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THE KORTEWEG-DE VRIES EQUATION, POSED IN A |
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Abstract. An initial- and boundary-value problem for the Korteweg-de Vries equation is shown to be
well-posed. The considered problem may serve as a model for unidirectional propagation of plane waves
generated by a wavemaker in a uniform medium. Such models apply in regimes in which nonlinear and
dispersive effects are of comparable small order.
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1. Introduction. The Korteweg-de Vries equation, originally suggested in connec-
tion with a certain regime of surface water waves, has been derived as a model for
unidirectional propagation of small-amplitude long waves in a number of physical
systems. Because of the range of its potential application, and because of its very
interesting mathematical properties, this equation has been the object of prolific study
in the last few years. These studies have generally concentrated on aspects of the pure
initial-value problem,

(1.1) utu,tuu tu, =0,
(1.2) u(x,0)=f(x),

for x ER and r=0, say. Equation (1.1) is a version of the Korteweg—de Vries equation
in which the dependent and independent variables are nondimensional, but unscaled.
The initial data f in (1.2) typically decays to zero at infinity, or is taken to be a periodic
function, though these do not exhaust the theory thus far existent (cf. Bona and
Schonbek [7] and Menikoff [20]). For comprehensive descriptions of results pertaining
to the KdV equation, as (1.1) will be named subsequently, the reader may consult the
review articles of Benjamin [3], Jeffrey and Kakutani [14], Lax [17), Miura [21], [22] and
Scott, Chu and McLaughlin [24].

The applicability of the KdV equation in a particular context depends on many
factors. Among the more universal of these is that the waves be unidirectional and
essentially one-dimensional in character. It must generally be the case that, at least
locally, the nonlinear and dispersive terms, uu, and u,,,, respectively, represent small
corrections to the basic one-way propagator u,+u,=0 (cf. [4,§2]). In attempting to
assess the performance of the KdV equation as a model for waves in a particular
system, the pure initial-value problem may not be particularly convenient. There might
be difficulty associated with determining the entire wave profile accurately at a given
instant of time. One method of obtaining unidirectional waves to test the appurtenance
of KdV is to generate waves at one end of a homogeneous stretch of the medium in
question and to allow them to propagate into the initially undisturbed medium beyond
the wavemaker. (Figure 1 shows an instance of this situation in the case of surface
waves in a channel. For this system x is proportional to distance along the channel, ¢ is
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proportional to elapsed time and the dependent variable n is the deviation of the
liquid’s surface from its equilibrium position at the point x at time . Here the
dependent variable has been denoted 7 since u is usually reserved for a velocity in fluid
flow contexts.) During the time when the waves propagate freely, it may be expected
that KdV can apply. Of course any real medium will have finite extent, and once the
waves have been influenced by another boundary the experiment should cease, as far as
K4V is concerned. In such an experiment it may be comparatively easy to measure the
passage of the generated waves at a fixed location at or away from the wavemaker. If
this is the case, the generated waves can be determined, at or near the wavemaker, and
at another station further away from the wavemaker. One could imagine using the
measurement nearest the wavemaker as data for the KdV equation. It may then be
possible to predict, perhaps numerically, the behavior of the waves further from the
wavemaker on the basis of the KdV equation, and to compare the prediction with the
measurements made well away from the wavemaker.
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F10.1. Sketch of the experimental configuration and the proposed mathematical model.

The major accomplishment of the theory presented here is the demonstration that
the program, just described, can, in principle, be carried out. Let us agree to fix the zero
of the spatial coordinate x, which is along the direction of propagation, at the station
nearest the wavemaker where a measurement is to be taken. Then the mathematical
problem that accompanies the above discussion is expressed as the following initial-
and boundary-value problem (cf. again Fig. 1).

(1.3) u,+u +uu,+u,, =0 forx,t=0,
u(x,0)=f(x) for x=0,
u(0,1)=g(t) for 1=0.

According to the above general discussion, it could be warranted to take f=0 and to
assume that g, which is determined experimentally, is consistent with small-amplitude
long-wavelength waves. These assumptions will play no role in the theory developed
here.

All that will be required is that f and g exhibit smoothness, which is entirely ap-
propriate to the use of KAV as a model equation, and that f decay to zero at infinity
appropriately. The smoothness requirement extends to the origin, and results in a
certain compatibility that must be satisfied between f and g. These conditions will be
spelled out presently.
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The same initial- and boundary-value problem has been analyzed for the alterna-
tive equation, proposed by Peregrine [23] and Benjamin et al. [4],
(1.4) utu, tuu—u, =0,

in [5]. Results related to those established in the latter reference will be derived and
used in the attack on (1.3). The connection between KdV and (1.4) is a regularized
version of problem (1.3), namely,

(1.5) u+u tuu, tu, —eu, =0 forx,1=0,
u(x,0)=f(x) for x=0,
u(0,1)=g(¢t) for 1=0,

where ¢>0. The regularized problem (1.5) intervenes in a substantial way in the
existence theory for (1.3) developed here. The regularized differential equation appear-
ing in (1.5) is the same tool used already in [7] and [8] in discussions of various pure
initial-value problems for KdV. The general outline of the theory herein is patterned
after that developed in [8]. The technical difficulties presented by the nonhomogeneous
boundary condition u(0,¢)=g(¢), for =0, require a more delicate analysis than that
effected in the last-quoted reference.

The present theory may be considered an extension of the earlier work of Ton [27]
and Bona and Heard [6). Ton’s paper undertook the study of the problem,

(1.6) utuu,*u =0, x,t>0,
u(x,0)=f(x), x=0,
u(0,1)=0, t=0.

If the minus sign appears in front of the dispersive term, then the extra boundary
condition u,(0,¢)=0, for r>0, is appended. For problem (1.6), with the positive sign
taken, the methods exemplified in Lions’ text [18], combined with the regularization
used by Temam [26] in an early paper on the periodic initial-value problem for KdV,
are used to obtain global existence of weak solutions and local existence of classical
solutions. (The interval of existence is proportional to the inverse of || f|ls, in the
notation to be introduced in §2.)

Actually, problem (1.6) is not an appropriate model for water waves in a uniform
channel, as is suggested in [27]. For the differential equation in (1.6) is written in
travelling coordinates, and consequently the boundary condition, if it is to correspond
to observations of the disturbance at a fixed position in the channel, should be applied,
not at (0,7), for =0, but rather at (—¢,¢), for t=0. This awkwardness is easily
obfuscated by the inclusion of the extra linear term u, in the differential equation, an
addition without serious consequence as regards Ton’s mathematical proofs. A more
serious objection to the theory developed in [27] is that the homogeneous boundary
condition u(0,¢)=0, for 1=0, is not well-suited to model waves generated by a wave-
maker at one end of a uniform stretch of medium, as already explained. Moreover, for
problems of long-wave propagation, it is not anticipated that the flow will develop
singularities, and consequently it is expected that the model equation should have a
global theory of classical solutions, corresponding to suitably smooth data. These
drawbacks in the earlier theory are here shown to be methodological, and not inher-
ently a property of the model equation.

In [6], a local existence theory for (1.3) is developed, using the methods of Kato
[16]. The boundary data is required to be mildly smooth, but otherwise arbitrary. For
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technical reasons, this theory has not, thus far, yielded solutions defined globally in
time.

It is worth drawing attention to several comparisons which have been made with
experimentally obtained data, pertaining to the originally conceived application of the
KdV equation to small-amplitude surface water waves. We cite the studies of Zabusky
and Galvin [31) and Hammack and Segur [13}, and of Hammack [12] using (1.4). These
studies all used pure initial-value problems for their theoretical predictions, even though
the experimental configuration was exactly as described earlier in justifying the further
study of the initial- and boundary-value problem considered here. That is, a uniform
channel of water, initially at rest, had waves generated at one end by a wavemaker. The
waves propagated down the channel and their passage was recorded at various stations
along the channel. Entailed in each of these studies was a transformation of data
measured over time, at a fixed location, to data measured spatially at a fixed instant of
time. The approximate transformations used in the above-quoted studies introduce
errors, which can be analyzed. In fact, the forthcoming work [10] addresses this issue in
some detail, and consequently it is not taken up here, except to report that quite
significant errors, particularly as regards the phase speed, can be expected when using
the approach of converting the boundary-value problem to a pure initial-value problem.

It is also worth noting that, at least for surface water waves, damping effects need
to be considered. Such effects were introduced, in an ad hoc way, in [12] and [13], and
more systematically in [10]. An additional term that models the damping due to the
boundary layers on the bottom and sides of a uniform channel of shallow water, at the
level of approximation entailed in the KdV equation, has been derived carefully by
Kakutani and Matsuuchi [15]. The incorporation of such dissipative terms in the initial-
and boundary-value problem (1.3) is under study, but will not be addressed here.

The paper is organized as follows. Section two sets out the notation and terminol-
ogy to be used subsequently and presents a sample of the main results in the paper. In
§3 the regularized problem (1.5) is considered, and is shown to admit a satisfactory
theory when ¢ is fixed and positive. A priori e-independent bounds for solutions of the
regularized problem are derived in §§4 and 5. Passage to the limit & |0 is effected in §6,
where smooth solutions of the initial- and boundary-value problem (1.3) are shown to
exist. The paper concludes with some commentary concerning aspects not covered in
the present study.

2. Preliminaries and statement of the main result. For an arbitrary Banach space
X, the associated norm will be denoted ||- || . The following spaces will intervene in the
subsequent analysis. o

If @ is a bounded domain in R”, then C/(2) denotes the space of real-valued
functions which have classical derivatives up to order j in £, and whose derivatives, up
to order j, extend to a continuous function on £. If j=0, C%Q) will be denoted simply
C(R). The norm on C(2) is

Iflc@y= sup lf(x)],

and the norm on C/(Q) is

2.1 Iflc@= 2 13 lc@s
=/
where a=(a,,- - -,a,) is a multi-index of nonnegative integers, jo|=a,+ - - - +a,, and

fod
()= e
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The notation 3/ for 3"/0x" and 9/ for 8’/6:’ will be employed throughout when it is

convenient. If Q is unbounded, Cg(ﬂ) is defined exactly as in the case that  is
bounded except that the function and its derivatives are required to be bounded. The
norm is again defined by (2.1).

The space C®(R)=nN Cf(ﬂ) will be used, but its usual Fréchet-space topology
will not be needed. 6D(Q) is the subspace of C®(R) of functions with compact support
in Q. Its dual space, D’(R), is the space of Schwartz distributions on .

If Q is open in R", then C/(Q) is the continuous real-valued functions defined on
© and possessing classical derivatives up to order j which are continuous on 2. No
restrictions are placed on the behavior of the functions near the boundary of £. This
class can also be given a natural Fréchet-space topology, but this topology will not
figure in the developments here. Naturally, C*(2)= N;C/(R).

If T>0, we will systematically use the abbrewanon C(0, T) for C([0, T']). Similarly,
C™(0, T') will stand for C™({0, T'}).

For any real p in the range [1, ), L?(R2) denotes the collection of real-valued
Lebesgue measurable pth-power absolutely integrable functions defined on £. As usual,
L*(R) denotes the essentially bounded real-valued functions defined on . These
spaces get their usual norms,

Ulerar={ [ s}

for 1 =p<co, and

/]l z=@) =essential supremum | f(x)|.
x€Q

If 1<p=<o0, and m=0 is an integer, let W™?(Q) be the Sobolev space of L?(£2)-func-
tions whose distributional derivatives up to order m also lie in L?({2). The norm on
wmr(R) is

imear= 3 101 2r@)-

jd=m

When p=2, W™?(Q) will be denoted H™(£2). This is a Hilbert space, and H°(Q)=
L*(R). For s>0, not necessarily an integer, H*(Q) is defined by interpolation. For
§>0, Hy() is the closure in H°(2) of (). For s>0, H*(R) is the dual of HY(Q)
with respect to the pairing which is the extension by continuity of the usual L?(Q)-inner
product. The noninteger-order Sobolev spaces only intrude at one point in our analysis,
and then only in the interest of sharpness. Details concerning these spaces may be
found in Lions and Magenes’ work [19] or in Stein’s text [25]), for example. The
notation H*(2)=N,H/(2) will be used for the C*-functions on &, all of whose
derivatives lie i in Lz(ﬂ)

Finally, H; () is the set of real-valued functions f defined on @ such that, for
each ¢ EGD(Q), of € H°(R). This space is equipped with the weakest topology such that
all of the mappings f— @f, for ¢ €(L), are continuous from H; () into H*(Q). With
this topology, Hj () is a Fréchet space (cf. Treves [28]). Let R’r denote the positive
real numbers, (0, 00). A simple but pertinent example of the localized Sobolev spaces is
H; (R™). Interpreting the foregoing definitions in this special case, g€ Hy (R*) if and
only if g€ H*(0,T), for all finite T7>0. Moreover, g,~g in H; (R*) if and only if
8, & in H*(0,T), for each T>0. Here and below, the abbreviation H*(0, T') has been
used for H*((0, T)).
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In the analysis of the quarter-plane problem (1.3), the spaces H*() will occur
often, with s a positive integer and 2=R™* or 2=(0, T'). Because of their frequent
occurrence, it is convenient to abbreviate their norms. Thus let

(2.22) I-ls=1-lam and [-|r={- w0
If s=0, the subscript s will be omitted altogether. So

(2.2b) I-1=0- 2wy and |-|7=]-lo,r.
Some special cases of the Sobolev embedding theorems will be used occasionally

and are worth recalling here. Let I be an open interval on the real line, not necessarily
bounded. If s>1/2+m, where m is a nonnegative integer, then

(2.3) H'(I)ccp(T),

algebraically, and continuously with respect to the norms on these two spaces. (More
precisely, an element in H*(I) is, after possible modification on a set of Lebesgue
measure zero, a C™-function on I, all of whose derivatives up to order m are uniformly
continuous on /, and so may be extended to I.) In the special case where I=R* and
s=k, a positive integer, it is also useful to recall that if f€ H*(R *), then,

(2.4) f(x), (%), f* " D(x)»0 asx— +oo0.

An inequality that will find use is the following, valid for f€ H'(R*). According to
(2.3), such a function is bounded and continuous on R*, and furthermore,

(2.5) I lcwmsy=v2 (A1) 7.

This inequality, which is sharp in fact, follows from the observation that, for any
YER™Y, and fEH'(R™),

70)= =21 a=a( [ [Lrea)”
<20/l

Spaces will be needed to describe the evolution in time of the spatial structure. If X
is a Banach space, 1 =p=<o0, and —oo=<a<b=o0, then L?(a,b; X) denotes the space
of measurable functions u:(a,b)— X whose norms are pth-power integrable (essentially
bounded, if p= o0). These are Banach spaces in their own right, with the norms

b 1/p
lalleren={ [Nt} " forp<es,
a

and

l[ull L=(a,b; 1y = essential supremum { fju(r)||x} .
[

€(a,d)

The subspace of L*(a,b; X) of continuous and bounded functions u:[a,b]- X is
denoted Cy(a,b; X). (In case a and b are both finite, the subscript b, for “bounded”, is
dropped.)

These spaces all possess localized versions. The only one appearing here is the
space LZ (R *; X) of measurable maps u:R* - X which are essentially bounded on any
compact subset of R™*.

Finally, if X is still an arbitrary Banach space, we may consider the X-valued
distributions 9’(a, b; X) on the interval (a, b). Formally, &’(a, b; X) is the set of linear
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and continuous maps of D(a,d) into X, If TED(a, b; X), its distributional derivative
is defined by

& (p)=-T(9),

for p €9 (a,b). Thus, if fEL?(a,b; X), then f may be viewed as an X-valued distri-
bution via the definition

1(9)=["f(1)o (1),

for @ €E%(a, b). The integral is, of course, X-valued, and converges since ¢ has compact
support. Thus, “temporal” derivatives of L?(a,b; X)-functions may always be defined,
at least in the distributional sense. There is a considerable theory pertaining to when
distributional derivatives are in fact classically defined. Some of these results will be
called upon later. Specific uses of this theory will be referenced precisely, but the reader
may consult [18], [19], [25] or [28] for general commentary concerning such issues.

The following is a special case of the main result of this paper. It serves simulta-
neously to give orientation and define the goals of the paper.

THEOREM. Consider the initial- and boundary-value problem (1.3) and suppose that
the data f,g has fE H*(R*) and gE H2 (R*). Suppose that f and g satisfy the compatibil-
ity conditions,

£(0)=£(0),
8:(0)= — ( fex£(0) +£(0) £,(0) +£.(0)).

Then there exists a unique solution u in LS (R™; H*®R™)) of (1.3) corresponding to the
data f and g.

Remarks. By the term “solution”, we will always mean, in the first instance, a
solution in the sense of distributions on the quarter-plane. The term classical solution is
reserved for a function which is continuous and continuously differentiable the re-
quisite number of times, and which satisfies the differential equation pointwise every-
where, and the initial and the boundary conditions pointwise.

Note that since g€ HL (R '), gEC'(0, T), for any T>0. Also, f€ H*[R ™) implies
fECAR™). In consequence, the compatibility conditions are both well-defined. The
first compatibility condition simply expresses the continuity of the solution u at the
origin. The second condition would necessarily hold for a classical solution.

The theorem above is a part of Theorem 6.2 below. There it will also be established
that if fE H**Y(R*) and g€ H{Y'(R™), where k is a positive integer, and if corre-
sponding higher order compatibility conditions hold, then the solution u lies in the class

© (R*; H3**Y(R™)). In particular, if k=2, it is easily inferred that u is a classical and
global solution of the quarter-plane problem for the KdV equation.

3. Theory relating to the regularized problem. In this section, interest will be
focused entirely on the regularized initial- and boundary-value problem (1.5), repeated
here for convenience.

(3.1a) utu tuutu, —eu.,=0 forx, =0,
with
(3.1b) u(x,0)=f£(x) for x=0,

u(0,¢)=g(¢) for 1=0.
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For consistency, the restriction

(3.2) u(0,0)=/(0)=g(0)
will be imposed throughout the discussion. For the present, the positive parameter €

will be treated as a fixed constant, in the range (0, 1], say. Following the development
in [8], let

(3.3) o(x,t)=eu(e/2(x—1),e/%).

It is immediately verified that u is a smooth solution of (3.1) if and only if v is a smooth
solution of the problem

(3.4a) v,+(1+€)o +ov,—0,,=0 in,
and
(3.4v) v(x,0)=F(x) forx=0,

o(1,t)=G(1) for1=0.

Here @={(x,1): >0 and x>1}, F(x)=¢f(¢'/*x), and G(t)=eg(e*/?*t). The depen-
dence of F and G on ¢ is suppressed, since ¢ is viewed as fixed here. Of course (3.2)
implies and is implied by

(3.5) F(0)=G(0).

The initial- and boundary-value problem (3.4) is somewhat peculiar, owing to the
domain (a sector of angle 7 /4) in which it is posed (cf. Fig. 2).

v(t,1)=G (1)

v(x,0} =F(x

FI1G. 2. The regularized problem , after the change of variables.

Related initial- and boundary-value problems have been analyzed by passing to an
associated integral equation. This method proves to be effective in the present circum-
stances.

To convert (3.4) into an integral equation, proceed formally as follows. Write (3.4)
as

U~ U= _(l +8)Ux—00x,
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and, for fixed x=1, integrate this relation over the temporal interval (0,¢). There
appears

(3.6) w—w,=S forx>1,
where
w(x,t)=0o(x,t)—F(x),
and
S(x,t)=—]:[(l+e)ox(x,s)-i-v(x,s)vx(x,s)] ds.
The solution of (3.6) may be expressed in the form

(3.7) w(x,t)=ae""+—;-j;me"“‘aS(£,t)d£,

by the variation of constants formula. Of course a=a(?), and it has been assumed
tacitly that S and w are bounded. If r=0, then at x=1,

G(1)—F(t)=v(1,1)~ F(t) =w(1,1)=a(t)e ™"+ / e=¥-8g(¢, 1) dt.
Hence,
(3.8) a(t)=e’{G(t)—F(t)—% I “e—v—es(e,t)de].
The result of (3.7) and (3.8) is that
o, 0)=Flx) e~ =G (1)~ F(1)) 3¢~ [“er85(4,1) dg

i ] e -8S(£, 1) dE.
Since £, this simplifies to
(3.9) v(x,t)=F(x)+e"“"’(G(z)-—F(t))+/:°°M(x—t,£—t)s(§,t)d£,
where
(3.10) M(y,2)=1 [exp(~ly—2) —exp(—(y+2))].

Replacing S by its definition in terms of v, and integrating once by parts, (3.9) may be
expressed in the form

(3.11)  o(x,t)=F(x)+e " *"(G(t)—F(t))
o ' 1
+ [ K(x—t,¢é—t [1+ ,+—2,]dsd,
[ K180 [[| (14 e)o(8,5) +50%(6,5) | st
where
1
(3.12) K(y,2)=5 [exp(—y—z)+sgn(y—z)exp(—l—2)].
The boundary term that appears in the integration by parts vanishes because e > 8=

e~ (*+O+2 when £¢=¢ and x=1. Notice that K(0,£—¢)=0, so that v(¢,)=G(?), for all
1=0. Note also that v(x,0)=F(x), provided the consistency condition (3.5) holds.
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Equation (3.11) is the desired integral equation. It has been derived formally, and
thus far its relation to solutions of (3.4) is not rigorously established. Qur object now is
to make a rigorous connection between solutions of the integral equation and solutions
of (3.4), and to show that the integral equations possesses solutions, at least for small
time intervals.

Turning to the second objective first, let 7>0 and let C,. be the Banach space of
bounded continuous functions defined on the closure of the set

Qr={(x,¢):¢t€(0,T) and x>1}.

C is equipped with the supremum norm. Let A denote the operator that maps a
function w €C, into the function

(3.13) (Aw)(x,1)=F(x)+e*"9(G(¢)—F(¢))
+_£°°K(x—t,£—l)j(;[(l+s)w(£,s)+-;-w2(£,s)]dsd&,

defined for (x,1) €Q,. Because the kernel X is integrable, and assuming that F and G
are bounded and continuous, it is plain that Aw €C, also. Existence of a solution of the
integral equation (3.11) will be provided by showmg that, for T small enough, 4 is a
contraction mapping of a ball centered at the zero function in C,. The following
estimate is the basis on which this assertion is established.

Let u and w be elements of C;. Consider the difference of their images under the
operator A,

Au(x,t)—Aw(x,1)
-_-fwK(x—t,.E—t)j:[l +e+—;-u(£,s)+-;—w(€,s)][u(£,s)—w(£,s)] dsdé.
For ¢ fixed in the interval [0, T'],

sup |Au(x,t)—Aw(x,t)|

x=t

¢ 1
<supf |K(x—¢, £—-t)|d€?gj;|1+e+%u(§,s)+5w(§,s)

x=t

|u(€,5) —w(§,s5)| ds.

But, for x=¢,

[T K= 1=l de= [ 7Iet 0+ - e

I ST

foo,em—(x-i-t)__ex—el de e l /X(eZl—(x+£)+e£—x)d£
X 2 4

=1—eX <],
Hence, as 0<t<T,

sup |Au(x,t)—Aw(x, t)|<supf|l+s+ u(£,s)+ w(¢,s)

x=t

lu(£,5)—w(¢,s)|ds

< {1+ e+ (e + vl ) fu—wle.
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It follows that
(3.14) |Au—Awle,= sup |Au(x,t)—Aw(x,t)|

(x,0)EQ;

<T](1+ )+ (s Il [Ju=wler

This inequality implies the desired result. Let 8(x,7)=0 and set

(3.15) R(T)=2||Ab|le,<4|| Flc.@*)+ 2| Gl co.n.
Let By={w€ECy: ||wlle,<R(T)) and let
(3.16) ©(T)=T[1+e+R(T)].

Then it follows straightforwardly that, for ¥ and w in B,

| 4u—Aw|le,<6(T )|ju—wlle;,
and

lulle, <)l Au—46]e, + | 46], _<_9(T)|lu|le,+%R(T)s[6(T)+%]R(T).

Because of the last two inequalities, A will be a contraction mapping of By if ©(T)=<1.
Referring to (3.16), one appreciates immediately that, for fixed data F and G, this
certainly holds for T sufficiently small. In fact, it is worth noting that, essentially
because of the inequality in (3.15), for any M >0 we may take

(3.17) T=min{M, : }
2(1+e+4|Flic,@++ Gl co.m)

and have ©(T)=<1. Thus (3.11) has a solution in C, for T sufficiently small. This
result is summarized formally in the following. _

PROPOSITION 3.1. Let M>0, GEC(0,M) and FEC,(R™) with F(0)=G(0). Then
there exists a positive constant

I,= TB(HFHC»(i*), ||GHC(0.M))

such that for any T’ with 0<T'<min(Ty, M), there is a solution of (3.11) in C,..
Moreover, for any T € (0, M], there is at most one solution of (3.11) in C.

Proof. The question of existence has already been settled. Suppose there are two
distinct solutions v and w of (3.11) in €. Since v and w are continuous, there is a
1,€[0,T) such that v=w on £, , and on no domain £, is this still true, if £>¢,. Let
U(x,t)=v(x,t)=w(x,t),in €, . Define

U(x,1)=F(x)+e~ (G (¢) ~ (1))
+["KG=16=0) [*| 1+ U(E ) +5 U 85)] e,

for (x,1)ED={(x,?): ty=t<T and x=t}. Plainly U is bounded and continuous on D.
Then the integral equation

u(x,t)= Uo(x,t)+f‘°°K(x—t,£—t)j:[(l +s)u(£,s)+-;—u2(g,s)] dsd¢

=Au(x,1),
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defined on D, has two distinct solutions, which we denote by v and w again, though
they are in fact v and w restricted to D. Moreover, while these two solutions agree at #,,,
they do not agree identically in any neighborhood of ¢,.

The existence argument presented above is easily adapted to show that, for R large
enough and for 7, =1,(R) near enough to ¢,, 4 is a contraction mapping of the ball B,
of radius R centered at the zero function in C,( D)), where

D,={(x,t): ty=<t=<t, and x=1}.
But if
Rzmax{|lvlle,, [wle},

then A has two distinct fixed points v and w in B,. This contradiction forces the
conclusion v=w on £, and the proposition is established. O

It will be important in subsequent sections to have smooth solutions, up to the
boundaries, of the regularized problem (3.1) at our disposal. This amounts to the
program of relating solutions of the integral equation (3.11) to solutions of the trans-
formed problem (3.4). The following result will be sufficient for our later needs.

PROPOSITION 3.2. Suppose that FE C,f(ﬁ*) and GEC™(0,T,), where k=2, m=1,
and k=m. Suppose also F(0)=G(0). Let v be a solution in Cr of the integral equation
(3.11), where 0<T<T,. Then

(3.18) % 3vEC,, for0<j<m and 0<i<k+j.

Moreover, v is a classical solution of the transformed problem (3.4) in ﬁr. Conversely, if v
liesin Crand is a classical solution of (3.4) on Sy, then v is a solution of the integral
equation (3.11) over Q, and so v satisfies (3.18).

Remark. The partial derivatives in (3.18) may be defined at the boundary of Q, by
the obvious one-sided differential quotients. The reader will appreciate that a function
v defined on £ does not possess a classically defined partial derivative with respect to ¢
at the point (0,0). In case j>0 in (3.18), the condition 3!3/v €EC, connotes that this
partial derivative exists classically in £,\{(0,0)}, is bounded and continuous there, and
that it may be extended continuously to Q.

Proof. First note that if FE C£(R*) and GE C™(0, T), where k=m, then

(3.19) vo(x,1)=F(x)+e %' (G(t)—F(t))

has 3 9/v, €C, for 0<i<k and 0=<j=m. Also, since v EC,, then

(3.20) J(x,t)=f‘[(l +e)u(x,s)+%vz(x,s)] ds
0

has J,EC,.. A short calculation using Leibniz’ rule confirms that
v,(x,1)=0vy(x,t)—K(x—1,0)J(t,t)

+ [Ca[K(x—1,6-0)]J(§,1)dt+ f “K(x—1,6—1)J,(&,1)dE.
Simplifying,
(3.21)  o(x,1)=0,0y(x,t)—e~*"9y(t,1)
+ [T ) dt [TR(x1,6- 06,0 6.

Thus v,€C,.
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By dividing the range of spatial integration at {=x, it is readily seen that v, €C,
and that
(3.22)  o(x,1)=305(x, 1)+ K_(x—t,x—1)J(x,8) — K, (x—t,x—1)J(x,1)
+ [TL(x—1,-0)J(§,1) d,
t

where
(3.23) L(y.2)= 5 (exp(—ly—z) +exp(—y=2)},
K,_(x—t,x—t)=€1im+K(x—t,£—r),

and ¢ - x+ means ¢ | x while £ » x — means §{1x. Thus it appears that

(3.24) v (x,8)=03,00(x,2) +J(x,1) +f°°L(x—t,£—t)J(£,t)d£.

Since k=2, 3,v, may be differentiated with respect to x. Moreover, since 9, EC,
J(x,t) may be differentiated with respect to x. And, the integral on the right side of
(3.24) may be differentiated with respect to x. Performing the indicated differentiations,
we see that

(3.25) 00, 1) = 8200(x, 1)+, (x,0) + [ K(x—1,6=1)J(¢,1) dE.

This representation shows plainly that v,, €C,. Formula (3.25) may be simplified by
use of the original integral equation. Thus,

(3.26) v, (x,t)=0%00(x,t)+J (x,t)+(v(x,t)—vs(x,1))
=J(x,t)+o(x,t)+F,(x)—F(x)

= jo T +e)v,(x,5)+0(x,5)0,(x,5)] ds+0(x,1)+ F,(x)— F(x).

It is now clear that v__ is differentiable with respect to ¢, and that
0, (x,2)=(1+e)o(x,t)+v(x,)v(x,1)+v,(x,1).

So, if k=2 and m=1, any solution v in C, of the integral equation (3.11) is a classical
solution, up to the boundary, of the transformed differential equation (3.4a). As
already remarked, a continuous solution of (3.11) has v(¢,1)=G(t), for 0=¢=<T, and
has v(x,0)=F(x), for x=0, provided the consistency condition F(0)= G(0) holds.

Further regularity of a €,~solution of the integral equation may be established by
similar arguments. As this issue is important in our subsequent investigation, a little
more detail is warranted.

First, if m=2, then since v,EC,, it follows that every term on the right-hand side
of (3.21) is differentiable with respect to 1. Moreover, each of these derivatives lies in
@, as is easily verified. So v, €C,. This argument may now be iterated, with the
conclusion that 3/v €C, for 0<j=<m.

A similar argument, based on (3.26), may be used to show that 3lvEC,, for
0<i=<k. Specifically,

(3.27) 3!+ (x,1)=0lv(x, 1)+ 2F(x) — 3L F(x)
o /’a;+'[(1+e)o(x,s)+102(x,s)]dy,
b 2

for I=0,1,- -+, k—2.
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Since v, €Cy, it follows from (3.24) that v,, €€ and that
(328)  v,(x,8)=33,0(x,0) +J,(x,2)+e~*"(2,1)
+fooL(x—t,S—t).l,(ﬁ,t)df—fmez’"(“*")l(é,t)df.
t t

Finally, by using the differential equation, the results already derived, and induc-
tion, mixed partial derivatives of the form 3/ 3/v, where j=1 and i=2, are seen to lie in
€, provided that j<m and i<k+j.

If, on the other hand, v is a bounded classical solution of the differential equation
(3.42) which satisfies the boundary conditions (3.4b), then necessarily F(0)=G(0)
because v is continuous at the origin. Moreover, in this case, each step of the formal
construction leading from (3.1) to (3.4) is easily validated. In consequence, v is seen to
satisfy (3.11). Hence by the argument just elucidated, pertaining to solutions of the
integral equation (3.11), v satisfies the conditions of regularity in (3.18). This concludes
the proof of the proposition. a

In our subsequent analysis, it will be convenient to have at our disposal smooth
solutions of (3.1) which are not confined to R* X[0, T] where T is small. This corre-
sponds to providing smooth solutions of (3.4) on &, where T" is given. It seems
natural to iterate the local result propounded in Proposition 1. This will be effective as
soon as an a priori bound on the L®-norm of a solution defined on £, is provided.
More precisely, suppose a classical solution o of (3.4), defined on £ for some 7>0, is
in hand. And suppose the boundary data G is defined at least on [0, T,], where T,>T.
Consider a new initial- and boundary-value problem,

(329)  wA+(1+e)w,+ww,—w,,=0 for(x,t) such that t=T and x=1,
with
w(x,T)=v(x,T) forx=T,
w(t,1)=G(t) fort=T.
The initial value of w is the terminal value of v. Just as for (3.4), (3.29) may be

converted to an integral equation, which in all aspects is similar to (3.11). A solution to
this integral equation may be inferred to exist on some domain of the form

{(x,1): T<t<T+AT and x=1t}.

Provided v and G are smooth enough, the solution w of the integral equation will
provide a classical solution of (3.29). In this manner, v is extended to a solution of (3.4)
on @, s As in Proposition 1, a lower bound for the size of AT depends on the
L>-norm of the data in (3.29). Specifically referring to (3.17),

1
ATZmin To_ T, r }.
2 1+e+410(, Dlcyron + AGllcer,my)

Suppose it is known that, for the given data F and G, any solution v of (3.4) defined on
Q, for some T<T,, has the property that

lollcy@n=C=C(T,,F,G).

Then a lower bound on AT can be imputed, and in consequence, after a finite number
of steps, the solution may be extended to {7 This conclusion is worth stating formally.
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PROPOSITION 3.3. Let Ty>0 be given, and GEC™(0,T), FE CKR™) with F(0)=
G(0), where k=2, m=1 and k=m. Suppose there is a constant C, dependent on Ty, F and
G, such that for any solution w of (3.4) defined on Qr, where T<T;,

(3.30) Iwllcx@n=C.

Then there exists a unique solution v EG,O to (3.11), which is also a classical solution of
(3.4) and which satisfies the conditions of regularity expressed in (3.18). Moreover, v is
defined locally as the fixed-point of a contraction mapping of the type in (3.13), by iterating
the result of Proposition 3.1 a finite number of times.

Provision of the relevant a priori bound is now considered. To this end, the
following technical lemma is useful.

LEMMA 34. Let FECKR™) and GE C™(0, Ty) with F(0)=G(0), where k=2, m=1
and k=m. Let v be a solution of (3.4) in er.,' Let 0<p=<k and suppose that

(3.31) 9/F(x)->0 asx- +oo,
for0<j=<p. Then
(3.32) 3/9/o(x,t)-»0 asx—+o,

uniformly for 0st<T,, for i,j such that 0<si=mand 0sj<p+i.

Proof. Suppose it is determined that o(x, )0 as x— + oo, uniformly for 0=r=<T,.
Since v is a classical solution of (3.4) on 8, it satisfies the integral equation (3.11) on
§r,. Referring to formula (3.21) for v, it is clear that v,(x,7)— 0 as x— + oo, uniformly
for 0<t<T,. If m> 1, then upon differentiating (3.21) with respect to ¢ and using the
fact that v and v, tend to 0 at + oo, it is straightforwardly assured that o,,(x,7)—0 as
x - 00, uniformly for 0=<¢<T;. Continuing inductively, it follows that

dlv(x,1)»0 asx-+oo,

for 0<i<m, uniformly for 0=<¢<T,.

Next, by considering formula (3.22), we see that if p>0, then o,(x,#)—0 as
x— + o0, uniformly for 0=<¢<T;. Then from (3.28), v,(x,#)—0 as x— + o0, uniformly
for 0=<t<T,. From the differential equation (3.4a), it is seen that o,,,(x,1)—0, as
x— + 00, uniformly for 0<¢=<T;,. Continuing in the pattern of the proof of Proposition
3.2 leads to the conclusion that (3.32) holds.

The above analysis was all predicated on the desired result holding good for o
itself. The lemma will therefore be established as soon as it is confirmed that (3.32)
holds for i=j=0.

For T>0, let C2 be the closed subspace of C,. composed of those elements which
converge to 0 at + co, uniformly for 0<¢<T. If F(x)—0, as x— + o, then operators
of the type exhibited in (3.13) map €} into itself. Because a solution v of (3.4) is
provided in €., the uniqueness result of Proposition 3.1 implies that condition (3.30)
holds. So v is obtained locally as a fixed-point of a contraction mapping of the form in
(3.13). This fixed-point may be determined by iterating the operator on the zero
function . The sequence {v, )., thus generated (0, = A0 and v, , =Av,, for n=1) lies
in €2 and converges to 0 in C. Therefore v €C7. As a finite number of such steps are
needed to recover v on {7, it follows that oEG‘,’-o. This concludes the proof of the
lemma. O

Attention is now turned fully toward derivation of a priori information concerning
smooth solutions of (3.4) which imply (3.30). A bound that will suffice is the subject of
the next proposition. The same bound will also be needed in §4. Because of this, it is
especially convenient to derive the bound in the context of (3.1). Of course the reader
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will realize that the theory, thus far developed for (3.4), implies the existence of smooth
solutions of the regularized problem (3.1), at least locally in time. This is simply a
matter of tracing the inverse of the transformation (3.3) which led from (3.1) to (3.4).
The precise result is spelled out in Theorem 3.8. For now, it is simply assumed that a
classical solution of (3.1) is in hand.

PROPOSITION 3.5. Let fECJ(R™), g€ CN0,T), where f(0)=g(0), and suppose 0<e
=1. Let u be a classical solution of (3.1), up to the boundary, on R* X[0, T). Suppose in
addition that fEH'(R™). Then for all t€[0,T}, u(-,t)EH'(R™). Moreover, there are
positive constants ay and a,,

ao=ao("f"+ AR ‘Sh.r)

and
a =an("f"1, |8|1.r).
depending continuously on their arguments, such that
(3.33) lu(-,0)I=a,
and
(3.34) G, 3+ [ [200,) 4 (1,,00,5) = e, 0,5))] ds<ar,

for 0=<t=<T. These inequalities hold uniformly for e in (0, 1].

Remark. While not stated explictly here or later, the various constants that appear
in the development of our theory generally depend on T. Besides a direct dependence
on T, a, and a, also depend indirectly on T via the H'(0, T }-norm of g,|g}, ;. The
reader will quickly perceive that a, and a, may be presumed to depend monotonically
on T, for given f and g. In fact, a, and a, may be assumed to depend monotonically on
their arguments generally, but this will not be needed here.

Before proving the proposition, the following corollary result is stated. This is the
result of central interest for the present section.

COROLLARY 3.6. Let FECJ(R*) and GEC'(0, T,) with F(0)=G(0). Suppose in
addition that FEH'(R™). Then there exists a constant C, dependent on ||F||, and the
H'(0, Ty)-norm of G, such that any classical solution o of (3.4) defined on @, for T< Tos
satisfies

follcu@n=cC.

Proof. Let v be a classical solution of (3.4) on &, for some T<T,. The inverse of
the change of variables (3.3) is

(3.35) “(x,f)'—'!_10(8_'/2x+e_3/2[,¢_’/2¢).

Then u is a classical solution of (3.1a) on R*X[0,7"], where T'=e¢"32T, which
satisfies the auxiliary conditions (3.16) where

(3.36) f(x)=e"'"F(e="%x) and g(1)=e"'G(e"¥/%).

Here >0 is fixed, and so f and g satisfy the hypotheses of Proposition 3.5. Hence the
H'(R™*)-norm of u is bounded on [0,7”] by a constant that depends on || f||,, and on
the H'(0, 7T5)-norm g}, . of g, say. Here, Ty=¢’/2T,,. Because of the basic inequality
(2.1), it follows that u is bounded on R* X[0,7"] by a constant C dependent only on
1 /1I, and |g}; ;. In particular, C does not depend on 7" for T in the range [0, 73).

But, v is defined from u via the transformation (3.3). Hence the desired result
follows, and the corollary is established. 0




1072 JERRY BONA AND RAGNAR WINTHER

Proof of Proposition 3.5. First note that since f€ CRT)NH'®R™), f(x), f(x),
f"(x)-=0 as x— + o0 (cf. [9]). Let v be defined from u as in (3.3). Then by Lemma 3.4,
3} 9/v(x,1)—0, as x— + 00, uniformly for 0=<¢=<T7, for 0<j<1 and 0<i<2+j. Be-
cause u is recovered from v by (3.35), 9]90/u(x,t)—0, as x— + oo, uniformly for
0=<t¢<T, for p and » with p+»=<2. Thus w,u,, u,, u,,, u,, and u,, tend to zero at + co,
uniformly for 0<¢=<T.

Let U(x,t)=g(t)e”* and w=u— U. There is a constant ¢, such that, for 0=<¢=<T,

UG, )li=lg()l=c.lglr

So to prove (3.33), it is enough to establish a similar estimate for w. Now w satisfies the
initial- and boundary-value problem

(3.37) weAw +ww +w, —ew  ,=¢—(wU), inR*X[0,T],

where o= —(U,+ U,+ UU + U,,,—¢eU,,,), and

(3.38) w(x,0)=f(x)—g(0)e™* forxER™,
w(0,1)=0 for 1[0, T].

Multiply (3.37) by 2w and integrate the resulting expression over (0, M) X (0,¢). There
appears, after integrations by parts, and using the auxiliary conditions (3.38),

(3.39) _I(;M[wz(x,t) +ew?(x,1)] dx+f0‘wxz(0,s) ds

='/;M[w2(x,0) +ew?(x,0)] dx

+f(:[—w2(M,s)-—-§-w3(M,s)—2w(M,s)wxx(M,s)
+wx2(M,s)+25w(M,s)wx,(M,s)—wz(M,s)U(M,s)] ds
+ZL’LMq)(x,s)w(x.s)dxds—ﬂﬁ”UAx,s)w%x,s)dxds.

Because U(x,t)=g(t)e™ %, it follows that
| Ullcu®* xt0,m1y, | Ullc, @+ xt0, rp =llgllco.my=c.gli 7
Similarly, since e<1,
le(-,O)lI=2lg"(1)|+2|g(1)|+8%(2),
so that
t (M
ff o*(x,s)dxds<C\(Igl 7).
070
for all (M, ) ER* X[0,T]. If
W, (1)= ] MW (x, 1) +ew?(x,1)] dx,
0

and if h,, denotes the supremum, over [0, 7'}, of the second integral on the right-hand
side of (3.39), then the inequality

t
Wi (1) =Wy (0)+hyp+ C1(|8|I,T) +c*|g||,7'/(; Wy (s)ds
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emerges. Gronwall’s lemma implies
Wy(t) S[WM(O) +hyt+ Cn(lgll.r)] e,

for 0=<t<T. Reference to (3.38) will convince the reader that w(-,0)€H'R™"). So
W,,(0) is bounded, as M - + 0. In fact,

W,,(0) —»j:o[wz(x,O) +ew?(x,0)] dx=w(0),

as M - + 0. Since u and u, tend to zero as x— + oo, uniformly for 0=<¢=<7, so also do
w and w,. It follows that h,,—0 as M - + o0. Hence,

E Wult)= [W(O) +C(lgl l,'r)] eS8

for all t€[0, T'). Thus for each t€[0, T}, w(-,t)EH'(R™), and

wli=C(IAl+ €720, gl ).

for any ¢ in (0, 1]. This is the desired bound on the L(R *)-norm of w, and so (3.33) is
shown to be valid.

Now multiply the regularized equation (3.1a) by the combination 2eu,,—2u,,—u>
and integrate the resulting relation over R* X(0,¢). After integrations by parts, in
which the fact that u and various of its derivatives vanish at + oo is used repeatedly, it
is verified that

(3.40)  (1+e) fo Pu(x,1) dx+ jo [u2(0,5) + H*(s)] ds
=(+e) [(LHx) x5 [T1(x) ax

+%j{;mu:‘(x,t)dx-%-'(;[%g’(s)+eg,2(s)] ds—2folg‘(s)ux(0,s)ds,
where
H(s) =1, (0,5) o1 (0,5) + 3 8%(s)-
Elementary inequalities, including (2.5), show that
[T Gy dxslul, OGO lleumy=i2 -, O - 0

1 2 10/3
<3l O+l
Putting together (3.40), the last observation, and the already established (3.33) yields,
2 (4
e+ [ [u(0,5) + H(s)] s

<2007 +20+ -5 [P a2 [] - 38260+ 1+ g as,

where a is the constant on the right of (3.33). Inequality (3.34) now follows, and the
proposition is proved. (]

A theorem of global existence of solutions of (3.1) and (3.4) is now in view. Its
statement is postponed until after examination of one other aspect, of importance in
the analysis in §§4 and S. This aspect is embodied in the next proposition.
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PROPOSITION 3.7. Let FECKR*)N H¥(R*) and GEC™(0,T), with F(0)=G(0),
k=3, m=1 and k=m. Let v be the solution of (3.4) defined in Cy. Then there exists a
constant C such that, for each t€[0, T,

() 3:80(- )| 2,009 = €

provided that 0<j<m and 0<isk+}j.

Proof. Throughout the demonstration, C will denote various constants which are
independent of ¢ in [0, 7']. It will be convenient to introduce another condition, denoted
(+),, which, for a function w defined on §27, amounts to the requirement that w(-,t)€
H'((1, 0)) for t€[0, T], and that

(*h Iw(- s )l e on=C>
independently of ¢ in [0, T'].

According to (3.33) and (3.34) in Lemma 3.5, (*), holds for v itself. Thus v and v,
satisfy (). For one-dimensional domains, H ! is an algebra, so that products of H'
functions are again in H'. Thus (1 +¢)v+{v? satisfies (x),. Hence if, as before,

J(x,t)=j;‘[(l +e)v(x,s)+ %vz(x,s)] ds,

then J satisfies (),. So J and J, satisfy (#),. It then follows from formula (3.21) that v,
satisfies (), as well. This observation may be used inductively to show that 9,v satisfies
(#),, for 0=<i<m. Turning now to spatial derivatives, since k>1 formula (3.24) shows
that v, satisfies (+),. This means in particular that J, satisfies (+),. Since k>2, then
F, €H'R™), so, by reference to (3.26), one sees that v,, satisfies (+),. Proceeding
inductively, and using (3.27), it follows that d/v satisfies (»), if j=<k—1, and so kv
satisfies (*).

From (3.28), v,, is observed to satisfy (s),. The differential equation (3.4a) shows
that v, , satisfies (»),. Using the differential equation, the results already in hand, and
induction, mixed partial derivatives of the form 3.3/v, where j=1 and i=2, are seen to
satisfy (+), when j<m and i<k+;— 1. Hence 8. 3/v satisfies (+) provided that 0=<j=m
and 0<i<k+j. The desired results are now all established. O

It is worth summarizing the accomplishments of the present section. As the
transformed problem (3.4) is only of transient interest, the theory is recapitulated in
terms of the regularized problem (3.1). Thus the results stated now are consequences of
the established propositions and the transformation (3.35) taking (3.4) to (3.1).

THEOREM 3.8. Let €>0 and T>0 be given. Suppose fECE(R™) and g€ C™(0,T)
with f(0)=g(0), k=3, m=1, and k=m. Then there exists T,>0 and a unique function u
in C,,(ﬁ+ X[0, T,)) which is a classical solution of the initial- and boundary-value problem
(3.1) corresponding to the given f and g. Additionally,

(3.41) 3 duec,(R*x[0,T]),

for i and j such that 0<j< m, 0<i<k, and i+j=<k. Moreover, if fEH'(R™), where
r=1, then u may be extended to a solution of (3.1) on R* X[0, T}. In that case, there is a
constant C such that, for 0<t=<T,

"3;34{14(-,[)"3(,’,
for i and j such that 0<j<min(r,m}, 0<i<r,andi+j=r.

As a corollary to this theorem, the following result emerges. It is this corollary
which will find explicit use in the upcoming sections.
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COROLLARY 3.9. Let £>0 be given. Let fE H®(R*) and g€ C*(R™), with f(0)=
8(0). Then there exists a unique solution u of (3.1) defined on the quarter-plane R* XR™*
which is bounded on finite time intervals and which corresponds to the data f and g.
Moreover, u€ C*(R* XR*) and, for each k=0,

(3.42) 3.9/ueC(R*; HX(R*)),

for all i,j=0.

Proof. The existence of global solutions follows immediately from the theorem and
the uniqueness result. Also, for any i,j=0, k>0, and 7>0, w=2'!3/u is uniformly
bounded in H¥(R ™), for 0<1<T.

It remains only to check that the mapping ¢- w( -, ¢) is continuous, from [0, T'] to
HY®R™). But, in fact, u€L*(0, T; H*(R ™)) and u,€L>(0, T; H*R*)). It follows im-
mediately (cf. [19]) that u€ C(0, T; H*(R *)). The corollary is now verified. O

4. Estimates in H*([R*) for the regularized problem. The purpose of this and the
next section is to derive a priori bounds, which do not depend on e, for solutions of the
regularized initial- and boundary-value problem,

(4.1a) utu tuu, tu, —eu =0 inR*X[0,T],
and
(4.1b) u(x,0)=f(x) forxeR™,

u(0,1)=g(t) forte€fo0,T].

Here T is a fixed positive real number, and the aspired-for bounds will hold indepen-
dently of 7in [0, T'}.

Throughout this section it will be assumed that f€ H*(R*), g€ C®(0,T), and

J(0)=g(0). In consequence of Corollary 3.9, for any e in (0,1], there is a classical
solution u=u, of (4.1) which is such that

ueC*(R*X[0,T]),
and, for integers j, k=0,
3/uec(0,T; H*(R*)).

Some preliminary relations, established via energy arguments, will be derived in a
sequence of technical lemmas. These prefatory results will be combined to obtain
e-independent bounds for u within the function class C(0, T; H*(R *)) and for u, within
the function class C(0,T; H'(R")).

As a start on this program, recall that from Proposition 3.5, there is a constant a,,
depending only on || f||, and |g}; 7, such that, independently of ¢ in (0, 1],

(42) O+ [ Tu20,5)+ (ex(0,5) = e 0,5))] =,
for all ¢ in [0, T'). So, from (2.5) it follows that

(4.3) lulle.@*xto, Tnﬁoifgr{llux(' w0} <a,,
and, because of the differential equation (4.1a),

(44) [ (0cs(0,8) e 0,5)) 5= [[(8i(5) +14,(0,5) + g(5)u,(0,5))'ds

50=C(||f||1, Igll,T)’
for all ¢ in [0, T).
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If u is the solution of (4.1) and ¢ €[0, T}, define
2 2
A%(1)= sup {llu( )5+ elttenssl-o5))

0ssst

[ Tcen(008)F 12(0,8) + L, (0,5) + €0, (0,5) F el 0,5)] s,

and
2
B(1)= sup [lu,(,s)lly+ [u2,(0,5) ds.
Osss¢ 0

It will be shown that A(¢) and B(t) are bounded on [0, T], independently of & small
enough. The first step in obtaining this result is the following H*(R *)-estimate.

LEMMA 4.1. Let T>0, fEH®(R ™), g€ H*(0, T'), with f(0)=g(0). There exist posi-
tive constants ¢, a, and c,, where

£|=5|(||f"hl8|l.r), 02=a2("f"2+£ll/2"f;xx"’Igll.T)’
Clz‘—'n("f"hlgll.r),

such that the solution u of (4.1) corresponding to the data f and g satisfies

O+ [ Tden(0,) +u2,(0,5) +€2u2,0,5)] ds

5a2+c,e/0’142(s)8(s ds——fuxx(o s)u,(0,s)ds,

provided that t €[0, T} and e €(0,¢,].

Remark. The presence of the last term on the right-hand side of the above
inequality means that this estimate is not directly effective in bounding |ju(:,?)l|,,
independently of e,

Proof. For each ¢ in [0, T}, define V(¢) as

V(t)= f[(——3eu) — 3uu? +;u4+ xxx]dx

Multiply (4.1a) by u® —3u?, differentiate (4.1a) once with respect to x and multiply the
result by —6uu, —RBu, ., add the two equations thus obtained, and integrate their sum
over R* X (0, t), After several integrations by parts, there appears,

(4.5)
V(:)—V(o)+§jo’ w2, (0,5)+u2,(0,5)] ds

= [[38%)+ $8°6) = 38(:)120.)+ £(5)uer0.5) = 58(5)u2(0.5)
— 68(5).(0,)tyusl0,5) + 2 8(5)12,(0,5)
~ 320,5),(0,5) = (0,500, (0,5)| s
e [[168,(5),(0,5)4:5(0,5) + 68(5)4 (0,5 ), 0,5)

—3u2(0,s)ux,(0,s)—g’(s)ux,(O,s)]ds
t
+ej;]; [3u2,u,+6u,uu,, —3utuu,|dxds.
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Because of the relation (4.2), the first seven boundary terms on the right-hand side of

(4.5) can be bounded in terms of the data f and g and a suitable small multiple of the

two boundary integrals on the left-hand side of (4.5). Using (2.5) and (4.2), it follows
that for any § >0,

(4.6) L'ui(o,s)u,x(o,s)w
‘ t 1/2
5||“x"c,(i*x[o.r])(j;ui(O,S)dfj(;uix(O,s)ds)

S‘E{oi‘i‘;,(uuxc,s>u‘”nu,,(-,s>n'”)
{fu0.s)asf 'uz,w,s)dv)m}

<a}d3+$8 { Osup lles, (- ,s)||2+ j:u?‘x(o,s) ds] .

=<t

Since
4 (4 1/2
[[8()00,5)us0,5) ds Sl sioaplsie [2.0.0)as)
a similar bound holds for the term
s
e[ 8/()u.(0,5)u.,(0,5) .

The estimate (4.2) also implies that

& [ ‘ui,(o,s)dssz{ [ (:0,5) =, (0,5)) s+ | ’u,%,(o,s)ds}
0 0 0
=<2a,+2 [ u2,(0,5) ds.
0

As a consequence, bounds similar to that in (4.6) obtain for the terms

ef’uz(O,s)ux,(O,s)ds and sflg3(s)u,,(0,s)ds.

0 0
Making use of (4.4), the term,
eflg(s)ux(O,s)u“,(O,s)ds,
0

may be bounded in the same way.
Still relying on (4.2) and (4.3), the term

3‘[) uuxdx_<_3||u||c.,(i*x[o,mj; uldx<3a}’?.
Hence,

fw (% ~ 3£u) ul dx<v(t)+3a}/?
0
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But, by (4.3), |u| does not exceed the value a}’> on R*X[0,T]. Consequently, if
e, =(25a,)” /2, then for 0<e=eg,,

6 >
3.’; u? dx<V(t)+3a}/?,

forall 7in [0, T'].
Therefore, if (4.5) and a suitable multiple of (4.2) are summed, and use is made of
the above estimates, then for #in [0, 7] and e in (0, ¢,],

GO+ [ [cx(0,5) +12:(0,5) + u(0,5)] s

<a,— 1—58- o‘uxx(O,s)ux,(O,s) ds

+e/0"£°° [3u2,u,+6u,u,, u,—3utu u,]dxds.

Here, the constant a, stems from V(0) and from the various combinations of a, that
appear in the foregoing estimates. The desired result now follows from the last relation,
(4.2), and the definitions of A(¢) and B(¢). )

The estimate of the H2(R*)-norm of the solution u of (4.1) given in Lemma 4.1
will be used in determining the following bound for A(?).

LEMMA 4.2. Let T>0, fe H®(R™), g€ C®(0, T), with f(0)=g(0). There exist posi-
tive constants a, and c,, where

aS=a§("f"3+ell/2“fxxxx“s lglz,T) and 02=C2("f”|, |g| l,T)’

such that the solution of (4.1) corresponding to f and g satisfies

A2(t) —ec,[ A4*(¢) +e(1+4%(2)) BX(1)] Sa3+e'/2c2fo',42(s)13(s)ds,

foralltin[0,T)andein (0,¢].

Remark. The ¢, appearing in the above statement is that derived already in Lemma
4.1.

Proof. As in the proof of the last lemma, the desired result will be obtained from a
technical “energy” argument. In the proof, various constants dependent on aspects of
the data f and g will appear. These will generally be denoted simply by ¢, and this
symbol’s occurrence in different formulae is not taken to connote the same constant.
Define, for each ¢in [0, T},

eu? +u?

108 36
( XXXX xxx)— ?(u—wxx)uaztx

w(z)=jo°° =

+6(ui+au§x) - %us— 3eut— %ésuuixx] dx.

Multiply (4.1a) by 12uu?—3%u? —u*, differentiate (4.1a) once with respect to x and
multiply this by 12u?u,, differentiate (4.1a) twice with respect to x and multiply this by
sy —Z%uu,, add the three resulting equations and integrate their sum over
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R* X(0,1). After many integrations by parts with respect to the spatial variable x, there
appears,

(4.7)
W(1) = W) + 55 [ [1200a(0,5) +udes(0,5)] ds
= [~ F 8(62.0.0) +657)u20.5)~38%() ~¢8%(5)

—8*(5)(4,x(0,5) —eu,(0,5)) +8g°(5)uz(0,5)
+128%(5)1,(0,5)(14,,(0,5) —2u,,(0,5))

= 128(5)u3(0,5) (1, (0,5) — 1, (0,5)) + 3u(0,5) - L £(5)u2,0,5)
+ 75_2ux(o's)uxx(o’S)(uxxx(o’s) . euxxt(o’s))
— (0,501 0,) (101(0,5) —1,(0,5))

— 2 10,5 s(0,) 111 (0,5)

72 36
g(s)uxxx(o’s) __g(s)“xx(ois)uxxxx(o’s) _guix(o's)

o (0, 0,5) + ()00, )01 (0,5)

t 72
+s/oj; [4u uu,,+24uu u u +-— 5 UxxUns
72
+?uxuxnxux,+12uuu u, ,xx dxds.

First note that, because of (4.2), there is a positive constant ¢, depending on || f||,
and |g|, 7, so that

108 2 2 72
'3_5'("uxxx("t)" +£lluxxxx("l)" )—?EAJ(t)SW(I)'*—C,

for all ¢ in [0, T]. Also, in consequence of (2.1) and (4.2), there is another constant c,
depending again on || ||, and |g}, 1, such that, for any >0,

(@5) e aon=2{ 32 (M)

SCS“+8{ sup ||uxx(-,s)||2].

Oss<t

By an analogous argument,

2 — 2
(49) e io=es™+8{ sup o9 ).

Oss<t
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Taken together with (4.2), these estimates imply that there is a constant ¢, depending on
I /1l, and |g}, 7 such that for all §>0,

(4.10) f‘u_‘(O,s)ux,(O,s)uxn(O,s)ds
0
‘ ‘s, 1/2
5"“;;"(:,,(5*x[o,q)[j;“X(O,S)dsj;unx(o,s)ds]

Sc[8‘3+£u§xx(0,s)ds]+8{ sup llunx(-,s)uz}.

0=ss=<t

By adding (4.7) and a suitable positive multiple a=a(supy<,<|lu(,s)l,) of the in-
equality stated in Lemma 4.1, and using (4.2) and (4.3), bounds similar to those
exhibited in (4.10) may be shown to hold for all the boundary terms on the right-hand
side of (4.7) except for the last three. Choosing & appropriately, it may thus be inferred
that, for all € in (0,¢,], and for all 7 in [0, T},

(4.11) 3[A2(r)—efo'u§x,(0,s)ds]—7—52eA3(l)
sa,-i-zze'ﬂf'A’(s)B(s)dc
0

{36 216
-, | 352:0.9% B 0.0),0.9)

72 18
= T (50t (0,8)+ S, 0,5)1, 0.5)| .
Here 53=a3(”f"3+e=/2”j;xxx”’ lgh.7) and &, =&(l fly, gh,7)-

To complete the proof of the lemma, it suffices to control suitably the boundary
terms appearing on the right side of inequality (4.11). To this end, observe first that
(4.2) and (4.9) imply

t 2 t
(412) /(;uix(o’s) dgs“uxx" C‘,(i* X[0.I])_/(; qux(o’s)l ds
2 ¢
S"“xx" Cy(R* X(O,l])j; (qux(o!s) —eux,(O,s)I +£l“xl(0’s)l) ds
=<c(872+84%(1))(1+2B%(1)),

for any >0, where the constant ¢ depends on || f|l,, lgl 7 and 7. Next note that
equation (4.1a) implies

- f'uxxx(()’s)uxxt(oa s ) ds
0
1
= L [g,(s)+u.(0,5)+g(s)u 0,s)—eu,,,(0,5)]u,,,(0,5)ds.
Integration by parts in the temporal variable yields
t
[ L)+ us(0,5)+8(5)u(0:5) ]t (0,5) s

=[g,(s)+u,(0,5)+g(s)u,(0,5)]u,.(0,5)( =}
= [[T8(5) +142/0,5)+8,(5)10,5) +8(5)1,(0,5) ] (0,5 .
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From (4.1a) it also follows that

(413) 1 (0,5) =t (0,5) ~ [ (0,5) + 43(0,8) +8(5)1x(0,5) +1,10x(0,5)].

Hence, due to (4.8) and (4.9), for any §>0 there is a constant c,, depending on §, || ||,
and |g}, , such that

(4.14) = [1,4(0,5)t5,(0,5) ds
0
<cz— ef'ufx,(O,s) ds
0

+a[A2(z>+ f ‘uz,x,(o,s)ds] =14 8()) (0,8t (0,5) .

Similarly, it follows from (4.8), (4.9) and (4.13) that, for any § >0,
(4.15) -—f’uxx(o,s)ux,(O,s)ds
()

Sc8+8[A2(t) +f ’u},x”(o,s)ds] e [0 (0,8Yt 0,5 5,

where the constant c; depends on §, || f||, and gh,r- Combining (4.15) with (4.11), (4.12)
and (4.14), and choosing § in a perspicuous way, there appears,

(4.16)  24%(1)—et,[ A*(r) +e(1+42%(1)) BX(1)]
<y +e'/%, [\4%(s)B(s) ds

18 216 __ 288
—ef [ 35 g(s)] uxx(o}s)uxx,(o,S)dS‘,

holding for all e in (0,¢,] and ¢ in [0, T'). Here,

("f"3+e/2"!;xxx” |8|2T) and ézz":éz(“f"h|g||,r)-

To estimate lhe boundary terms on the right-hand side of (4.16), use (4.9) again to
deduce that, corresponding to any >0 there is another constant c,, dependent on 8§,
[l /1l, and |g]; 7, such that

@17) —ef (et 2E) - ZEa(6)|ur0.5)0p0n0,5) s
216 288
=é~ [ s at o= 35 ) 35 "g”C(OT)] /uxx(o S)dS+8Ef xxxl(o’s)ds

5c5+6A2(t)+882f ul  (0,s)ds.
0

So, the only term still presenting difficulty is the final one in (4.17). To estimate
this quantity, differentiate the regularized equation (4.1a) twice with respect to x,

multiply the result by 2eu, ., and integrate over R* X(0,7). The effect of these
operations is to produce the relation

(4.18)  eflian O s ) +€° [ (0,5 s
= (ol = o) +e [0 (0,5)

+2Eftuxxxx(0’s)uxxxt(0’s)dg—28'[‘.[00(““ xx xxx(dXdS’
0 070
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The last integral on the right-hand side of (4.18) seems somewhat awkward. However,
after integration by parts,

f’fw(uux)xxu.xxx‘dxds.;-'[o‘./o (3uxuxx+uuxxx)uxxxldxds
0o
=f°°[lu(x s)u?, (x,s)—ud(x s)] dx|’='
A 2 ’ xxx\ 79 xx\ $=0
3 [ U, (0,5) [1xx(0,5)1(0,8) = (0,51t (0,5)] s
0

1 f® 1
+ -/‘; fo (3uxxuxxxuxr+ 3“X“XXXX“XI— -iuzxxut) dxdf.
Also, by (4.8) there is a constant ¢, dependent on || ||, and |g|, 7, such that
¢ 2 t
E'I(; ux(o’s)uxxx(o’s)uxt(o’s)dsSesz(‘)"ux“C.(i*'X[O.!))+ j(;uixx(O,S)dS

<ce?(1+A4%(t))B*(¢)+A4%(¢).
And,

t 2 ]
e [1(0,5)105(0,) 1t (0. ) do Sl ey oan [ 130, 5) dste [[uk (0,5) s

<ced’(t)+A*(1).

Referring to the definition of 4 and B below (4.4), and applying elementary estimates,
it follows at once that

t po0 ]
28-1;) j;) (3u""u"’"‘u“+ 3u Uy xtlae ™ Euixxu‘) dx ds
Sfr[6€A2(s)B(s)+68‘/2A2(S)B(S)+EA2(S)B(S)]dg

0

<13¢/2 ['4(5)B(s) ds.
0

Here, and above, the restriction e<1 is used. The last few relations combine with (4.18)
to produce the inequality

(4.19) szf'ufxx,(o,s)ds.<_c+c'£'/2f‘A2(s)B(s)ds
0 0

+c"{A2(1) +e[ A3(r) +e(1+4%(2)) B(1)]}.

If, in (4.17), & is now chosen small enough, the desired inequality follows from (4.16),
(4.17) and (4.19). This completes the proof of Lemma 4.2. O
To make effective use of Lemma 4.2, an estimate for B(t) is needed. The following

result will be sufficient.
LemMA 4.3. Let T>0, fEH®(R ™), g€ H*(0, T), with f(0)=g(0). There are positive
constants a, and ¢4, with

‘74:“4("“:(' ), Iglz.T) and c3=c3([[f||3, |8|1,r),
such that the solution of (4.1) corresponding to the data f and g satisfies the inequality

BX(t)<a,+c jo ‘[(1+A4(s)) BX(s) +eB%(s)] ds,

| foralltin[0,T}andein(0,1].




KDV EQUATION IN A QUARTER-PLANE 1083

Proof. Let v(x,t)=u,(x,t). Then v satisfies the variable-coefficient partial dif-
ferential equation

(4.20) vl+vx+(uu)x+oxxx—-£oxxl=0’

holding for (x,?) in R*X[0,T]. Multiply (4.20) by 2v and integrate over R* X(0,¢),
where t €[0, T'}. Then, it follows that

(4-21) ||°(’»f)"2+£"°x(°»‘)"2"’_[:03(0,5)‘19
=llo(-,0)" +efo,(-,0)|" + [+ g(s)gi(s)ds

+2£g,(s)[vxx(0,s) —ev,,(0,5)] ds— /(;lj;oouxuzdxds.

Next, multiply (4.20) by 2(ev,,—uv—v,,) and integrate again over R* X(0,7). This
leads to

(4.22)
A+l 0 = [l )02 x ) et [(0200,5) + [004(0,6) =0, (0,5)]} ds
=(1+)u O = ["f(x)o*(x,0) dx-+ ['g2(s)[e=57(s)]ds
=2 8u(5)0.(0,5) ds=2 [ 8(s),(5)[0cx(0,5) 0y, (0,5)] s
+fo'fow(2uvvx—v3)dxds.
The underlying equation (4.1a) implies that

t 0 3 _ t £°0
—-j;fo v dxdx—foj; o (u,tuu,tu,, —eu, ) dxds.

The last term on the right side of this relation is potentially troublesome, but after
integration by parts,

L pa | R L e (%2
e./;.f) vlu,, dxdx eLg,(s)vx(O,s)ds 25_/;](; vvidxds.
Also,
oo 2
[0 u(x,1)0*(x,1) dx<llullc,@* xo.mlo (-, O <o (-, DI,

where ¢ depends on || f||, and g}, 7, as in (4.3). The desired result thus follows by
adding an appropriate multiple of (4.21) to (4.22) and making the kind of estimates
based on (4.2) that are, by now, familiar. O

Recapitulating the outcome of Lemmas 4.2 and 4.3, if u is the solution of (4.1)
corresponding to initial data f and boundary data g, and 4 and B are the associated
functionals defined below (4.4), then 4 and B are restricted by the system of inequali-
ties

(4.23)  A%(t)—ecy[ A(1)+e(1+4%(2))B2(1)] <a, +e'/zcz_/:Az(s)B(s) ds,

B¥(t)<a,+c, jo [(1+4(s))BX(s) +eB(s)] ds,
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holding for all ¢ in [0, 7] and ¢ in (0,¢,]. The constants e, a;, a4, ¢, and ¢, have all been
previously determined to depend simply on T, on various norms of f and g and on
llu,(-,0);. The system (4.23) will be exploited to obtain the following bound on u,
which holds uniformly for e sufficiently small.

LEMMA 4.4. Let T>0, fEH®(R*), g€ H*(0, T) be given with f(0)=g(0). Let u be
the solution of (4.1) corresponding to the data f and g. There are positive constants e, and
¢4, both depending on || f|l4, I8k, and ||u,(-,0)l,, such that for e in (0,e,] and t in [0,T),
both A(t) and B(t) are no larger than c,.

Proof. For each M €R such that
(4.24) M>max(4(0), B(0)),
let

ty=inf{t€[0,T]: A(1)=M or B(1)=M},

with the understanding that if the set over which the infimum is taken is empty, then
t,,=T. To establish the lemma, it suffices to show that ¢,, =T for some M and all
sufficiently small e.

Observe that on the interval [0, ¢,,), where M is supposed chosen as above, (4.23)
implies that

(4.25) [1—eczM(1+sM)]Az(x)5a3+e*/2c2f0'A2(s)B(s)¢s+cz(eM)’,
Bz(t)Sa4+c,j;‘(l +A(s))B*(s)ds+ec,TM>.

For each M satisfying (4.24), choose &, =¢,(M )€ (0, min(4,¢,)) such that for all e in
(Oa e?,))

(4.26) 1- czeM(l+eM)> , c(eM)’=1, ceTM3<1.

Further, let 4,(¢)=1+A(¢). Then from (4.25), it follows that for all ¢ in [0, 7,,) and for
alle in (Ov 62),

A}(t)<=6+4a, +4cze‘/zfotA,2(s)B(s)ds,
BXt)<1+a,+c, j ‘A,(s)B¥(s) ds.
0

Hence, in this range of ¢ and e, there are positive constants a, 8 and v, independent of
M, such that

a
(4.27) A1) = —

+2%e'/2f‘Af(s)B(s)ds,
B(n=—t LA Y [4()B%(s)db.

(First choose a and S8 large enough and then choose y large enough. Note then that a, 8
and y only depend on the constants a,, a,, ¢, and c;.) Define 4, and B to be the
maximal solution of the system

Ai(1)=+

Stk (BB (s)as

B(=1t7 B 21 [A()F(s)as.
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Then, A,(t)=A4,(t) and B(¢)=B(¢), for all ¢ for which A,(f) and B(r) are finite.
Moreover, 4, and B may be determined explicitly as,

A()=1—

_« == BeY
Oz and B(t)—1

__eI/Ze'yt ?
whenever exp(yt) <e~ /2. Therefore, if M is chosen so that
M>2max{a,Be’"},

and then ¢, is chosen so that, as well as satisfying (4.26),
1—ey/ %"= -;— R

then ¢, =T for all & in (0,¢,]. Taking c,=M, the lemma is now established. O
The constants ¢, and ¢, in Lemma 4.4 depend on |ju,(-,0),, since the constant a,

in Lemma 4.3 had such a dependence. In order to control the size of A(¢) and B(?),

uniformly for small e, some estimate of ||u,(-,0)||, must be obtained in terms of the

data f and g. An appropriate bound is forthcoming if the data satisfies the additional
compatibility condition,

(4.28) 8(0)= = [ £(0) +/(0)£,(0) +/;x(0)]..
LEMMA 4.5. Let T>0, fE H®(R ™), g€ H*(0, T) with f(0)=g(0). Suppose the data f
and g also satisfy (4.28). Then there is a constant a s depending on || f || 4 such that
e, (-, Oy < as,

for all € in (0, 1], where u is the solution of (4.1) corresponding to fand g.

Proof. Let @(x)= —[ f(x)+f(x)f(x)+f,,(x)]. Then u,(-,0) is a solution of the
boundary-value problem

ul(. ’0)~£uxxl(' 90) =9,
4,(0,0)=g,(0), x]ix& u,(x,0)=0.

Hence, u,(-,0) is given by
(4.29) u,(x,0)=e"*/*"’g (0) + fo "M(x,8)p(£)dt,

where, as in (3.10),

MZ(X,£)= 2;/2 [Cxp('—]x—e'/el/z)_exp(__(x+£)/€l/2)]‘

It follows immediately from this representation that
gl/4
(- 0= 557 e, (O)1+ e,

where ¢ is a constant which is independent of e. Since g,(0)=¢(0), and because of the
definition of ¢, it is concluded there is a constant a depending on || f||, such that

(4.30) lu.(-,0)||<a,
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and this relation holds uniformly for € in (0, 1]. Differentiation of (4.29) with respect to
x leads to the relation

1 —rre 1o
ux‘(x’0)=—:‘_;£e x/ l/!g‘(0)+__2_£‘/(; e ( +f)/e|/1(p(£)df

| S 12 1 % 4,022
5 (—x+§)/e — (x=§)/¢
2 ) w(§)de+ o [ e 9(£)dé.
Integrating the right-hand side by parts, there appears the formula
1 ~x/e ® =
@31 u,(x,0)=—ze " o(0)-2(0)]+ fo M(x,8)o.(£) dt,

where
1
2¢'/2

The integral on the right-hand side of (4.31) presents no difficulty. For it is readily
verified that

M(x,8) = = [exp(~ |x—§/¢/?) +exp( — (x+£) /¢'/?)].

=clled.

[7H 0.6)

where again ¢ denotes a constant independent of ¢ and ¢. The presumption (4.28) has
the effect of eliminating the other, potentially troublesome term from the right-hand
side of (4.31). Again taking account of the definition of @, it follows that there is a
constant 4, depending on || f || 4, such that

(4.32) lusc(- . 0)]| =a,

holding uniformly for € in (0, 1]. Taken together, (4.30) and (4.32) imply the desired
result. O

Combining the imports of Lemmas 4.4 and 4.5 leads directly to the principal result
of this section.

THEOREM 4.6. Let T>0 be given, and let f€ H*(R*) and g€ H*(0, T') and suppose
the compatibility conditions

1(0)=5g(0),  £,(0)+£(0)+/(0)£(0) +£x:(0)=0

hold. Let u be the solution of the regularized initial- and boundary-value problem (4.1)
corresponding to the given data f and g. Then there is a constant aq, depending on |\ f||
and |g}, 1, such that

(-, Olls +lw (-, )l = as,

for all t in [0,T) and ¢ in (0,¢,). Here ¢, is the positive constant arising in Lemma 4.4,
and so depends on || f || 4 and g, 1 as well.

Remarks. A somewhat stronger result than is stated in Theorem 4.6 is available
from the foregoing analysis. This strengthened result has been eschewed, for simplicity
and because it is not needed in what follows. Nevertheless, it is worth recording that

2 T
et O+ [ TT220(0,) Fean(0,5) + e 0,8)+12,0,5)] =)’

as well, provided that ¢ lies in (0,¢,] and ¢ lies in [0, T'}. The constants ¢, and a4 are
those specified in the statement of the last theorem.
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The various constants appearing in the statements of results in this section may all
be taken to depend continuously and monotonically on both T and the norms of the
data that occur. This follows immediately upon examination of the presented proofs.
Such an aspect is without crucial significance in what follows, and so will be passed
over.

S. Higher-order estimates for the regularized problem. The derivation of e-indepen-
dent bounds for solutions of the regularized initial- and boundary-value problem (4.1)
is continued in this section. The bounds established in §4 would be sufficient to
establish an existence theory set in the space L®(0, T; H*(R*)) for the quarter-plane
problem (1.3). Smoother solutions would be expected to obtain provided the initial and
boundary data is appropriately restricted. A proof of such further regularity, presented
in §6, is based on the additional estimates to be obtained in the present section.

The assumption that fE H*(R*), g€ H*®(0, T'), and f(0) = g(0) will continue to be
enforced throughout this section. This hypothesis will be recalled informally by the
stipulation that the data f and g is smooth and compatible. If j is a nonnegative integer,

the notation
u(j) = a/u

will be convenient, and employed henceforth. This section consists of two technical
lemmas, which lead directly to the principal goal, Theorem 5.3. The first technical
result generalizes Lemma 4.4,

LemMa 5.1. Let fEH*(R™) and gE H®(0, T) be given, with f(0)=_g(0). Let u be
the solution of (4.1) corresponding to the data f and g, and let k be a nonnegative integer.
There is a constant

—bl(|g|k+2.'ra ogasxk {Hu(j)(. ’0)"4, "u(j+ l)(. 70)”]} ) ,
depending continuously on its arguments, such that
w0l + a0

+ [ {[482.00,9) + [ (0,9)] +[uk>(0,5)] } as =,
a0l [T+ 00,5) ds b,

foralltin[0,T] and e in (0,¢,]. Here, &, is specified in Lemma 4.4.

Proof. First note that for k=0, the desired result is implied by Lemma 4.4. The
proof proceeds by induction on k. Let k=1 be given, and suppose that the stated
estimates hold for all nonnegative integers less than or equal to k—1. Let v=u(®),
where u is the solution of the regularized initial- and boundary-value problem (4.1)
corresponding to the given smooth and compatible data f and g. For ¢ in [0, T'], define

A%(1)= sup {Jo(- )} +eopere- )}

0ssst
+f xxx(O S)+ xxxx(o S)+8 xl(o S)]

and

B (1)= swp {lo )} + [o2,(0,5) s

0ss<t
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The induction hypothesis implies that

(5.1) |ulle=.7: m3m*y), ||0]|L=@.7: ' R*n =€,
"“"L“'(O.T;W"“’(R*)), ||Dl|l.°°(n* x[{0,TH=C,

where here, and in the remainder of this proof, ¢ will denote various constants which all
depend on the same variables as the constant b, given in the statement of the lemma,
but which will always be independent of e.

For any integer j=1 the function u‘/ satisfies the equation

(5.2) uf/)+u§f)+(uu(f)+hj(u))x+u§{(’x—euf,j},=0,

where
1 j_‘ 2, »
hy(u)=7 E:l (Ji)u")u(f ).

The induction hypothesis also implies that
(5.3) “hk(“)“L‘*(O,T;w‘-“(n*))s""hk(“)"L“’(O.T;H’(R*))SC'
The functions A(¢) and B(¢) will be estimated via an energy inequality derived from

equation (5.2). Taking j=k, differentiate (5.2) once with respect to x, multiply by
—2v,_. and integrate the resulting expression over R* X(0,7). The outcome of this

XXX g
process may be written

(54) V() + [[03(0,5) +3u(0.)] s
=¥,(0) —2./:0,‘,(0,5')0”(0,.;)ds+2j:j(;w[uv+hk(u)] 2xOxxxdxds,

where V(1) =[[0,.(+, DN+ ell0. (- PN
Inequalities (5.1) and (5.3) imply that

(5.5) [ [0+ ()] 0usnidedsse( 14+ ['fol,)ds ).

Because of (2.1) and (5.1), for any §>0, there is a constant c, such that for all 7 in
[0, T,

2
(56) Iollmosmmmenseo+s{ sup o))

O0ssst

Combining (5.1), (5.2), (5.3), and (5.6), it follows that, for all §>0 and t€[0, T},
- L’vx,(o,s)vxx(o,s)ds

= j:{vxx(o’s) + [uv +hl¢(u)] xx(o’s) + oxxxx(o’s) - vaxx,(O,S)} oxx(ovs) ds

2 t t
SCS+8{ sup "v("s)"3+_[)03xxx(0’s)ds} -ej;vxxxr(ois)vxx(o’s)ds‘

O0ss<t
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Together with (5.4) and (5.5) this implies that for all §>0 there is a constant ¢z such
that

(57) V2(1)+f [vxx(o S)+ xxx(o’s)]ds

SC,,[I + forAz(s) ds] +84%(t) —ZsL'vxxx,(O,s)v,x(O,s)ds,

where 4 is defined above (5.1).

Next, differentiate (5.2), again with j=k, twice with respect to x, multiply by
—2v,,,, and integrate over R* X(0,7). After suitable integrations by parts, there
appears

(5:8) V() + [[08,0,5) + 0lr(0,5)] s
o0
=V30) =2 [[00,0(0,)03cx(0u) s+ 2 [* [ [uto+ Iy ()] g Desenie s,
0v0
holding for all ¢t €[0, T'], and where
2
Va(8) = [0ral O+ elleasa- oI

Observe that

[ CO My

=f'f (w0, +3u0, +3u, 0 +u, 0o dxds

= = [ 3805)02000.5)+30,(0,)0,,00.)0,,,00.9)
31010,5)0,(0,8)0,5(0,5)+ 11,5,(0,5)0(0,5)0,,0,5) s

-—.ﬁiﬁqb[; X XXX*-6u v l&xx4_4uxxxx xxx4_uxxxx xxx]dxak
The induction hypothesis and the fact that
¢ 2 t 5
fo”"x( ,S)”L"(R*)dsscj;ﬁ (s)ds
implies that there is a constant ¢ such that
t t
](; f(; uxxxvxvxxxdx‘bs.() "vx(' »S)"L"’(R‘)”uxxx(' ,S)” ”vxxx(' ,S)" ds
t
<c| A*(s)ds.
[4)
Also, it follows directly from the regularized equation (4.1a) that

=eul) — (u  +ul+u,  +ud).

uXXXX XXX

Hence, from (5.1) and the induction hypothesis,
t po®
./(—)j(; Uy xxxVV xxxdxm<f "O( S)NL“(R*)"uxxxx( S)"" xxx S)" ds

_<_cf0A2(s)ds,
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for all ¢ in [0, T). By (5.1) and the above estimates, it may now be concluded that
t (R t 5 t 5
(5.9) jofo (uo)xx,v“,xdxdssC[l ¥ fOA (s)ds+ j(;vux(ﬂ,s)dc].
To estimate the rest of the third term on the right-hand side of (5.8), note that
t £
f f (hk(u))xxxoxxxxdxds
07
{ t 00
== [ ru1)) 22 0,570 0:) 5= [ (1) s Orccns
Equation (5.2), once-differentiated with respect to x, is

ul) =euth— {[uu“)-i-hj(u)] LU +udr ‘)} .

XXXX

Together with the induction hypothesis this relation implies that
t 2 t
LU enelc s a1+ [ 470 ]

Therefore, using again the induction hypothesis and the estimate above, we may
conclude that

(5.10) folj;w(hk(u))xxxvxx“dxdsSc[l+/O'A2(s)ds+j;‘vfxx(0,s)ds].

It remains to estimate the boundary term on the right-hand side of (5.8). The
equation (5.2), with j =k again, implies

_f‘vxx,(O,s)vxn(O,s)ds
0

= [[0cx(0,5){0(0:5) +0,(0,5) + [0 + ()] (0,5) =0 (0,5 } .

Integrating by parts with respect to s yields the relation
f’oxx,(o,s){v,(o,s) +0,(0,5)+ [uo+h,(u)] (0,5)} ds
0

=1,,(0,5){0,(0,5) +0v,(0,5) + [uv+h, ()] .(0,5)} (2§
= [[0:s(0,5) (00,5 +0,0,5) + [0+ (1)) 0,5)) s

From (5.1), (5.3) and (5.6), and the fact that v,,(0,5)=g**?(s) and v,(0,s)=g**)(s),
it thus appears that for any §>0 there is a constant ¢, such that

(5.11) - fo'o,,,(o,s)ox,x(o,s) ds
scs—e [ 05 (0,5) ds+84%(0) = [[[1+8(5)] 01,(0,5)0,,(0,5) .

The estimates (5.8), (5.9), (5.10) and (5.11) and the identity

—vxl=vxx+ [uv+hk(u)] xx+vxxxx——evxxxl’
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obtained from (5.2), now imply that, for all >0, there is a constant c, such that for all
telo, T},

P(0) [ T0200,5) 02, 0,8) + 02 0,5)] e
sC,[H [4)as+ ‘ugxx(o,s)ds]+s,42(:)

~2¢ j; T14+8(5)] 02x(0,5) Oy (0,5) ds.

By adding this estimate and a suitable multiple of (5.7), and using the induction
hypothesis again, it appears that for each §>0 there is a constant c; so that, for all 7 in
[0,T],

(5.12) Az(x)SC,[l + fo 'Az(s)ds] +8¢e2 fo ‘02_(0,5)ds.

Inequality (5.12) is not useful until the second integral is bounded. This may be
accomplished by virtually the same argument as was used to bound the corresponding
term appearing in the proof of Lemma 4.2. Differentiate (5.2), with j=k, twice with

respect to x, multiply the result by 2ev,,,,, and then integrate over R* X(0,¢). This
leads to the identity

(5:13)  e{loaes OF ~lowaas O }+€° [ o (0,5) s
={locea( o O = foess O} e [ 20,5 s

o
+2eL‘vxxxx(0’s)Dxxxl(()’s)ds _28[0"[0 [uv+hk(u)] xxxoxxxldng'
Since (5.2) implies that
0
e[ [ [0y (1)] ez
©
.—_‘/‘;‘j(‘) [uu+hk(u)] xxx{vxxxx+[uv+hk(u)] xx+vx,+vx,} dxds,

it follows from (5.9), (5.10) and the induction hypothesis that for all t €[0, T},
t p®
8](;_/0 [uv+hk(u)]xxxvxxxthdS

SC{I +f0'[A2(s)+A(s)B(s)] ds+f0'v,fxx(0,s)ds} .

In consequence of (5.12) and (5.13) we therefore infer the existence of a constant ¢ such
that

(5.14) Az(z)SC{l+[0'[A2(s)+A(s)B(s)]ds},

forallt€[0,T].
Next B(t) will be estimated. Let w=u**1, By (5.2) w satisfies the equation

(5.15) w,+wx+[uw+hk+,(u)]x+wxxx—£wxx,=0.
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Multiply this equation by 2w and integrate over R* X(0,7) to obtain

I oI+ oD+ [02(0,5)ds
= O +elb O+ [ T1+8(s)]w2(0,5) ds
+2f W(0,5) [ W (0,5) —ew,, (0,5)] ds

— folfow{uxw2+2w[hk+,(u)] x} dxds.

The induction hypothesis therefore implies that, for all >0, there is a constant ¢z such
that

(5:16) IwC- o)l el ()] + [wE(0,5) ds

S.ca[l+fole(s)ds]+8f0’[wxx(0,s)—ewx,(O,s)]zds,

for all t€[0,T]. To complete the satisfactory estimation of B(r), multiply (5.15) by
2(ew,,—uw—w, ) and integrate over R* X (0, 7). This yields

(517) (a0l = [ w2 e ulx,r)dx
+ [{w200,5)+ [wa(0,5) —ew, (0,)]} s
=1+ Ol = [“wi(x,0)/(x)dx
+ [[Tew?(0,5) —g*(s)w*(0,5)] s
=20 0,),(0,5) ds=2 [ 5(5)(0,5) [, (0,5) —em (0,5)] s

o0
+ j:fo {2uwwx—u,w2+2[hk+,(u)]x(wxx+ uw-—ewx,)} dxds.

Integration by parts implies that

j:j:o[hk+l(u)] MexdX

== [Ther (L0, 0,9)ds= [ [* [y ()] comedeas,
and that

ej:[) [hk+|(u)]xwx,dxds=efo [ i()] o (3, 8)w(x,8) axf2h

—ef(:j;w[hk+ l(“)] xthdxds'
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Hence, it follows from the induction hypothesis that for all t€[0, T},

L e ()] (o e ) s

sé"wx(-,x)||2+c[1+f’[32(s)+A(s)B(s)]¢v+j‘w3(0,s)ds].
0 0
Therefore, if (5.17) is added to a suitable multiple of (5.16), it follows that
(5.18) Bz(t)s(:{l+f‘[Bz(s)+A(s)B(s)]ds}
0

for all +€[0,T] and all e in (0,¢,]. Here, without loss of generality, e, has been
presumed to be strictly less than 1.

From (5.14), (5.18) and Gronwall’s lemma it now follows that there is a constant ¢
such that

A(1), B(1)=<c
for all 1 &[0, T']. This completes the induction argument and hence the proof of Lemma
a1 a

The bounds established in Lemma 5.1 are just what will be needed in §6, except
that, so far as is known now, not all the arguments of the constant b, are independent
of e. To attain the goal for this section, it will suffice to give conditions on the data f
and g which imply that ||« ,0)||, and ||u¥/* D(-,0)||,, 0<j<k, are bounded, indepen-
dently of e sufficiently small. This amounts to extending Lemma 4.5.

We have not succeeded in giving an absolutely straightforward generalization of
Lemma 4.5 to the case j>0. However, by modifying the data, in an e-dependent way, a
result is obtained which is sufficient for our purposes in the next section. Before stating
this lemma, some convenient notation is introduced.

Let ¢9(x)=f(x), and for each integer j=1 define functions ¢') inductively by the

recurrence
J 1.
i=0 $ x
Also, for nonnegative integers j, let

g (1) =8/5(2).
Here is the result alluded to above.
LEMMA 5.2. Let fEH*(R™) and gE H*(0,T) be given, with f(0)= g(0). Let k=1
be a given integer and suppose additionally that
g(!)(O):w(f)(O) forj::]’z,. . .’k.

Then there exists a family {g,}o<e<1 in H*(0, T') such that

(i) gz(o) = g(O) and llm z-'OIgz s g‘k + I,T: 0’
(ii) there exists a constant b,, depending continuously on || f |34 4\, Such that

"uﬁj)(' ’0)”3(k—j)+15b2

for 0<j<k and all e €(0, 1], where u, denotes the solution of (4.1) with initial data f and
boundary data g,.

(5.19) U= —

; 1
¢+t 3
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Proof. First, two sequences of functions {¢{},;<x and {w”}, ;< are intro-
duced. These will be used momentarily to define the modified boundary data g(1). If j

is an integer in the range [0,k), let »(j)=[3(k—;)/2} and define w{/’ and ¢ onR*
by w® =@ = and, recursively for j>0,

=V
sa0) o= )t )t d S (1))
I=

and
»()) - ‘
(5.21) wid=exp(—x/e'/?) 3 (324 gf'>)(o)+f0 M(x,8)¢(§)d¢.
i=0

Here, as in the proof of Lemma 4.5,

M(x,4)= 2;/2 [exp(—|x—¢/6"/2) —exp(— (x+£)/€'/?)]
and
M(x,¢)= 2;/2 [exp(—|x—£]/¢"/?) +exp(— (x+8)/672)].

Note that w{/? has been determined as the solution of the boundary-value problem

(5.22) o—eo,, =4,
with
v(0)=X) and lim v(x)=0,
x— +00

where

v(Jj) . '

X0= 3 e(a24)(0),
i=0

forj=1,2,---,k.
By differentiating (5.21) the following identities are obtained, for all integers r=1,

(5.23a) (83r+lwe(j))(x)._—_exp(_x/el/Z)e—(r+l/2) 2 51(33i¢51))(0)_}‘({)]
i=0

+ [ () E)

and

r—1
(5.23b) (32w)(x)=exp(~x/e”/ 2)8"[)\‘.”- ) E"(a,?’qvﬁ”)(O)]
i=0

o0 =
+ [ M3, €)(029°)(8) d.
Hence, there is a constant ¢, independent of w{, i) and ¢, such that

(5.24) w2 3k=iy+ 1S €l sc-pp+ 15
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for 0<j=<k. Using (5.20), (5.24) and a simple inductive argument, it follows that there
is a constant b, =b,(]| f||5x+1) such that

(5.25) ||w,(j)"3(k—j)+h "‘Pﬁj)”uk—j)Hszv

independently of € in (0, 1] and j in [0, k].
For each e€(0, 1] define modified boundary data g(¢) by

k ¢
t .
g(t)=g(t)+ 2 7 [XP~g(0)].
=t
Observe that g,(0)=g(0). Also, since g/%(0) =¢/(0) by assumption,
(5.26) gD(0) =X,

for 1<j<k.

Now let u, denote the solution of (4.1) with initial data f and boundary data g,. It
follows inductively from (5.20), (5.22) and (5.26) that u ,9)=w" for 0<j<k, and
hence the desired bounds on u{/)( -, 0) follo~ from (5.25).

To complete the proof it is only required to check that

li — =0.
lim g, —gl,.\ 7
Because of the definition of g,, this is equivalent to showing that
lim | Q) — ¢ (0)|=0,
el
for 0=j=k. Referring to the definition of A’ below ‘5.22), and keeping in mind the
bounds in (5.25) and the simple inequality (2.5), we see that

XP=g(0) +0(e),
as €0, for 0=<j=<k. More precisely,

(5.27) NP - ¢(0)|=cell || s(k—jy+ 1 =cbse.
Hence it is enough to show that
lim|g{(0) ~¢(0)|=0,
for 0<j=<k. This latter relation will be proved by establishing that the estimate
(5.28) {2 — || yak-nm g +Sce'/4,

holds for 0 <i<k, where the constant c=c(}| f||55+)-

The inequality (5.28) is proved by induction on i. For i=0 and i=1, (5.28) follows
since @0 =@ =/ and ¢{"=¢". Assume (5.28) holds for i=<j, where 1 <j<k. In order
to establish the result for i=j+ 1, note first that the definitions (5.19) and (5.20) imply
that

o =99 D rirnogey e sup I~ g po-nmas .
O=isy

where c=c¢(|| fl34+)- Since

0= @D ysus-nosy=<ce'4,
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for 0<i<j, by the induction hypothesis, (5.28) will follow if it can be demonstrated
that, for 0<i<j,

(5.29) ng)_w'(’)" w”(k—l).eu(n+)scal/4,

where again c= c(“f"k+ l)’ The fact that We(l) solves (5.22) means that
wO(x) = ¢0(x)=exp(—x/e"/?) [N~ g(0)] +e fo "M (x,£)829() dt.

Differentiating this relation with respect to x, in the same way that (5.21) was differen-
tiated to yield (5.23a, b), and using (5.27), we readily obtain the estimate,

"W:i)"?’g)":i(k—i)— 1 5C5|I‘P£“||3(k—1)+ 1

where the constant c is independent of w?, ¢! and e. The bounds expressed in (5.25)
thus imply that

(5.30) "W,U)—Wsl)":»(k—l)—l =ce,

where c=¢(|| f ||3,+,)- Also implied by (5.25), and the triangle inequality, is the estimate

(5.31) IIW.(”—Q’E")||3(/;—1)+ISC,

where ¢=c(}| f||35+,)- Standard results in the interpolation-theory of Banach spaces
now come to our rescue (cf. (2.5) and [19, Chap. 1]). Thus, if 4 denotes ¢{"’ —w(?, then

Al wock-oom+y < l|h|l§(/3-.~)||h||§{f-o+ 1
5""}1";(/2—1')— l"h";(/l:—iw 1<ce'/4,

where ¢=c¢(|| f|l3x+)- This completes the induction argument in favor of (5.28), and
thus finishes the proof of the lemma. a

The outcome of Lemmas 5.1 and 5.2 is conveniently collected in the following
theorem. This is, in effect, a higher-order analogue of Theorem 4.6. In the statment of
the theorem, ¢, is the same positive constant that already appeared in Theorem 4.6.

THEOREM 5.3. Let T>0 and a positive integer k be given. Let fEH*(R™) and
gE H™(0,T) and suppose that g )(0)=¢)(0), for 0<j<k, where the functions ¢'/) are
related to f as in (5.19). Then there exists a family {g,}o<.<., in H*(0, T) such that

(i) g(0)=g(0), lim,, olg, ~&l+),r=0;
(ii) there exists a constant by=Dby(|| fl3x+1,18lk+1,1), depending continuously on its
arguments, such that

[, 05 +e8tu0C, ) + O}
+ ['{[84u972(0,)]" + [32u72(0,5)]*+ [8,u9(0,5)]”
0

+e[83u(j)(0,s)]2} ds<b,

holds for 1<j<k and all ¢ in (0,e,}). Here, uY~V(x,1)=8/"'u(x,t) and u, denotes the
solution of (4.1) with initial data f and boundary data g,.
6. Existence and uniqueness of solution. The major undertaking of this paper is to

prove existence of smooth solutions of the quarter-plane problem for the KdV equa-
tion. Using the theory developed in §§3, 4 and 5, this task becomes comparatively
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simple. Recall that a function u=u(x, ) is sought such that

(6.1a) utu tuu +u, =0 forx, >0,
subject to the auxiliary conditions,

(6.1b) u(x,0)=f(x) forx=0,
u(0,1)=g(1) fore=0,

where f and g are given functions.

The issue of uniqueness of solutions of this initial- and boundary-value problem is
especially straightforward to settle. As the uniqueness of solutions of (6.1) is useful
later, it is established first.

THEOREM 6.1. Let T>0 and s>3. Then, corresponding to given auxiliary data f and
8, there is at most one solution of (6.1) in the function class L*, T, H*(R™)).

Remarks. As usual in this paper, we mean, at the outset, by the word solution a
distributional solution of (6.1a) for which the auxiliary conditions (6.1b) can be given a
well-defined sense. Of course if « is a distributional solution of (6.1a) which is addition-
ally known to lie in a class of smooth functions, it will follow that u is a classical
solution of the differential equation. This point will be amplified later in this section.

Proof. Suppose that u,v € L*(0, T; H*(R *)) are both solutions of (6.1) correspond-
ing to the same data f and g. The H*(R*)-norm of u and v is thus essentially bounded
on [0, T]. In particular, for almost every 7 in [0, T}, u(+, 1), v(- ,EHR™). Invoking
the Sobolev embedding results (cf. [19, Chap. 1]), it may therefore be supposed that, for
almost every ¢ in [0, T), u(-,1), u,(-,1), o(-,f) and v( -, ¢) are bounded and uniformly
continuous functions on R*. Moreover, u,u,, v and v, are essentially bounded on
R*X[0,T]. From this it follows straightforwardly that both u and v converge, in
L*(0,T), in the limit as x | 0. Thus the boundary value in (6.1b) is taken on meaning-
fully.

Let w=u—v and x=4(u+v). Then w is a distributional solution of the linear
variable-coefficient differential equation

(6.2a) wtw,+(xw),+w,,,=0 inR*X(0,T),
which satisfies the auxiliary conditions
(6.2b) w(x,0)=0 forxeR*, w(0,/)=0 fortin(0,T].

The boundary condition in (6.2b) holds at least in L®(0,T'), whereas it will appear
presently that the initial condition is valid at least in the sense that ||w(-,¢){| >0, as ¢ | 0.

Since HYR™) is linearly and continuously embedded in H'(R*), for g>s, we
may, without loss of generality, suppose that s<3 and let r=3—5. Note that 0<r<3 /2,
Note also that w, and (xw), lie in L®(0,T; H*"'(R*)) and that w,___ lies in
L>(0, T; H~"(R™)). From (6.2a) it is thus apparent that w, lies in L®(0, T; H~ (R *)).

The spaces Hj(R*) and H™'(R*) are viewed as being in duality in the usual
manner. The pairing between them is denoted by sharp brackets (-, - ). (For a detailed
exposition of these spaces, and the duality between them, the reader is urged to consult
the first two chapters of Lions and Magenes [19].) Note especially that since, for almost
every t in [0,T], wEH'(R™) and w(0,¢)=0, it follows that wE Hj(R ™), for almost
every ¢ in [0, T']. Thus w € L®(0, T; H*(R ") N Hj(R*)). For this, it is crucial that r< 3/2
of course. Otherwise a second boundary condition w,(0,¢)=0 would be implied by
membership in Hj(R ™).
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In this situation, it is a standard result (cf. [18,p. 71]) that we C(0, T; L(R *)), and
that

(63) WO =(wm ).

Thus, in particular, the initial value in (6.1b) or (6.2b) is taken on meaningfully. The
right-hand side of (6.3) lies in L0, T). Hence |jw(,)ij? is absolutely continuous, and
upon integrating (6.3) over [0, ], using the equation (6.2a) and the zero initial condition
in (6.2b), there appears

(64) SO == [t (ow) ot Wi .

Since w, and (xw), are continuous square-integrable functions, for almost every ¢, and
w(0,7)=0, it is straightforward that

(w,w,) =j(;°°w(x,t)wx(x,l) dx=0,

and that
(wGom)y=[ “w(x, 1)[x(x, Ow(x,1)],dx
=%j:°w2(x,t)xx(x,t)dx
<Ix =+ xo, W IE=Miw(- I,
where

1
M=-2- " u+vl|Lee,1; H R ).

In the last step, the fact that s>4 was vital. Finally, we claim that (w,w,,)=0, for
almost every ¢ in [0, T]. Fix ¢ and let A(-)=w(-,?). Then hEH'R)NH{R™). Let h
be a function in H®(R*), say, such that

3J(0)=3/A(0) for 0=j<s—3.
Then h—h € H{(R*). Hence there is a sequence {¥,,}7 in D(R*) such that y,,»h— A in
the H*(R*)-norm, as n—oo. Let h,=y,+h. The sequence {h,}7 has the following
properties:
@) h,EH*(R™) and #,(0)=0, for all n;
(ii) h,~h in H*(R™), as n— co.
Then 33k, —32hin H"(R*) and h,~h in Hi(R™), as n— co. Hence,

= 1 h, )= tim [ h,(x)3?
(h’hxxx> "liu:o (hn’ax n) n-ono]oj(') n(x)axhn(x)dx

= lim {—'()waxh,,(x)afh,,(x)dx]

n-—oo

= lim %[a,h,,(o)]zzo.
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Putting together the pieces, there appears
2 t 2
w0 =M [ o),

for ¢ in [0, T). Gronwall’s lemma thus implies that ||w(-,¢)|=0 on [0, T'], whence w=0
and so u=v, as required. O
Attention is now turned to the existence theory. It is convenient to recall here the

notation introduced in §5. Namely, if f is a given sufficiently smooth function defined
on R*, then set ¢@=F,

1
(6.52) ()=~ f(x) 437230 +19)) ,
and inductively,
J
(6.5 #0(e)=— @+ oigr 5| 3 w0 |
=0 o

Remember that ¢/)(0)=g'/X(0), where g)(¢)=3/g(r) as before, is just the jth-order
compatibility condition implied by the KdV equation (6.1a) for solutions that are
sufficiently smooth at the origin (0,0). Here is the main result.

THEOREM 6.2. Let k be a positive integer, fE H**\(R*) and gEHLS\R ). Sup-
pose the k+ 1 compatibility conditions

80)=¢0(0) for0sj<k,

hold, where ¢ is defined above. Then there exists a unique solution u in
TR ™ H**Y R ™)) of (6.1) corresponding to the data f and g. In case k>, u defines a
classical solution, up to the boundary, of (6.1) in the quarter-planeR* X R*.

The proof of this result relies on the theory for the regularized problem developed
in §§3, 4, and culminating in Theorem 5.3. To make use of the last-quoted result, the
following technical lemma seems essential.

LEMMA 6.3. Let f and g be as in Theorem 6.2. Then there exist sequences { f,,}? C
H*R*)and {g,)? CC®(R™) such that

(@) g (0)=¢{(0) for 0=j<k;

(i) fy—f in H**\R™"), gy—>g in HEF'(R™).

Here ¢ is as defined in (6.5) with f,, replacing f and g\’ =2d/g .

Proof. Let {fy}T CH®(R™*) and {hy)? CC®(R™) satisfy condition (ii) in the
statement of the lemma, relative to f and g, respectively. Define

a)=hQP(0)—¢P(0) for0=<j=<k,

where h>=23/h,, and @) is given as in (6.5). Then set
gn(8)=hy(t)—Py(1),
where

k th
PN(I)= 2 a; .F
j=0 "I
By construction, for 0<j=<k,

g1 (0)=h{(0)—a)=¢{(0).
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Moreover, gy € C®(R™), for each N. It remains to verify that gy— g in H{'(R*). This
will be true if and only if Py—0 in H'(R™). But, for 0<j<k,

lim af'= lim [4{(0)=¢{’(0)] =0,

N-o0

since f and g satisfy k+ 1 compatibility conditions. Let >0 be given. Then
k k
1Pl s+ 10,1y = 2 Iaj"lj—'lltllluw(o‘r)s 2 M;lale.

where the constants M; depend only on j and T. Since a j" -0, as N- + oo, for each j, it
follows that
"P N"H" 0,1 0,

as N +oo. Since T>0 was arbitrary, the lemma is established. O

The next step in the proof of Theorem 6.2 is to establish that solutions of (6.1)
exist in case f and g happen to be infinitely smooth.

PROPOSITION 6.4. Let there be given a positive number T and a positive integer k.
Let fE H*(R™*) and g € H*(0, T) satisfy k+ 1 compatibility conditions,

g(0)=¢V(0) for0<j<k.

Then there exists a solution u of (6.1) in L*(0, T; H*** (R ")) corresponding to the data f
and g. Moreover, there exists a constant

b= b(“f“3k+h |8|k+1.r),
such that

(6.6) = C )l + 4 (-, )l <,

for 1<j<k, where u'”>=3Ju. The constant b depends continuously on its arguments.
Proof. The proposition follows from Theorem 5.3. More precisely, Theorem 5.3
provides the following. There is a §>0 and a family {g,}o<.<s CTH®(0,T) such that

£2.0)=/(0), and
|8, —8lx+1,7—0 asell.

Let u, be the solution of the regularized initial- and boundary-value problem (4.1),
corresponding to the data f and g,. Then there is a constant b=>5()| fll3+1»18k+1.7)
depending continuously on its arguments, but independent of ¢ in (0, 8], such that

©7) G0l +euda 0l +H OG0l
+ [ [uz20,)]*+ [u¢z0,)]*+ [u(0,)]* +e[u2(0,5)]*} ds=b,
0

for 0<j=<k. (In (6.7), the subscript ¢ has been suppressed when writing u,.) And, from
Corollary 3.9,

du,eC(0,T; H"(R")),
for all nonnegative integers i and m. Thus
{9/u,} g<,<s is bounded in L>(0, T; H*(R ),
for 0<j<k, and
{9/u,} o< <s is bounded in L=(0, T; H'(R*)).
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If H is any Hilbert space, then L®(0,T; H) is the dual of L'(0,T;H). (Here, H is
identified with its dual space.) In consequence of this fact, the unit ball in L*(0,T; H)
is compact, for the weak-star topology induced by L'(0,T; H). Hence, by taking a
sequence from (0,8] converging to 0, and passing progressively to further subsequences,
we deduce the existence of a sequence {e, )T, with ¢, {0 such that if

u,(x,t)=u,x,1), n=12,3;..,

then there are functions u and U, in L*(0,T; H>(R™")), 0<j<k, and a function Uj in
L*(0,T; H'(R")), such that

(6.8) u,-u weak-star in L2(0, T; H*(R*)),
3/u,~ U,  weak-starin L*(0,T; H*(R*)) for 0<j<k, and
9fu,~» U, weak-starin L*(0,T; H'(R")),

as n— +oo. Since u,->u weak-star in L®(0,T; H3R")), certainly u, »u in
(0, T; H*(R*)). Hence 9/u,—d/u, for all j, at least in the distributional sense.
Because of (6.8), we may therefore identify U, with 9/u, for 0<j<k.

Note also that if vu,=(3,u,,3,u,), then { vu,}? comprises a bounded sequence
in L2(0, T; H'(R*)) X L*(0, T; H'(R*)). Since H'(R*)C C,(R™), this means that each
component of { Vu,}? is a sequence uniformly bounded in L*(R* X (0, T')). In conse-
quence, {u,}7 forms an equicontinuous sequence, when restricted to any compact
subset of R X[0, T'). Hence for any M>0, {u,)? is precompact in C([0, M]X[0, T]),
by the Ascoli-Arzela lemma. So by passing to still further subsequences, and finishing
off with a Cantor diagonalization, it may be presumed that

u,~u asn- + oo, uniformly on compact subsets of R* X [0, T'].
(More precisely, this_argument leads to the conclusion that u,— v, uniformly on
compact subsets of R*X[0,T], as n— +co. This in turn implies that u,—v in
'(R* X(0,T)) and thus leads to the identification v=u.) Exactly the same argument
holds good for 9/u,,, provided j<k. Thus, for 0<j<k,
(6.9) 9/u,—»3/u asn— + oo, uniformly on compact subsets of R* X [0, T].

By a different argument, which makes use of the fact that H'(0,M) is compactly
embedded in L,(0, M) for any M >0 (cf. {8, Lemma 7]) it may also be presumed that

(6.10) dfu,~dfu asn- + o0, almost everywhere in R* X [0, T].

By passing to a further subsequence, if necessary, it may be supposed as well that,
asn— +oo,

udu,~»w weak-starin L°(0,T; H*(R")),

du,~»v  weak-starin L*(0,T; H(R 1)),
u,~»V  weak-starin L°(0,T; L3R *)).

Because of (6.9), u,~u and u’-u® in D(R*X(0,T)). Hence the identifications
w=149,u?, v=0,u, ¥=0]u follow. Moreover, 9,32u, is bounded in L*(0, T; H™'(R*)),
s0 &,0,02u, — 0 strongly in this space, as n— + co.

The reader will now appreciate that there is in hand enough information to pass to
the limit n— +oco0 in the regularized equation and conclude that, at least in the
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distributional sense, u satisfies the KdV equation,

uf+ ux+ uu, + “xxx::ov
in R* X (0, T). Moreover, as u(x,0)=f(x) and u(0,)=g,(t) for 0<e=$, it follows
from (6.9), for example, that

u(x,0)=f(x) forxeR™*,

and
u(0,1)=g(t) fort€f0,T].

Thus u does indeed provide a solution of (6.1) on R*X [0,T]. Moreover, by the
lower-semicontinuity of the norm, relative to weak-star convergence, (6.7) implies that

|lu2(-, )]s,
for 0<j<k, and
@, )]l =b,

where b=b(]| f|[35.4+1» 8l +1,7) is the constant obtained earlier from Theorem 5.3.

Notice that, if k=1, then v,€L>(0,T; H'(R*)) and u,, uu, €L, T; H 2R)).
Hence, from the differential equation, u, , € L*(0,T;H'(R*)), whence u€
L0, T; H4R™)). If k> 1, this type of simple argument may be continued inductively.
The outcome is that

(6.11) /ueL=(0,T; H3*N*Y(R)),

for 0<j=<k.
Finally, (6.11) and standard interpolation results ([19, Chap. 1, Thm. 3.1)) yield the
following additional smoothness results:

(6.12) d/ueC(0,T; H}* -D-1/2(R+)),

for0<j<k.

In particular, if k>1, certainly u€ C(0, T; H*@®R™*)). Therefore, u,, u,, uu,, and
u, . all lie in C(0,T; H'(R*)). As this latter space is embedded in C,,(G_l+ X[0,TY)), it
follows that, after possible modification on a set of measure zero, all the derivatives in
the differential equation are continuous, and bounded, functions. Consequently, if
k>1, uis a classical solution of the quarter-plane problem for KdV.

The proof of the proposition is now completed. a

Remark. Because the solution u obtained in Proposition 6.4 lies within the realm of
the uniqueness theorem 6.1, the entire family {u,},<.<s is inferred to converge to u, in
the various senses appearing in the proof. This is because we actually prove that any
sequence {¢,)¥ in (0,8], with ¢,-0, as n— +o00, has a subsequence such that the
corresponding functions {u,} converge to a solution of (6.1), which by uniqueness must
be u.

The last proposition gives very nearly the result stated in Theorem 6.2. The only
essential difference is that f and g are assumed to be infinitely differentiable. Using
Lemma 6.3, this added assumption is shown to be unnecessary.

Proof of Theorem 6.2. Suppose now that fEH***'(R*) and g€HLI(R™) are
fixed, and that f and g satisfy the first k+1 compatibility conditions, as in the
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statement of the theorem. Fix T>0. By Lemma 6.3, there exist sequences {fy}7 C
H*R™)and {gy)}? CC®®R™) such that
(6.13) fv=f  inH**(RY),

gv—g inH(0,T),
as N- +o0. And, for each N>0, f, and g, satisfy the same k+1 compatibility
conditions satisfied by f and g. The last proposition thus applies, and it is concluded

that there is a solution u,, of (6.1), on R* X[0,T), corresponding to the data f, and gy.
Moreover, 3/u, € L0, T; H**~D* (R *)), for 0<j<k, and if

szb("fNuskH' 8nli+ I,T)’
then for 0=j<k,
" o/ uN"L‘”(O,T; HY(R*) by, "a:k“N" 20,1 H'R*)Sby.

Because of (6.13) and the fact that b is bounded as its arguments vary over a bounded
set, there is a constant B, independent of N, such that

(6.14a) “3,’ “N“ L=o,r;i*R*)=B,
for 0<j<k, and
(6.14b) “ a,k u)v“ L®0,T; H((R*)) =B.

In consequence of the bounds expressed in (6.14), the arguments of Proposition 6.4
may be repeated without essential change (the extra smoothness available during the
proof of the proposition was not used, nor was the regularizing term —eu, ). It is
concluded therefore that {u,)}? converges to a function u, say, in the various ways
already detailed in the proof of Proposition 6.4. As before, u, provides a solution of
(6.1) corresponding to the data f and g, on R* X[0, T'].

The above argument applies for any fixed 7>0. Define a function Uon R*X R+
by,

U(x,t)=ur(x,t),

provided that t<T. This is well defined because of the uniqueness result. It is clear that
U provides the solution whose existence was contemplated in the statement of Theorem
6.2. The fact that U is a classical solution of the problem (6.1), if k> 1, follows exactly
as in the proof of Proposition 6.4. The theorem is thus established. a

It is perhaps worth comment that Theorem 6.2 also holds if k=0. This result
subsists on the e-independent H'(R*)-bound established in Corollary 3.6. The proof of
existence of these weaker solutions, while a little more delicate than the proof of
Theorem 6.2, fits more or less directly into the framework exposed in the proof of
Proposition 6.3. (The extra ingredients may be found, for example, in {8, App. A].) For
this reason, we content ourselves with a statement of this further consequence.

THEOREM 6.5. Let fEH'\(R*) and g€ H.(R™*), and suppose f(0)=g(0). Then there
exists a solution u in L2 (R™*; H'(R™)) of problem (6.1) corresponding to the data f and g.

Remarks. By a solution we mean as usual a solution in the sense of distributions.
In this case the uniqueness result does not apply.

Note that, for any T>0, u,€L*(0,T, H “4R™)), from the equation. Hence u€
CO,T; HV}R™)) (cf. again [19, Chap. 1]), so the initial-value is taken on in a weak,
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but meaningful way. Note as well that L*(0, T; H'(R*))C L*(0, T; C,(R*)). Hence for
almost every ¢ in [0, T'], u(x, ?) is continuous in x at x=0. Thus the boundary-values are
also obtained in a meaningful way.

7. Conclusion. The quarter-plane problem (1.3) is argued to be a natural config-
uration in which to use the KdV equation for the prediction of wave propagation in a
uniform channel. The general idea behind the use of this form of initial- and
boundary-value problem for testing the appurtenance of the KdV equation may be
appreciated by reference to Fig. 1. With the liquid initially at rest ( f=0), a wavemaker
located at one end of the channel is activated. The passage of the waves down the
channel is recorded by probes, the recording nearest the wavemaker being construed as
the boundary data g(¢). Note that if the waves are in the regime to which, formally,
KdV applies, then they are expected to be smooth, and so g will lie in 9D(0, T'), for some
T>0. In consequence, the data so determined will satisfy the compatibility conditions,
expressed for example below (6.5), to all orders. Hence the theory developed herein is
applicable.

Our theory demonstrates that problem (1.3) has unique smooth solutions corre-
sponding to such smooth and compatible data. This is a step in the direction of a
satisfactory mathematical analysis of the situation envisaged in Fig. 1. Another im-
portant step, which has not been treated here, is a result of continuous dependence of
the solutions on variations of the data. Also, in considering comparisons of the model’s
predictions with laboratory-scale experiments, some compensation for dissipative ef-
fects must be included (cf. [10]). Less important, but still of some mathematical interest,
is a possible improvement of the regularity theory to bring this aspect into line with the
theory for the pure initial-value problem (cf. [8] or [16]). We have shown that if
fEH***YR™) and g€ HET (R ™) satisfy the appropriate compatibility conditions at
(x,1)=(0,0), then the quarter-plane problem has a solution in LE (R*; H**\(R™)).
Whereas, we confidently expect the solutions to lie in C(R*; H***(R*)). In fact, this
latter point seems to be related to a sharp version of continuous dependence of
solutions on the data.

It deserves emphasis that a satisfactory numerical scheme for the configuration in
view here is essential to effect any quantitative comparisons of laboratory data with
predictions of the model. Especial care must be exercised here. First, control of the
high-frequency end of the Fourier spectrum must be assured. Otherwise an untenable
error may be created near x=0, due to the large negative phase and group velocity
associated to such components (cf. [4,§2]). Secondly, the integration will in fact take
place on a bounded spatial domain, forcing the imposition of additional boundary
conditions. This in turn will lead to consideration of an initial- and two-point-
boundary-value problem for the KdV equation, and to consideration of the relation of
such a problem to the situation studied here. The difficulties seem numerous enough to
warrant insisting on a scheme having rigorously derived error bounds. Thus far, such
schemes seem to be available only for the periodic initial-value problem (cf. [1],[2],[29]
and [30]).

Finally, it is worth remarking that the methods embodied in this paper might yield
a comparison theorem between the quarter-plane problem (1.3) for KdV and the
analogous quarter-plane problem for (1.4) studied in [5], and used in the comparisons
with experimental data reported in [10]. Such a program of comparison of model
equations has been carried out for the associated pure initial-value problems in [11],
using the general line pursued herein. Thus there is some cause for hope that a similar
result is obtained in the present context.
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