂Ω→ R, its upper graph is given by

B := { (x, xd+1) ∈ ∂Ω× R, xd+1 ≥ b(x) }.

Definition 2.12. We say that z = b on ∂Ω if

B = Z ∩ (∂Ω× R).
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Definition 2.13. The Hausdorff distance between two nonempty subsets K and H
of Rd is defined as

max{ sup[d(x,K), x ∈ H], sup[d(x,H), x ∈ K] }.

Let Ωs ⊂ Ω be a sequence of convex domains and let zs : Ωs → R be a sequence
of convex functions on Ωs. We write zs → z if the upper graphs Zs converge in the
Hausdorff distance to the upper graph Z of z. Similarly, for a sequence bs : ∂Ωs → R,
we say that bs → b if the corresponding upper graphs converge in the Hausdorff
distance.

Finally, let as : Ωs → R and a : Ω → R. We write as → a if the as are uniformly
bounded and as converges to a uniformly on compact subsets of Ω.

To summarize, in Proposition 2.14 below, for a sequence of convex functions on Ωs or
for their restriction to ∂Ωs, the convergence is convergence of the corresponding upper
graphs in the Hausdorff distance whereas for the data as we use uniform convergence
on compact subsets.

We have

Proposition 2.14 (Proposition 2.4 of [39]). Let zs : Ωs → R be convex such that

detD2zs = as in Ωs, zs = bs on ∂Ωs.

If

zs → z, as → a, bs → b,

then

detD2z = a in Ω, z = b∗ on ∂Ω,

where b∗ denotes the convex envelope of b on ∂Ω. In particular if b can be extended
to a continuous convex function on Ω, z = b on ∂Ω.

We state an approximation result for Monge-Ampère equations which follows from
[39, Proposition 2.6]. A detailed proof is given in section 7.

Theorem 2.15. Let Ωs be a sequence of convex domains increasing to Ω, i.e. Ωs ⊂
Ωs+1 ⊂ Ω and d(∂Ωs, ∂Ω) → 0 as s → ∞. Assume that zs ∈ C(Ωs) is a sequence of
convex functions solving

detD2zs = a in Ωs, zs = b on ∂Ωs,

with a ≥ 0, a ∈ C(Ω). Assume that b ∈ C(Ω) and is convex on Ω.

Then zs converges (up to a subsequence) uniformly on compact subsets of Ω to the
unique convex solution z of

detD2z = a in Ω, z = b on ∂Ω,

Remark 2.16. If vs is a sequence of convex functions which converge on Ω to a
convex function v with upper graph V , we can extend v canonically to the boundary
by taking the function on ∂Ω with upper graph V ∩ (∂Ω× R).
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2.7. A characterization of weak convergence of measures. The result we now
give is well-known but we give a proof in section 7 for completeness.

Let Cb(Ω) denote the space of bounded continuous functions on Ω. We have

Lemma 2.17. Let am, a ∈ Cb(Ω), am, a ≥ 0 for m = 0, 1, . . . Assume that the sequence
am is uniformly bounded on Ω and that am converges weakly to a as measures and let
p ∈ H1

0 (Ω). We have ∫
Ω

amp dx→
∫

Ω

ap dx,

as m→∞.

2.8. Useful facts about convex functions. It is known that the pointwise limit of
a sequence of convex functions is convex. Also, every pointwise convergent sequence
of convex functions converges uniformly on compact subsets. See for example [8,
Remark 1 p. 129 ].

3. Smooth and polygonal exhaustions of the domain

It is known from [9] for example that there exists a sequence of smooth uniformly
convex domains Ωs increasing to Ω, i.e. Ωs ⊂ Ωs+1 ⊂ Ω and d(∂Ωs, ∂Ω) → 0 as
s → ∞. An explicit construction of the sequence Ωs in the special case Ω = (0, 1)2

can be found in [42].

Recall that fm and gm are C∞(Ω) functions such that 0 < c2 ≤ fm ≤ c3, fm → f and
gm → g̃ uniformly on Ω. Thus the sequences fm and gm are uniformly bounded on Ω.
The sequences fm and gm may be constructed by extending the given functions to a
slightly larger domain preserving the property f ≥ C > 0 for some constant C and
apply a standard mollification. See [3] for a different procedure. By [14], the problem
(1.5) has a unique convex solution ums ∈ C∞(Ωs). By Theorem 2.15, as s → ∞,
the sequence ums converges uniformly on compact subsets of Ω to the unique convex
solution um ∈ C(Ω) of Problem (1.2). Moreover, the solution um of (1.2) converges
uniformly on compact subsets of Ω to the unique convex solution u of (1.1).

Recall that Ω̃ is a convex polygonal subdomain of Ω with a quasi-uniform triangulation

Th(Ω̃). We let δ > 0 be a fixed parameter and chose m and Ω̃ such that |f(x) −
fm(x)| < δ, |g̃(x)− gm(x)| < δ and |u(x)− um(x)| < δ for all x ∈ Ω̃. Without loss of

generality we may assume that Ω̃ ⊂ Ωs for all s.

We have

Theorem 3.1. There exists a convex function uh ∈ Vh(Ω̃) which is uniformly bounded

on compact subsets of Ω̃ uniformly in h. The function uh satisfies uh = um on ∂Ω̃ and

is obtained as the limit of a subsequence in s of the convex solution ums,h in Vh(Ω̃) of
the problem:

(3.1)
∑
K∈Th

∫
K∩Ω̃

(detD2ums,h − fm)vh dx = 0,∀vh ∈ Vh(Ω̃) ∩H1
0 (Ω̃),

with ums,h = ums on ∂Ω̃.
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Proof. Since ums is smooth on Ωs, Theorem 2.1 yields a solution to Problem (3.1).

The latter is convex on Ω̃ as a C1 piecewise convex function, c.f. [16, section 5 ].

Given a compact subset K of Ω̃, we have

||ums − ums,h||0,∞,K ≤ ||ums − ums,h||0,∞,Ω̃ ≤ C||ums||k+1,∞,Ω̃ hk−1.(3.2)

since Ω̃ ⊂ Ωs. By the interior Schauder estimates Lemma 2.3, the sequence in s
of convex functions ums,h is uniformly bounded on compact subsets, and hence by
Lemma 2.11 has a convergent subsequence also denoted by ums,h which converges to
a function uh. The function uh is convex as the pointwise limit of convex functions
and the convergence is uniform on compact subsets.

Next, we note that for a fixed h, ums,h is a piecewise polynomial in the variable x of
fixed degree k and convergence of polynomials is equivalent to convergence of their
coefficients. Thus uh is a piecewise polynomial of degree k. Moreover, the continuity
conditions on ums,h are linear equations involving its coefficients. Thus uh has the

same continuity property as ums,h. In other words uh ∈ Vh(Ω̃).

Finally, since ums converges uniformly on compact subsets to um as s→∞, we have

on ∂Ω̃, uh = um as ∂Ω̃ is by construction a compact subset of Ω.

As a consequence of the interior Schauder estimates, uh is uniformly bounded on

compact subsets of Ω̃ uniformly in h.

�

The goal of the next two sections is to prove that the function uh given by Theorem
3.1 solves Problem (1.3).

4. Solvability of the discrete problems.

The goal of this section is to prove that (1.3) has a solution. Then Problem (3.1) can
be written

(4.1)

∫
Ω̃

(detD2ums,h − fm)vh dx = 0,∀vh ∈ Vh(Ω̃) ∩H1
0 (Ω̃).

To see that the left hand side of the above equation is well defined, we note that

ums,h is a piecewise polynomial C1 function and is thus in W 2,d(Ω̃). As a consequence

detD2ums,h ∈ L1(Ω̃) and since vh ∈ L∞(Ω̃), this gives the result.

Recall that the discrete solution ums,h being piecewise convex and C1 is convex on Ω̃,
c.f. [16, section 5 ]. We define

fms,h = detD2ums,h.

By Lemma 2.6, we can then view ums,h ∈ W 2,d(Ω̃) as the solution (in the sense of
Aleksandrov) of the Monge-Ampère equation

detD2ums,h = fms,h in Ω̃.
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By Lemma 2.9, detD2umsl,h → detD2uh weakly as measures for a subsequence sl →
∞. Then by Lemma 2.17 we get for v ∈ Vh(Ω̃) ∩H1

0 (Ω̃),

(4.2)

∫
Ω̃

(detD2umsl,h)v dx→
∫

Ω̃

(detD2uh)v dx.

It remains to prove that as l→∞∫
Ω̃

(detD2umsl,h)v dx→
∫

Ω̃

fmv dx.

This is essentially what is proved in the next theorem

Theorem 4.1. Let Vh(Ω̃) denote a finite dimensional space of C1 functions satisfying
the assumptions of approximation property and inverse estimates of section 2.2. Then
Problem (1.3) has a convex solution uh.

Proof. Given v ∈ Vh(Ω̃) ∩ H1
0 (Ω̃), let vl be a sequence of infinitely differentiable

functions with compact support in Ω̃ such that ||vl − v||1,2 → 0 as l → ∞. We have
by definition of fms,h ∫

Ω̃

(detD2umsl,h)v dx =

∫
Ω̃

fmsl,hv dx.(4.3)

We have ∫
Ω̃

fmsl,hv dx =

∫
Ω̃

fmsl,h(v − vl) dx+

∫
Ω̃

fmsl,h(vl − Πh(vl)) dx

+

∫
Ω̃

fmsl,hΠh(vl) dx,

and thus by (4.1)∫
Ω̃

fmsl,hv dx =

∫
Ω̃

fmsl,h(v − vl) dx+

∫
Ω̃

fmsl,h(vl − Πh(vl)) dx

+

∫
Ω̃

fmΠh(vl) dx

=

∫
Ω̃

(fmsl,h − fm)(v − vl) dx

+

∫
Ω̃

(fmsl,h − fm)(vl − Πh(vl)) dx+

∫
Ω̃

fmv dx.

(4.4)

By the inverse estimate (2.2)

|| detD2ums,h||0,∞,Ω̃ ≤ C||ums,h||d2,∞,Ω̃
≤ Ch−2d||ums,h||d0,∞,Ω̃.

Hence by Lemma 2.3

(4.5) || detD2ums,h||0,∞,Ω̃ ≤ Ch,

for a constant Ch which depends on h but is independent of s.



14 GERARD AWANOU

Since fm is uniformly bounded on Ω, it follows from (4.5)

(4.6)

∣∣∣∣ ∫
Ω̃

(fmsl,h − fm)(v − vl) dx
∣∣∣∣ ≤ C||v − vl||1,2 → 0 as l→∞.

Finally, since v ∈ Vh(Ω̃), we have Πh(v) = v and hence∫
Ω̃

(fmsl,h − fm)(vl − Πh(vl)) dx =

∫
Ω̃

(fmsl,h − fm)(vl − v) dx

+

∫
Ω̃

(fmsl,h − fm)(Πh(v − vl)) dx.

By Schwarz inequality, (4.5) and (2.1)∣∣∣∣ ∫
Ω̃

(fmsl,h − fm)(Πh(v − vl)) dx
∣∣∣∣ ≤ Ch||Πh(v − vl)||0,2 ≤ Ch||v − vl||1,2 → 0 as l→∞.

Arguing again as in (4.6), it follows that

(4.7)

∫
Ω̃

(fmsl,h − fm)(vl − Πh(vl)) dx→ 0 as l→∞.

We conclude by (4.2)–(4.7) that as l→∞∫
Ω̃

(detD2umsl,h)v dx→
∫

Ω̃

fmv dx.

By the unicity of the limit ∫
Ω̃

(detD2uh)v dx =

∫
Ω̃

fmv dx.

That is, the limit uh solves (1.3). The existence of a solution to (1.3) is proved. �

5. Convergence of the discretization

We have

Theorem 5.1. Under the assumptions set forth in the introduction, the convex solu-
tion uh of Problem 1.3 (given by Theorem 4.1) converges uniformly on compact subsets

of Ω̃, as h → 0, to the solution ũ of (1.4) which is convex on Ω̃ and continuous up
to the boundary.

Proof. We recall from Theorem 3.1 that the function uh is uniformly bounded on

compact subsets of Ω̃. It follows from Lemma 2.11 that there exists a subsequence

uhl which converges pointwise to a convex function v. The latter is continuous on Ω̃

as it is locally finite. Moreover the convergence is uniform on compact subsets of Ω̃.

Recall also from Theorem 3.1 that uh is obtained as a subsequence in s of the appro-
ximations ums,h of smooth solutions ums which converge to um uniformly on compact
subsets of Ω.

Let K be a compact subset of Ω̃. There exists a subsequence um,sl,h which converges
uniformly to uh on K. By the uniform convergence of ums to um on K, we may
assume that um,sl converges uniformly to um on K.
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Let now ε > 0. Since uhl converges uniformly on K to v, ∃l0 such that ∀l ≥ l0
|uhl(x)− v(x)| < ε/6 for all x ∈ K.

There exists l1 ≥ 0 such that for all l ≥ max{ l0, l1 }, |umsl,hl(x) − uhl(x)| < ε/6 for
all x ∈ K.

Moreover, there exists l2 ≥ 0 such that for all l ≥ max{ l0, l1, l2 }, |umsl(x)−um(x)| <
ε/6 for all x ∈ K.

Similarly to (3.2), we have on K, |ums,hl(x)−ums(x)| ≤ Cmhl for all x ∈ K. We recall

that the constant Cm is independent of s but depends also on Ω̃.

We conclude that for l ≥ max{ l0, l1, l2 }, |um(x) − v(x)| < ε/2 + Chl for all x ∈ K.
We therefore have for all ε > 0 |um(x)− v(x)| < ε. We conclude that um = v on K.

Since uh = um on ∂Ω̃, it follows that v = um on ∂Ω̃. This proves that um = v on Ω̃.

The limit um being unique, we conclude that uh converges uniformly on compact

subsets of Ω̃ to ũ.

�

6. Piecewise strict convexity and local uniqueness

The proof of convergence of the time marching iterative methods for solving (1.3)
given in [2, 5] requires the discrete solution to be piecewise strictly convex and locally
unique. These results are given in this section. We make the abuse of notation of

denoting by D2wh the piecewise Hessian of wh ∈ Vh(Ω̃). Let λ1(D2wh) denotes the
smallest eigenvalue of D2wh.

6.1. Strict convexity of the discrete solution.

Theorem 6.1. For k ≥ 2(d + 1) the C1 solution uh of (1.3) is piecewise strictly
convex and thus strictly convex.

Proof. Assume that detD2uh (computed piecewise) is non zero on a set of non zero
Lebesgue measure. Then since detD2uh is a piecewise polynomial, it must vanish
identically on an element K0. Let v denote the unique polynomial of degree d+1 which
vanishes identically on all faces of K0 and with average 1 on K0. We denote as well by

v its extension by 0 on all other elements. Then v > 0 in K0 and v2 ∈ Vh(Ω̃)∩H1
0 (Ω̃)

and thus ∫
Ω̃

fv2 dx =

∫
K0

fv2 dx > 0.

On the other hand∫
Ω̃

fv2 dx =
∑
K∈Th

∫
K∩Ω̃

(detD2uh)v
2 dx =

∫
K0

(detD2uh)v
2 dx = 0,

since detD2uh = 0 on K0. Contradiction. We therefore have detD2uh > 0 a.e. in Ω̃.

�

Let x0 ∈ Ω̃. If necessary, by identifying uh with uh + ε|x − x0|2, where ε is taken to
be close to machine precision, we may assume that the solution uh is strictly convex.
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6.2. Uniqueness of the discrete solution.

Theorem 6.2. Let uh be a C1 strictly convex solution of (1.3). Then uh is locally
unique.

Proof. Define Bρ(uh) = {wh ∈ Vh, ||wh − uh||2,∞ ≤ ρ }. Then since λ1(D2uh) ≥ c00,
by the continuity of the eigenvalues of a matrix as a function of its entries, wh is
strictly convex for ρ sufficiently small and ρ independent of h.

Let then uh and vh be two solutions of (1.3) in Bρ(uh). By the mean value theorem,

see for example [2], we have for wh ∈ Vh(Ω̃) ∩H1
0 (Ω̃)

0 =

∫
Ω̃

(detD2uh − detD2vh)wh dx

= −
∫ 1

0

{∫
Ω̃

[(cof(1− t)D2vh + tD2uh)(Duh −Dvh)] ·Dwh dx
}
dt.

For each t ∈ [0, 1], (1− t)vh + tuh ∈ Bρ(uh) and is therefore strictly convex, that is

[(cof(1− t)D2vh + tD2uh)D(vh − uh)] ·D(vh − uh) ≥ C||vh − uh||2, C > 0.

Since uh = vh = um on ∂Ω̃, we have vh− uh = 0 on ∂Ω̃ and so integrating both sides,
and using wh = vh − uh, we obtain |vh − uh|1 = 0. Therefore uh = vh.

�

Remark 6.3. Our assumption 0 < c0 ≤ f ≤ c1 is not restrictive. That is, we
consider the degenerate case f ≥ 0 and the case of unbounded f .

For M > 0, if one defines fM by

fM(x) = f(x) for f(x) ≤M, and fM(x) = 0 otherwise,

we showed in [3] how the Aleksandrov solution of (1.1) is a limit of solutions of
Monge-Ampère equations with right hand side fM and boundary data g.

On the other hand, the constant c0 may be assumed to be close to machine precision.
Moreover, in the case f bounded with f ≥ 0, for ε > 0, it is a simple consequence
of [31, Lemma 5.1] that solutions of Monge-Ampère equations with right hand side
f + ε and boundary data g converge uniformly on compact subsets to the Aleksandrov
solution of (1.1) as ε→ 0.

7. Appendix

We give in this section the proof of some technical results.

Proof of Lemma 2.3. In the homogeneous case, i.e. for gm = 0, the result can be
inferred from [15]. See also [20, Theorem 2.16].

In the non homogeneous case, it seems that the only genuine interior Schauder es-
timates for (1.5), with constant depending only on the diameter of the compact
subset K ⊂ Ωs and not on Ωs is to rely on the corresponding result for the complex
Monge-Ampère equation in [21, Theorem 4]. See also the corresponding A.M.S. Ma-
thematical Review. For the convenience of the reader, we finish the proof with a brief
introduction to the complex Monge-Ampère equation.
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It follows from [21, Theorem 4] that

||ums||C2(Ω̃) ≤ Cm,

where Cm depends only on m, d, c2, ||fm||C1(Ω) and d(Ω̃, ∂Ω). The estimate for higher
order derivatives follows from standard elliptic regularity arguments. For example
differentiating the equation one time, and taking into account the smoothness of fm
and the C2 estimate, one obtains a second order linear equation which, because of the
strict convexity of the solution ums, is uniformly elliptic on compact subsets of Ω and
with solution a first derivative of u. The interior Schauder estimates for uniformly
elliptic linear equations [25, Theorem 6.2] then applies to give the desired estimate for
the third derivatives. Repeating this process is known as a bootstrapping argument.

Let us illustrate the technique with the two dimensional Monge-Ampère equation

uxxuyy − u2
xy = f(x, y),

where we use another standard notation for derivatives for simplicity. Put v = ux.
Differentiating with respect to x, we get the second order equation

uyyvxx + uxxvyy − 2uxyvxy = fx.

By the strict convexity of u, the equation is uniformly elliptic and hence

||v||C2(Ω̃) ≤ C,

with C depending on maxΩ v, ||fx||C1(Ω), Ω̃, d(Ω̃, ∂Ω), the smallest eigenvalue of D2u

and a bound on the C2,α norm of u. The latter bound implies an upper bound on
the eigenvalues of D2u, and since detD2u = f ≤ C, we obtain a positive lower
bound for the smallest eigenvalue of D2u. A similar argument applies to uy and thus

||u||C3(Ω̃) ≤ C, with C depending only on ||f||C2(Ω), Ω̃ and d(Ω̃, ∂Ω).

We finish with a brief introduction to the complex Monge-Ampère equation. First
the domain Ω ⊂ Rd is identified with a convex domain of Cd. Let now u be a
strictly convex smooth solution and put zi = xi +

√
−1 yi, i = 1, . . . , d. We can then

view u as a function of z defined by u(z) = u(x). Same for f and g. The complex
Monge-Ampère equation is given by

det

(
∂2u

∂zi∂zj

)
i,j=1,...,d

= f in Ω

u = g on ∂Ω,

(7.1)

where

∂u

∂zi
=

1

2

(
∂u

∂xi
−
√
−1

∂u

∂yi

)
∂u

∂zj
=

1

2

(
∂u

∂xj
+
√
−1

∂u

∂yi

)
.

This clearly reduces to (1.1) for real-valued functions defined on a convex domain of
Rn. The analogue of convex solution is a plurisubharmonic function, i.e. a function
for which the Hessian matrix in (7.1) is positive.

�
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Proof of Lemma 2.6. Since v ∈ W 2,d(Ω), by Hölder’s inequality, detD2v ∈ L1(Ω) and
thus defines an absolutely continuous finite measure given by

M̂ [v](E) =

∫
E

detD2v(x) dx,

and we recall that v is convex. We will use a comparison principle [37, Theorem 5.1]
which permits in general to compare a convex function w with a W 2,d function v when
M [w] is comparable to M̂ [v]. It is stated in [37] for a strictly convex domain, but
the result also holds for a domain not necessarily strictly convex as a consequence of
Theorem 2.4. Let thus w be the Aleksandrov solution of

M [w] = M̂ [v] in Ω, w = v on ∂Ω.

Since M [w] ≥ M̂ [v] and w ≤ v on ∂Ω, we have w ≤ v in Ω by [37, Theorem 5.1].

Next, we claim that M̂ [v] ≤ M [v]. For a Borel set E ⊂ Ω, E is the disjoint union

of ∪K∈ThE ∩
◦
K and ∪K∈ThE ∩ ∂K. Moreover, the number of elements K ∈ Th is

countable. Thus

M [v](E) = M [v]

(
∪K∈Th E ∩

◦
K

)
+M [v]

(
∪K∈Th E ∩ ∂K

)
≥M [v]

(
∪K∈Th E ∩

◦
K

)
=
∑
K∈Th

M [v](E ∩
◦
K).

By assumption v is piecewise C2 and thus

M [v](E) ≥
∑
K∈Th

∫
E∩

◦
K

detD2v(x) dx

=
∑
K∈Th

∫
E∩K

detD2v(x) dx =

∫
E

detD2v(x) dx = M̂ [v](E),

since detD2v ∈ L1(Ω).

We have M [w] ≤ M̂ [v] ≤ M [v] and w ≥ v on ∂Ω. Thus by the comparison principle
[29, Theorem 1.4.6], we have w ≥ v in Ω. We conclude that w = v and since
M [w] = detD2v, i.e. M [w] has density detD2v, this proves the result.

�

Proof of Lemma 2.11. For pj ∈ ∂uj(x) and x ∈ Ω, we have by [29, Lemma 3.2.1]

|pj| ≤
|uj(x)|
d(x, ∂Ω)

≤ C

d(x, ∂Ω)
,

for a constant C independent of j. Arguing as in the proof of [29, Lemma 1.1.6],
it follows that the sequence uj is uniformly Lipschitz and hence equicontinuous on
compact subsets of Ω. By the Arzela-Ascoli theorem, [38, p. 179], we conclude that
the result holds.

�
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Proof of Theorem 2.15. By convexity of zs, see [35, Theorem 3.4.7], we have

zs(x) ≤ max
x∈Ωs

b ≤ max
x∈Ω

b ≤ C, ∀x ∈ Ωs,

for a constant C > 0.

Let now C denote the minimum of b on ∂Ωs. We may assume that C is independent
of s since by assumption b ∈ C(Ω). Since zs = bs on ∂Ωs, we have zs − C ≥ 0 on
∂Ωs. Either zs(x)− C ≥ 0 for x ∈ Ωs, or by Aleksandrov’s maximum principle, [37,
Lemma 3.5 ] or [30, Proposition 6.15],

(−(zs(x)− C))n ≤ cn(diam Ωs)
n−1d(x, ∂Ωs)

∫
Ωs

a dx,

where cn is a constant which depends only on n. We recall that a ∈ C(Ω). It follows
that the sequence zs is bounded below on Ωs.

By Lemma 2.11, the sequence zs being bounded has a pointwise convergent subse-
quence, also denoted by zs, to a limit function z. But since zs is a sequence of convex
functions on Ωs, and Ωs increases to Ω, the limit function z is a convex function
on Ω and the convergence is uniform on compact subsets of Ω. Let us first assume
that zs has a subsequence, also denoted zs, such that the corresponding upper graphs
converge in the Hausdorff distance, i.e. zs → z. Then by Proposition 2.14, or [39,
Proposition 2.4 ], we have

detD2z = a in Ω, z = b on ∂Ω.

To complete the proof, it remains to show that zs has a subsequence such that zs → z.
We define

Vs = { (x, xd+1) ∈ Ω× R, xd+1 ≥ zs(x) },
the epigraph of the convex function zs. It is known that V s is a closed convex set.
Let C ≥ 0 such that |zs(x)| ≤ C for all s and x ∈ Ωs. Put

B = { (x, xd+1) ∈ Ω× R, |xd+1| ≤ C }.
Thus V s ∩ B is a nonempty compact convex subset of Rd+1, i.e. a convex body in
the terminology of [40]. By the Blaschke selection theorem [40, Theorem 1.8.7], there
exists a subsequence also denoted V s ∩ B which converges in the Hausdorff distance
to a convex set K.

By [40, Theorem 1.8.7-a], each (x, r) ∈ K is the limit of a sequence (xs, rs) in V s∩B.
Since the sequence zs is bounded from below, we conclude that

{ r ∈ R, (x, r) ∈ K },
has a lower bound for all x ∈ Ω. Note that the sequence xs converges to an element
of Ω. Thus the lower bound function of K, i.e. the function ẑ(x) defined by

ẑ(x) = inf{ r ∈ R, (x, r) ∈ K },
is well defined on Ω. By [32, Theorem 1.3.1], ẑ defines a convex function and if we

denote by V̂ its epigraph, K = V̂ ∩ B. We conclude that V s converges to V̂ in the
Hausdorff distance, i.e. zs → ẑ. We now prove that ẑ = z on Ω.

For x ∈ Ω, let (x, rs) in V s ∩ B such that (x, rs) → (x, r). We have rs ≥ zs(x). If
necessary, by taking a subsequence, we get r ≥ z(x) and thus by the definition of
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ẑ(x), we obtain ẑ(x) ≥ z(x). On the other hand (x, zs(x)) ∈ V s ∩ B and so by [40,
Theorem 1.8.7-b], (x, z(x)) ∈ K. It follows that ẑ(x) ≤ z(x) and this concludes the
proof.

�

Proof of Lemma 2.17. Since p ∈ H1
0 (Ω), there exists a sequence pl of infinitely diffe-

rentiable functions with compact support in Ω such that ||pl − p||1,2 → 0 as l → ∞.
We have ∫

Ω

(am − a)p dx =

∫
Ω

(am − a)(p− pl) dx+

∫
Ω

(am − a)pl dx.

By assumption
∫

Ω
(am − a)pl dx → 0 as m → ∞. Moreover, since Ω is bounded and

||am||0,∞ ≤ C for all m, we have∣∣∣∣ ∫
Ω

(am − a)(p− pl) dx
∣∣∣∣ ≤ ||am − a||0,∞∣∣∣∣ ∫

Ω

p− pl dx
∣∣∣∣

≤ C(||am||0,∞ + ||a||0,∞)||p− pl||0,2
≤ C||p− pl||0,2 → 0 as l→∞.

This concludes the proof. �
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