Pixed-Point Theorems for Fréchet Spaces

J. Bona

In considering nonlinear partial differential equations defined on
functions whose domain is an unbounded subset of Buclidean space, one is led

to search for solutions u of operator equations of the form
u = Au, (1)

Typically, A will be an integral operator. It often happens that while A is
nonlinear, it nevertheless presents the zero function as a solution, and
what is required is a second, nontrivial solution.

Many of the powerful methods of attacking equations like (1) appear not
to be applicable in these circumstances. The contraction mapping principle
is difficult to apply in the presence of the trivial solution, unless one
has knowledge of an approximation to the nontrivial solution. Further, in
the usual Banach spaces of functions used in analyzing (1), A is not a
compact operator, owing to the unboundedness of the underlying Euclidean
domain. In particular the results of Krasnosel'skii [K] on mappings of
Banach spaces ordered by a cone are not applicable.

It very often happens, however, that the operators A are compact in
wider function spaces, which are generally not normed spaces, but more
general metric linear spaces. It is therefore of interest to extend the
'cone theorems' to a broader class of spaces, and this note contributes a
result in this direction.

The proofs of the cone theorems in a Banach space setting are
accomplished by Krasnosel'skii [K, ch. 4] by intricate arguments which

appear difficult to extend. However, a recent and simplified proof of
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Krasnosel'skii's result has been obtained by Benjamin [B, apvendix 1], and
the method proposed there can be generalized by using the degree theory in
locally convex topological linear spaces developed by Nagumo [N].

We let E denote a Frechet space (complete, separable metric linear
space, over R) and K a cone in E (KCE is not the zero element alone, is
convex, closed, x€ K => ax€K for 030, and x,-x€ K = x=0). Let d denote
the metric in E. Without loss of generality, we can suppose d has the form

«©

ey =1 273 by (xy)/ (14p; o)), ©)
where p;,pz2, ... is an increasing sequence of pseudo-norms [T, ch. 8].
Further, we may suppose that for some W€K, pi(w) > 0. Let A:K—> Kbe a
continuous mapping which is 'compact' in the sense that A(Sr(O)f\K) is a
precompact set, for r<l, where Sr(O) = {x€E: d{x,0)<r}.

It follows from Dugundgi's theorem [H, theorem 14.1, p. 57] that A can
be extended to a continuous mapping R of E into K such that ;(S 1.(O)) is

precompact, for r<l1 (apply the extension theorem sequentially to the closed

sets Srn(o) where rn‘r 1 and use the fact thaf the convex hull of a
precompact set is precompact). Define & = I-A. Then solutions of (1) for
A correspond to zeros of &.

Suppose G is an open subset of E which 1; maps to a precompact set and
for which ¢ $# O on 3G (G\G). Then the rotation rot[¢,G] of ¢ on G is an
integer defined, in a locally convex linear space setting, by Nagumo [N] )

In Nagumo's notation, rot[¢,G] = A[0,G,8]. This integer obeys all the usual
rules of the usual rotation in n-dimensional Euclidean space [N, §4]. Here
is our result.

THEOREM. Let K be a cone in the Fréchet space E as above and let

A:K—> K be a continuous and compact mapping. Suppose that for O<r<R«1,

(1) u-AuékK for u € X and d(u,0) = r,

(ii) Au-u¢K for u € K and d(u,0) =R.
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then A has a solution ¢ to (1)} such that r<d(¢,0)<R.

REMARK., The same conclusion may be drawn if instead of (i} and (ii),

we suppose
(iii) Au-ug¢ K for u € K and d(u,0) = 1,
(iv) u-Aud¢Kk for u € K and d(u,0) = R.

The proof is a trivial modification of the proof given below assuming (i)
and (ii).

Proof. We let R and ¢ be as defined above. First, if d{(u,0) = r,
u- Au¢K If u€K, this is provided by (i) since then Au = Au. If ugKk,

and u ~ Au = v€K, then u = Au + véK, a contradiction.

Next, there is a v& K such that v¢¢(sr(0)). In fact, a large positive

multiple of the element w€K such that p; (w)>0 works. For if <I>(Sr(0))
contains the entire half ray {ow: o320}, then since d(ow,0) -+ 1 as a > +»
(from (2) and the condition p;(w)> 0}, there would be a sequence u - Au
such that d(u -Au ,0) =+ 1. From (2), this can happen only if

p;(u -Au } + 4+, We can assume that Aun + y in the metric d (by compact-
ness of A) and hence that Au + y for the pseudo-norm p;. It then follows

that p;(un) + +»o, which implies d(un,O) + 1 from (2), a contradiction

because uné Sr(O).
Consider the homotopy M: S_(0) x [0,1] + E given by M(u,t) = Au - tv.
For u€d5_(0), u - M(u,t) $ 0, Ostgl. For u - M(u,t) =0 =3 ¢(u) = tv € K,

which we have shown camnot hold. For fixed t, M is a compact mapping of

Sr(O), since A is, and for fixed u, M is uwniformly continuous in t. The
conditions of [N, theorem 7, p. 504] are met, and we may conclude that the

rotation of I - M(u,0) and I - M(u,1) are the same on Sr(O)’ Thus,
rot[@,Sr(O)] = rot[¢-v,S r(O)] . (3)

The right side of (3) is zero, for if not, then by [N, theorem 5, p. SOIﬂ,

¢ - v would have a zero in Sr(O), a contradiction to our choice of v.
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Finally, consider the homotopy F: SR(O) x [0,1] + B defined by
F(u,t) = tAu. If u - F{u,t) = O for ué aSR(O), then u = tAu€ K (and hence
t £ 0). Thus Au = Au and so t(Au-u) = (1-tJu€K = Au - ueK which

contradicts (ii). Again, for fixed t, F is compact on SR(O), and for fixed

u, F is wmiformly continuous in t. Thus we derive that

rot[#,8;(0)] = rot[1,5;(0)]

and the latter rotation is 1 [N, p. 503].

Now, let T = {x€E: r<d(x,0)<R}. T is an open set, and TﬂSr(O) =¢,

;USr(O) = S3(0), TUS (0) C S;(0) and ¢ # O on 3S_(0) or 3T by (i) and
(ii). It follows from [N, theorem 6, p. 503] that

rot[¢,SR(0)] = rot[e,T] + rot[¢,Sr(O)],

from which we conclude rot[¢,T] = 1. Hence ¢ has a zero in T, [N, theorem

5], and this is the required result.
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