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Abstract—Fully discrete schemes for the numerical simulation of solutions of the periodic initial-value
problem for the Korteweg-de Vries equation are introduced, implemented and tested. Of special interest
are stable schemes featuring rates of.convergence of order higher than two in both the spatial and temporal
variable. A careful analysis of the relative and absolute efficiency of these schemes is carried out and
one of the schemes is applied to demonstrate that solutions of certain generalized Korteweg-de Vries
equations apparently may develop singularities in finite time.

1. INTRODUCTION

Described herein are some numerical methods for approximating the solutions of a class of
partial differential equations that model the propagation of small-amplitude, long waves in
nonlinear, dispersive media. In this paper, the first of two, the numerical schemes will be
described and analyzed in the context of the periodic initial-value problem for the Korteweg-
de Vries (KdV) equation, which is to determine a function 4 = u(x, t) defined for all x and
nonnegative ¢ which, for all ¢+ = 0, is periodic of period 1 in x and satisfies

u, + nu, + uu, + €eu,, =0, forx &R, 0<1, (1.1a)
u(x, 0) = u'(x), for x € R, (1.1b)

where u° is a given, 1-periodic function and € > 0, m = O are constants. In the sequel to this
paper the generalized KdV equation with nonlinear term u”u,, p = 1, and the KdV-Burgers
equation with dissipative term —vu,, v > 0, will also be considered. For the KdV equation
itself, the problem expressed in (1.1) has a smooth solution u corresponding to smooth initial
data u® (cf. [1] or [2]).

In addition to presenting classes of numerical schemes, the existing theory concerning their
stability and accuracy will be reviewed to provide a context for a series of numerical experiments
on representative problems for (1.1) whose exact solution is known. A special focus of attention
will be issues concerning the effective implementation of the proposed methods and an assess-
ment of the resulting computational efficiencies.

Many numerical methods have been proposed, analyzed, and implemented for approxi-
mating solutions of (1.1). Zabusky[3] has given an authoritative survey of the literature in a
recent review paper. The existing techniques include finite-difference methods (e.g., [4], [S],
[6], [7], and [8]), spectral methods (e.g., [9], [10], [11], {12], {13], and [14]) and Galerkin-
finite-element methods (e.g., [15], [16], [17], [18], [19], [20}, and [21]).
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The numerical schemes studied here are fully discrete Galerkin methods that are based on
a standard semi-discretization in the spatial variable x using smooth periodic splines on a uniform
mesh on [0, 1]. (Most of the experiments described below were performed with quadratic or
cubic splines.) For the temporal discretization various procedures are proposed, mainly second-
and third-order accurate, A-stable, diagonally implicit Runge-Kutta methods coupled with New-
ton’s method to solve the attendant nonlinear systems at each time step, and Rosenbrock methods.
Because the solutions of problems of the type exemplified in (1.1) are smooth, these methods
are well suited to performing stable and accurate computations with relatively large time steps,
a feature of considerable practical importance (cf. the discussion in [22] and [23]). Indeed, it
will appear that taking & to be of order 4 suffices in all cases to guarantee good accuracy; here
k and h denote the temporal and spatial discretization lengths, respectively. These methods were
implerented in a FORTRAN program that gives the user the choice of using spatial discreti-
zations with splines of order r in the range 3 < r <9, combined with any of the aforementioned
time-stepping procedures.

The paper is organized as follows. In Section 2 the numerical schemes are introduced and
the rigorously established stability and convergence results for them are quoted. Section 3 is
devoted to features of the coding of the schemes. Special attention is given to the description
of data structures used to improve the efficiency of the procedure. Work estimates for the various
methods are also provided. In Section 4 the outcome of an extensive experimental study of the
accuracy and stability of these methods is presented. Using calculations performed over short
temporal intervals, values of k and & are determined that minimize the work each method
requires to achieve a given error tolerance. The relative computational efficiencies of the thus
optimized procedures are then compared in detail. Comparisons are also effected over longer
time scales. The overall conclusions are summarized in Section 5 and an interesting sample
result is presented that makes use of the techniques in an exploratory mode.

2. THE NUMERICAL METHODS

We introduce here the precise numerical techniques that will be used throughout and provide
commentary on theoretical aspects of these procedures.

All the fully discrete methods to be discussed are based on a standard Galerkin semi-
discretization using smooth, periodic splines in the spatial variable. Let N be a positive integer,
let h = N~' denote the uniform mesh length of the spatial discretization, and for integers j,
set x; = jh. If r = 3 is an integer and A is as just defined, denote by S} the N-dimensional
space of smooth, l-periodic splines of order r, that is, the space of 1-periodic, piecewise
polynomial functions of degree r — 1 on each subinterval [x;, x;,,] which have » — 2 contin-
uous derivatives. An element of S} is determined by its values on [0, 1]. A convenient basis
for §} may be constructed as follows (cf. [24]). Let x denote the characteristic function of the
closed interval [—1/2, 1/2] and let 4 = x*" be the r-fold convolution of . For any j € Z,
set Y;(x) = W(h~'x — j) and define

b0 = X Wyew(®).
1EZ
Then {J),-},’L, form a basis for §), with the peak of d-Jj occurring at x;, j = 1,2, ..., N. The
basis {¢;})-, actually used in our computations are obtained from the ¢; by scaling and a cyclic
permutation so that the maximum value of each ¢; is one and the peak of ¢; occurs at x =
(N — [(r — 1)/2Dh + (j — 1)h, modulo one.
The usual inner product in L,([0, 1]) is denoted (-, *) and the associated norm by |-[. Let
T > 0 be given. A semi-discrete approximation u, = u,(x, ) to (1.1) lying in S} for each ¢ in
[0, T] is defined by requiring that

(uhl + Ny + Wy Upy s d)) - e(uh\'.n d)’) 0 for a” d) S S; and O sSts T’ (213)
w5 0) = Pu’, (2.1b)

where Pu® is an element of S} that approximates u° well and the third-order term has been
integrated by parts to permit the use of quadratic splines. In practice P was taken to be the
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orthogonal projection of u° onto S in L,, that is Pu’, &) = ° ¢) for all & € S;. Other
choices are possible however: Py’ could be taken as a polynomial interpolant, or one of the
various quasi-interpolants, of u°. It was established in [17] and [20] (for e = 1 and m = O,
but the analysis carries over without essential change to the case at hand) that if the initial data
u,(-, 0) is optimally close in L, to u° in the sense that [lu,(-, 0) — | = O) as h— 0, and
if the solution of (1.1) is sufficiently smooth, then u,(x, ¢) exists, is unique, and satisfies the
relation

max [lu,(-, £) — u(:, 0 = O’)

0=st<T

as h — 0. (In [17] the relevant theorem is stated and proved for r = 4, but if the third-order
term is integrated by parts, the proof works in case r = 3.)

The system of equations (2.1a) and the initial conditions (2. 1b) are equivalent to an initial-
value problem for a system of ordinary differential equations. Indeed, setting

N

up(x, 1) = D, cilHdilx),

i=1

(2.1) forces the conclusion that the unknown vector é(t) = [c), . . . , cy] satisfies
dé . : :
GE;+nMc+F(c)+eSc=0, 0sr<T, (2.2a)
with
é0) = . (2.2b)

Here G, M, and S are N X N matrices whose entries are given by

Gij = (d)ja i), Mij . (d)jl, ¢;), and Sij = "(d)}’, o),
for | <i,j< N, F(c) is an R"-valued function of ¢ whose components are

N

F@&)y = 2, caci(dd), d), forl<i<N,

kj=1

and & is the vector of coefficients of u,(-, 0) = Pu’. Note that if Pu® is the L,-projection of
u° on S}, then &° is the solution of the linear system G¢&° = 0° where U° = [(u°, b)), . . .,
u°, dy)]. The matrix G is symmetric and positive definite whereas M and S are skew-symmetric.
One verifies straightforwardly that G, M, and S are cyclic (circulant) matrices.

To compute an approximation to the solution u of (1.1) the system (2.2) of ordinary
differential equations must be discretized. To achieve this several single-step methods were
used which reduce, in the context of linear systems of ordinary differential equations, to
A-stable schemes. These choices allowed the retention of higher-order accuracy without undue
stability restrictions on the temporal discretization as a function of 4. In what follows k will
denote the constant, positive time step and ¢" will stand for nk,n =0,1,...,J, where it is
taken that T = kJ for some positive integer J.

Perhaps the most obvious temporal discretization is a Crank-Nicolson scheme in which
one seeks {V"})_, in S}, such that

(Vn+l _ Vrl + k'T]V"+”2 + kV"+]/2V_"I.+”2, (b) _ ke(V'c‘:l/Z’ d)’) = 0 (233)
foralldinS;,0<n=<J — 1, and

VY = Pul,
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where V"*12 = (V" 4+ V"*1)/2. For every n in the range [0, J — 1], V"*! is obtained from
(2.3a) as the solution of a nonlinear system of equations. In [17] it was shown that if the solution
u of (1.1) is sufficiently smooth (form = 0,e = 1, and r = 4, but the proof is easily extended
to cover the present case, even for r = 3) then for k and h sufficiently small the solution of
(2.3) exists, is unique, and satisfies the error estimate max,JJu(-, ") — V" = 02 + k). For
the uniqueness of V", the proof given in [17) requires the weak condition that kh~'"? be sufficiently
small. As a practical matter one computes an approximation U"*' to the exact solution V"*' of
(2.3) by Newton’s method. It is further established in [17] that if kh=%* is sufficiently small
and if a starting value for the Newton method is obtained by extrapolation from known values
of U", then a single Newton iteration (i.e., solving one linear system of equations) suffices to
guarantee stability and to preserve the overall accuracy of the exact solution {V"}{ _o. Thus there
emerges a scheme requiring the solution of one system of linear equations at each time level
that produces an approximation {U"})_, satisfying the overall error estimate max,||[U" —
uC-, Il = O* + k). We shall return to (2.3) below, interpreting it within a general class
of Runge-Kutta-type schemes for the temporal discretization. (A technical aside is warranted
here. The proof of convergence of Newton’s method for (2.3) given in [17], when adapted to
the case r = 3, requires the additional assumption k = A2, a requirement that is certainly
compatible with the presumption k < ¢h** mentioned above.)

Attention is now given to higher-order accurate, single-step methods for use in the temporal
discretization of the system (2.2). The first family of schemes considered here are the well
known, semi-implicit, Runge-Kutta (RK) methods (cf. [25] or [26] and the references contained
therein). A g-stage diagonally implicit RK (DIRK) method for the autonomous, nonlinear system
of ordinary differential equations y = f(y) is determined by a table of constants Alh where
A= (), 1 <ij<gq,isalower triangular ¢ X g matrix such thata; = B # 0, 1 < i < q,
andb = (b, ..., b,). The matrix A and vector b are used to compute approximations y" to
y(t") as follows:

q
=y kY af(y), 1<is<g, 2.4)

j=1

and

q
yn+| =y + k 2 bjf(yn-j)’ O0sn=<J - 1. (2.5)

i=1

At each time step, such a method requires the solution of one nonlinear system of equations of
the form, y*' — kBf(y™) = known vector, for each of the ¢ intermediate stages i, | < [ = gq.
If the off-diagonal nonlinear terms in (2.4) are eliminated and the results substituted into (2.5),
there results the usual form of these methods, namely

=1

YU RBFOM) =y X =y, Isisg, (2.6)

ji=1

q
yrl= oy 4k Z b[(A"),-j(y"'f -y, 2.7)

ij=1

The entries of the strictly lower-triangular, ¢ X g matrix (i) are p; = 8; — B(A™"); where
9 is Kronecker’s delta function. In (2.6) and henceforth we follow the convention that 2, =0
if n < m. In general, a ¢g-stage DIRK method whose order of accuracy is p will be referred to
as a (g, p) scheme.

The simplest example of ¢g-stage DIRK schemes is when g = 1 and the method is given
by the tableau

4. (2.8)
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In this case the method is defined by the equations

k
yn.l . yn + Ef(yu.l)’
yn+l - yu + kf(y"'l).

As y=!' = (y"*' + y")/2, this scheme is equivalent to the second-order accurate, midpoint
scheme

yn+] - yn + kf((yn+l + yn)/z),

which, in the case of the semi-discretization (2. la), coincides with the Crank-Nicolson scheme
(2.3). Thus ¢ = 1 and p = 2, and so (2.8) defines a (1, 2) scheme. Another example of
interest here is the (2, 3) DIRK method given by the tableau

1
] —st g‘; where B = %(1 + 37Y, 2.9)

Our computer code included both (2.8) and (2.9) as time-stepping options. Also included was
the well-known (3, 4) DIRK method with diagonal elements

_ L (1)+1
B—\/gcos 18 5

(cf. [3], [12], [15] or [16]), but its use in the present context was found to be expensive and
so it will not be featured further in this exposition.

In the scalar case y + Ay = 0 it is well known that these DIRK methods reduce to
A-stable schemes associated with Ngrsett rational approximations r(z) to exp(—z), with de-
nominator (1 + Bz)4, where z = Nk (cf. [25], [26], [27]). In particular the rational approxi-
mation corresponding to (2.8) is the (1, 1) Padé approximant to exp(—z) given by r(z) =
(1 = %2)/ (1 + % z), whilst the (2, 3) DIRK method (2.9) cormresponds to ry(z) = [1 +
(2B = Dz + (B* — 2B + H2/(1 + Bz)% where B = #(1 + 3-%). Both of these rational
approximations (and the one corresponding to the neglected (3, 4) DIRK method mentioned
above) satisfy |r(z)| < 1 for all complex z with Re(z) = 0, so yielding A-stable schemes. Ac-
tually, both M and S are skew-symmetric and so possess purely imaginary spectra. Hence, if
the nonlinear term F is ignored, the stability of the time stepping procedure in the context of
integrating the system (2.2a) may be understood by studying the behavior of r(z) for purely
imaginary z. The (1, 2) DIRK method has |r,(ix)] = 1 for any real x, and so this method is
conservative for linear ordinary differential equations of such form. The (2, 3) DIRK scheme
has

sup |ryix)| < 1
y<hl
for real x and any y > 0. In fact, as x — 0,

4B -

ryix) = e 24

|
x* 4+ 00,

and so this method is dissipative in the context of the linearized KdV equation. In the nonlinear
case wherein F is not ignored, it is easily seen by taking ¢ = V"*'"2in (2.3) that the Crank-
Nicolson scheme conserves the L? norm of the initial data. Our numerical experiments showed
that even when the solution of the nonlinear equations was approximated by a single Newton
iteration per time step, a negligible loss of conservation resulted. The (2, 3) DIRK method is
dissipative in the nonlinear case as well.
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Applying the DIRK methods in their general forms (2.6), (2.7) to the semi-discretization
(2.1a) leads to the equations,

(V4 KBV, ¢) — KB{G(V™, &) + e(VE, ¢}

i—-1
= (V) + 2 uy(V = VL 6), (2.100)
j=1

foralld € S, 1 <i=<gq,and

q
yrtl o= v+ 2 bi(A_l)ij(V"'j — V), (2.10b)

ij=1

Hence to obtain V**! from V" via (2.10) one solves g, N X N, nonlinear systems of equations
to obtain the V™' for use in (2.10b). As for the (1, 2) DIRK method already discussed, it has
been established in [18] that unique solutions {V"} of the nonlinear systems associated with the
(2, 3) and (3, 4) DIRK schemes exist and comprise a stable sequence in S}, provided that some
weak relations between k and / are satisfied. As before, the solutions of the systems in (2.10a)
may be approximated by Newton’s method, so yielding approximations {U"} to {V"} in S}. For
Newton’s method to be effective requires good starting values Ug'. These are obtained as linear
combinations of the form,

Uti = NoU" + N U™t + oo 4+ N, U, 2.11a)

1 < i < g, which use previously determined values. The coefficients \;; depend upon the
particular (g, p) DIRK method that is in question. (Note that (2.11a) may only be used for
n = q. Another starting procedure must be used for the first ¢ steps.) Let U denote the result
of one Newton iteration performed on (2.10a) with initial guess Usi. The Ut are obtained as
the solution of the linear systems,

(U + kBUY, 6) — ekB(UT, &') — kBUFUY, ¢')

i1
= (U", &) + O wUY = U, &) — kBUE'Y, 6'), (2.11b)
j=1
forall & € 8, 1 < i< q. Then U"*' is computed by the analog of (2.10b)

q
Urt' = U+ X (AT, W = U, (2.l

ij=1

Hence a total of g, linear, N X N systems must be solved to compute U"*'. The matrices
associated with these systems are nonsymmetric, but positive definite for k and A sufficiently
small. The computational issues concerned with the solution of these systems will be discussed
in detail in Section 3.

Our computational experience indicates that the approximations {U"} satisfy the error bound
|U" — u(-, )| = Ok? + k"), where p = 3, respectively 4, if the (2, 3), respectively (3, 4)
DIRK schemes is used. The theoretical developments in [18] did not quite establish this result,
but rather demonstrated that the method represented by (2.11a—c) is stable and that [U" —
u(-, )| = OWK* + k). If the scheme (2.11a—c) is modified by the addition of small order
perturbations, then the resulting scheme, producing an approximation {0, satisfies |U" —
u(-, t| = O(k* + k). In all cases, the proofs require that k/h remain bounded as k, h — 0.
Thus there is a gap at this point between what is inferred on the basis of numerical experiments

and what can be proved unequivocally.
It is evident from (2.11b) that the matrices associated with the linear systems that have to
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be solved change not only from step to step, but even from stage to stage. To avoid this,
Rosenbrock-type methods[28, p. 223] of second- and third-order accuracy were also employed.
In the context of linear, constant-coefficient systems of ordinary differential equations these
schemes are A-stable and, like their DIRK counterparts, reduce to the same rational approxi-
mation to the exponential when appliedtoy + Ay = 0. For the system y = f(y) the Rosenbrock
methods take the form

i1
[ - kBf,O"y™ = kf(y" + > a,,-y"-f). (2.12a)
\ Jj=1
forl1 =i =g, and

i
yl =y 2 by™i, (2.12b)

j=1

where f, is the Jacobian of the nonlinear map f and B, g, l <Si<gq,1<j<i — 1, and
bol<is q, are constants that are generally different from the analogous constants that define
g-stage DIRK methods of the type given in (2.4) and (2.5). Computing with Rosenbrock methods
thus requires forming the Jacobian f, once at each time step and then solving ¢ systems of
linear equations with the same matrix. Forming the Jacobian for the system (2. 1a) is quite easy.
Moreover, this Jacobian was already being used in the Newton iteration associated with the
DIRK methods. Specifically, applying (2.12) to the semi-discretization (2.1a) produces a se-
quence {U"},_, in S}, with U® = Pu® which satisfies

(U™ + kBUY, §) ~ ekB(UL, ¢') — kBU'U™, §)

k i—1 2

f([or - Z ] o)
J,.=_ll

kn<[U" + > a,.jU"-f] i ¢>

i—1
ek([U" + > a,.,.U"JL, ¢’>, (2.13a)

j=]

+

forall ¢ € §;, 1 <i=<gq, and

q
Urtl = pn o+ 2 b,U™, (2.13b)

i=]

for0=sn=<J- 1.

In our computer program two such Rosenbrock methods have been implemented. The first
amounts to a linearized version of the trapezoidal rule of the form (2.12) with g=18 =14,
a; = 0, by = 1 which has second-order accuracy and which is essentially as economical as
the (1, 2) DIRK-Newton method (2.8). Also implemented was the Calahan method[29], [28],
a two-stage, third-order accurate scheme having B = #(1 + 37%), a,, = 2 — 438, b, = %,
b, = §.

At present there is no proof of convergence for the Rosenbrock methods in the context
discussed here of the KdV equation. Experimentally we have found that the two Rosenbrock
methods implemented in our code were accurate if k// remained bounded as k, h — 0, and
that they then yielded optimal-order L, error bounds for max,||JU” ~ u(-, ") which were ok* +
h") for the one-stage Rosenbrock method and O(k* + h") for the two-stage Calahan method.
In the context of constant-coefficient linear systems the (1, 2) Rosenbrock method is conserv-
ative, whilst the Calahan method is dissipative since they coincide then with the corresponding
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DIRK schemes. In the nonlinear situation of our numerical experiments on the KdV equation
it was observed that the (1, 2) Rosenbrock scheme induced only a negligible amount of dis-
sipation.

3. COMPUTATIONAL CONSIDERATIONS

Issues are considered here that connect with the practical implementation of the various
numerical methods presented in the last section. We describe particular computational algorithms
and the associated data structures that are incorporated into our computer program to efficiently
compute approximations to solutions of the KdV equation. Also presented are reasonably sharp
estimates of the number of arithmetic operations required per time step by each of the suggested
numerical schemes, as a function of the number N of spatial intervals and the order r of the
underlying spline space.

As a matter of notation a circumflex over a variable connotes that variable to be a vector
rather than a scalar. Denote by d) = (i)(x) the N-vector whose components are the basis functions,
&, . . ., by, introduced in Section 2. Thus & = (dy, . . . , dy), and if { € S}, there is a
unique Z = (z, . . . , zy) in RV such that {(x) = 2 z;¢;(x) = 7 - é.

In matrix representation relative to the chosen basis for S}, the algorithm (2.11b) for the
DIRK method with one Newton iteration is

i—1
e A 7 kB . ) )
(G + nkBM + ekBS — BkFUIN0T = GU" + S w,GO} — 7‘3 fow, ugh,  @3.1)

j=1

for 1 < i < g, where o U ni & RN are the vectors of the coefficients of the Sj-functions U”,
U™, respectively, f({, ¥) € RY is defined by

f@ & = @, &) (3.2)
for {, ¢ € S}, and the N X N matrix # () has components 7 ({s);; defined by
F W) = (), b)), (3.3)

for Y in 7. In the same notation, the Rosenbrock method (2.13a) may be written as

[G + mkBM + ekBS — kBF (U0 = '—2? Frmi yriy — k(mM + €S)P™, (3.4)

for 1 < i < ¢q, where

i=1
yrio= pUr o+ E GUU"J, (35)

i=l

for 1 < i < g, and where P/, U™ € R are the coefficients of Y™/, U™/, respectively, relative
to the basis {¢;}.,.

These formulae allow a count of arithmetic operations to be initiated for the proposed
methods. In making such counts, account will only be taken of computations (multiplications)
that are repeated every time step. Thus set-up costs such as that of assembling the matrices G,
M, S, and the array (b, ¢/), and that of computing U° will be ignored. Moreover, the cost
of calls to subroutines that calculate exact solutions, compute errors, and so on, are ignored.
With these provisos in force, inspection of (3.1) and (3.4) reveals that the following operations
are performed in the DIRK-Newton or Rosenbrock scheme.

(i) Given y € R", evaluate Gj, My, and Sy.
(ii) Given {, ¢ € §}, evaluate the N-vector f({, ¥) given by (3.2).

(i3 Giiven sk = €7 avalnate the N % N matriv % Gl oiven hy (R 0
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(iv) Given ¥ € S}, & € R", evaluate the elements of the matrix -7 () and solve the linear
system 7 ({)Z = g, where

.//—(lb) =G + C]kM + Czks + C3k.‘/7(\|l), (36)

If N = 2r — 2, the matrices G, M, and S are cyclic with first rows of the form
d - (al) a29 O O IO ara 01 C: E f O, aN—r+2’ « 6 - aN)' (37)

We focus temporarily on such matrices. To ease the task of handling component-indicating
indices, they will always be interpreted modulo N. Thus if § = (y,, . . ., yy), then y, = yy,
Y-1 = Yv-1, Yv+1 = Y1, and so on. Define a mapping * that associates to & € R" the element
0% € RV*27~2 given by

Vien-re1, 1 <isr
v = QU4 ifrsisN+r—-1, (3.8)
U,-_N_,+|, lfN + r $1<N + 2r - 2.

That iS, o* = (UN—r+2, s Uns U oo a5 Uns Uy, e, vr—l)'
In terms of the notational provisions just made, we may state the following result which
is relevant to the computational problem (i) above.

LEMMA 3.1

Let C = (¢;;) be an N X N cyclic matrix whose first row ¢é is of the form indicated in
(3.7). Then for any § € R", Cy can be computed, using only (2r — 1)N multiplications, from
the identities,

N 2r—1

D ey = 2 Fyhio, (3.9)

j=1 j=}

for 1 =i =< N. Moreover, if C is also supposed to be symmetric or skew-symmetric, then the
number of multiplications needed to compute C¥ is #N via the identities,

N r—17

E CijYy = Fykeio + Z Cj*(yj*w—l + (_1)0)’5'?—.;+f-|), (3.10)

j=1 j=1

for 1 <i=<N, where o = 0 or 1 depending on whether C is symmetric or skew-symmetric,
respectively.

Proof. The relations (3.9) are easily established by induction on . The formulae (3.10)
follow immediately since ¢} = (—1)°cf_;for 1 <j<r — 1, witho = 0 or 1 depending on
whether C is symmetric or skew-symmetric, respectively. The stated multiplication counts follow
instantly from (3.9) and (3.10).

When coding the sums on the right-hand side of (3.9) the nonzero elements of the first
row of C are stored in the order cy_,42, . . ., ¢y, €1, . . ., ¢,. Moreover, rather than creating
the (N + 2r — 2)-vector y* from ¥ by using IF statements, the index vector 4* is created once
and stored, where i = (1, 2, . . ., n), and y} is obtained as Yo This convention is followed
whenever computations with the (N + 2r — 2)-vectors y* are effected.

The just-described data structures are also useful in evaluating the nonlinear term f(l;, ).
The calculation of f(@, ¥) is described here in general, even though the schemes in view utilize
only terms of the form f({s, ). There are methods (e.g., the theoretically important modifications
of the DIRK schemes mentioned in Section 2) for which terms of the form f({, ) with { #
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are encountered, and it has therefore seemed useful to keep the discussion unrestricted. Write
{=2-dband ¢y = ¥+ &, so that

N N
f(g’ lb)l - (Cll"’ d)l’) - E Zmyn(d)md)m ¢I’) . 2 Zmynfinna (311)
mn=1 mun=1
where
frn = (nha, &), (3.12)

for1 < i, m, n < N. Because the ¢, are 1-periodic and are related to one another by translation,
it follows that

f£n++!l n+l = f:rlna (3.13)

for any integer /. Moreover, since the support of the ¢; has a length of r spatial intervals, the
N X N array (f},,) has less than (2r — 1) nonzero elements, for each i. Actually, it is easily
determined from (3.12) and the properties of the ¢, that (f},,) has 3r(r — 1) nonzero elements.
However, it is much easier from a programming point of view to consider (f},,) asa 2r — 1) X
(2r — 1) square array. The advantage of the additional zeroes is thereby sacrificed when
multiplying (fi,,) by (2r — 1)-vectors, though this advantage could only be exacted at the cost
of heavy use of IF statements. For similar reasons, we shall use only the obvious symmetry
fin = fin, whilst recognizing that these arrays possess other symmetries.

In view of (3.13) only those elements of fi, that correspond to some fixed value of i (we
took i = r) need be computed and stored. Moreover, it is a consequence of the chosen ordering
of the basis function {¢;}Y_, that f;, = O if either m or n exceeds 2r — 1. The following result
is directly applicable to the computational problem (ii) above.

LEMMA 3.2 X R
Let{ =2 ¢,y =y - ¢ liein §}. The identity

2r-1

FG W = > frzkei i (3.14)

mn=]|

which holds for 1 =< i<N, may be used to evaluate f(g, ) at a cost of 2r(2r — DN
multiplications. Furthermore, f({, ¥) may be evaluated with (r + 2)(2r — 1)N multiplications
using the relation

2r—|

FOLW = D FraOkec P+ 2 D oYVt (3.15)

m=] Isn<m=2r—1|

for] <i<N.

Proof. Since f7,, = 0 for m, n = 2r, the formula (3.14) is equivalent to

N
FG U= D frzke ki

mn=|

and this is easily established, first for i = r, and then inductively for i > r or i < r. Once
(3.14) is in hand, (3.15) follows and the multiplication counts are obvious consequences of
these two sets of formulae.

Attention is now turned to the computational problem (iii), the evaluation of the matrix :# (\{s)
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given by (3_ 3)Ify =y - J) it follows from (3.2) that # () may be assembled by first computing
the array # () given by

2r—1

F (\'J)ij . 2 f;ujy;lfﬂ—h (3.16)
m=

1<i<N,1=<j=<2r -~ 1, and then defining 7% () by

” _[F Wiy, FlsisNi-r+1sj<i+r-1,
W)y = {0 otherwise. L)

In (3.17) the indices are interpreted modulo N following the convention in force here. The
matrix % () has the same structure of zeros as the cyclic matrices G, M, and S. Moreover,
its (2r — 1)N nonzero elements may be evaluated via (3.16) with no more than (2r — 1)°N
multiplications. This completes the discussion of the computational issue (iii).

Consider now the matrix 7 () defined in (3.6). As G, M, and S are computed but
once, 7 (&) may, for a given ¢ € S}, be assembled using 2r(2r — 1)N multiplications. For
both the DIRK-Newton methods (3.1) and the Rosenbrock methods (3.4) it is necessary to
solve ¢ linear systems involving matrices of the form 7 () in order to advance the solution by
one time step. As the matrices 7 () change from step to step for the Rosenbrock methods and
even from stage to stage for DIRK-Newton methods, it is fortunate that their calculation may
be accomplished efficiently. Moreover, the linear systems that arise may also be solved effi-
ciently as is now indicated.

Given ¢ € §}, a system of equations of the form

TW)i = ¢ (3.18)

may be solved in the following way.T As mentioned above, 7 = Z({) has the same zero
structure as the cyclic matrix G, and so it may be written in the form 7 = 7, + 7, where 7,
is a diagonally banded matrix with bandwidth 2r — 1 and 7, consists only of the upper right
and lower left corners of 7. To solve (3.18), the following steps are effective.

(a) Factor 7, (without pivoting) into upper and lower triangular banded matrices using the
standard banded factoring routine. This costs r(» — 1)N multiplications. (N.B. The
matrix 7 is real and positive for k and h small enough (cf. [18]). At no time in our
calculations did we perceive any need for pivoting.)

(b) Solve 7,2, = g. This costs (2r — 1)N multiplications since 7, has already been fac-
tored.

(c) Compute the 2r — 2 N-vectors &/, j =1, ...,r— 1, N — r + 2, ..., N that
satisfy 7,8/ = ¢/, where the i" component of &' is §;;, the Kronecker 3-function. This
costs (2r — 2)(2r — 1)N multiplications.

(d) Evaluate the N X N matrix C whose j" columnis ¢/ + Z.&/ifj=1,...,r — 1,
N —-r+2,...,N,and whose j" column is zero otherwise. Note that only the four
(r — 1) X (r — 1) comners of C are nonzero. The matrix C is compressed into a
(2r — 2) X (2r — 2) array and factored as a product of upper and lower triangular
matrices. This may be accomplished at a total expenditure of order r* multiplications.
Being independent of N, this cost is ignored.

(e) The factored form of the compressed matrix C may be used to evaluate the 2r — 2

nonzero entries of the N-vector A = Ao oM 0, 0, Ayaraa -y A
that satisfies CA = —Z,2,. The cost of this determination is of order 2, and so is
ignored.
(f) Finally the solution 7 of (3.18) is computed via the formula
r—1 N
P=g4 2 NE+ D N
j=1 j=N-r+2

This takes (2r — 2)N multiplications.

TThe authors wish to record their thanks to T. Dupont for bringing this implementation to their attention.
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Briefly summarized, steps (a), (c), and (d) are calculations that do not involve the right-
hand side g of (3.18). Ignoring calculations whose cost depends only on r, the total number of
multiplications involved in carrying out these steps is (5r> — 7r + 2)N. Steps (b), (e), and
(f) involve ¢ and cost (4r — 3)N multiplications in total. This completes the analysis of the
implementation of (iv).

It is now a straightforward task to count the total number of multiplications needed to
advance the numerical approximation to the solution of (1.1) by one time step using a g-stage
DIRK-Newton or Rosenbrock method. In the case of the DIRK-Newton method our scheme
requires the calculation of the starting values U§ for the Newton iteration by (2.11a), evaluation
of ¢ matrices of the form (3.6), assemblage of the right-hand sides of the g linear systems (3.1)
and the determination of their solutions, and finally the computation of U"*' by (2.11c). The
total number of multiplications needed for these steps is (¢ + ¢q[11r> — r + 1])N. For the
Rosenbrock methods the matrix on the left-hand side of (3.4) is evaluated and factored once,
the right-hand sides of the g linear systems (3.4) are formed and their solutions determined,
and U"*' is then computed via (2.13b). The total number of multiplications for these steps is
([9r* — 9r + 1] + q[2r* + 8r — 2])N. The multiplication counts for the two classes of
methods are shown for some practically interesting values of ¢ and r in Table 1.

Table 1. Number of operations per time step per spatial mesh interval for the DIRK-Newton and Rosenbrock

methods.
r | q | DIRK-Newton | Rosenbrock
1 98 95
3| 2 198 135
3 300
1 174 171
4| 2 350 233
3 528
1 392 389
6| 2 786 507
3 1182

4. ACCURACY AND EFFICIENCY

This section is devoted to reporting the results of computations performed using the schemes
introduced in Section 2 and analyzed in Section 3. The stability and convergence rates of the
various methods were verified, both as a check on the analysis and to insure that the schemes
were correctly coded. The efficiency of the numerical schemes as regards accuracy achieved
versus computational effort expended, was also determined. These properties of the schemes
were obtained by comparison with the exact solitary-wave solutions of (1.1).

For any value of m and nonzero value of €, equation (1.1a) possesses a one-parameter
family of travelling-wave solutions called solitary waves. Takingm = 1and e > 0, these special
solutions have the form

u(x,t) = A sech2[K<x - %) - wt:', 4.1

where A > 0, K = $(A/3€)'?, and @ = K(1 + 3A). In the experiments reported here we took
€ = .2058 x 107*and A = .22755, values that correspond to the evolution of water waves
in a channel in a regime to which the Korteweg-de Vries equation should apply (cf. [30], [22],
and [23]). This choice of parameters corresponds to a solitary wave centered at x = 1/2 at
t = 0 whose height decreases to about 5 percent of its maximum excursion from the undisturbed
level at a distance S = .072 from its peak.

All the numerical experiments reported here were performed in double precision using the
FORTRAN Q compiler on an IBM 3031 computer at the University of Tennessee, Knoxville.
The smallest number N of spatial intervals used in these calculations was 96, which was easily
adequate to resolve the aforementioned solitary wave with either quadratic or cubic splines
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Table 2. The errors £(T) and rates of convergence induced in integrating a solitary wave using the Calahan
method with k = 1075 and T = 10-*.

-1 Quadratic Splines Cubic Splines
B E(T) Tate E(T rate
96 0. 8210(-3) ) 0.1687(-3) ;
144 | 0.2140(-3) gf ?g 0.2495(-4) :' Z'lz
192 0, 8626(-4) 3' 09 0. 7090(-5) 4' 32
256 0, 3546(-4 : 0.2107(-5) °

without spurious oscillations. The error at time ¢, denoted by E(z), is the normalized L,-error
of the fully discrete approximation at the time level ¢, that is

U™ — u(-, o)

HO= T

if t = nk. If t is not an integral multiple of &, E(t) is defined by linear interpolation of the
values of E at nk and (n + 1)k, where n = [t/k]. All the integrals occurring in the determination
of the spatial L,-norm of functions as well as integrals arising in L,-inner products were computed
by Gaussian quadrature with 16 nodes on every interval [x;, x;.,]. In all cases, U°® was taken
as the L,-projection of u°(x) on S}. The normalizing factor ||u°| was about 0.0477.

First the rates of convergence in both space and time of the various schemes were inves-
tigated and the regimes in which the existing theoretical results apply were delimited. To verify
the order of accuracy of the spatial discretization, the temporal error was effectively set to zero
by the choice ¥ = 107° and use of the third-order Calahan method, and then » = N~ was
varied. The errors E(T) at T = 107 that are observed using quadratic and cubic splines are
tabulated in Table 2, along with the implied convergence rates. As usual, the observed rate of
convergence determined by two computations with errors E| and E, corresponding to discre-
tizations k, and h,, respectively, is defined as log(E\/E,)/iog(h,/h,). Similar behavior of the
spatial errors was found when the temporal integration of the solitary wave was instead effected
using the 1-stage Rosenbrock or the 1- or 2-stage DIRK-Newton schemes with k = 1075, T =
1073, and quadratic or cubic splines.

As a test of the accuracy of the temporal integration techniques the solitary wave was
numerically integrated holding k fixed at 1/192 for various values of k. A representative sample
of the outcome of this test is presented in Table 3, wherein the value in the rate column between
adjacent errors E| and E, is log(E,/E,)/log(k,/k;). Reported here are computations using the
1-stage Rosenbrock method with quadratic splines and the Calahan method with quadratic and
cubic splines. As set forth in Section 3, the expected temporal orders of accuracy for these
methods are 2, 3, and 3, respectively. If k is not too small, the error induced by the spatial

Table 3. The errors E(T) and rates of convergence induced in integrating a solitary wave using three methods,
withT = 1.0and N = h~' = 192.

l-stage Rosenbrock, r = 3 Calahan, r = 3 Calahan, v = 4
k/h E(T) Rate E(T) Rate E(T) Rate
3 0. 6990 0. 4225 0. 4255
2 0. 4389 0,2445 0.2445
3/2 0, 2852 0.1423 0.1424
1 0.1414 0.5422(~1) 0.5425(-1)

1.91 2.85 2,84

1;2 0.3775(-1) | 1" og 0.7519(-2) | 5"0q | ©.7568(-2 S50
1/3 0.1694(~1) 0.2198(-2) 0.2244(-2
1/4, 0.9537(-2) | 200 0.9011(-3) [ 310 | 004133 g'g:
1/6 0,4207(-2) | > 0.2584(-3) | ** 0.8107(-3) | 3" o
1/8 0.2334(-2) 2. 10 0. 1378(~3) 0.1158(-3) | ' o0
1/12 0.9957(-3) | < 0.1196(-3) 0.3441(-9 | “
1/16 0.5300(-3) 0.1231(~3)
1/20 0.3186(-3) 0. 1251(-3)

*Note the 1/6 was actually 1/5.77 in the last column (Calahan with r = 4).
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discretization is negligible in comparison with that generated by the temporal discretization.
For quadratic splines the exact magnitude of the spatial error may be discerned in the last few
entries in column one or column two, whereas for the cubic splines the spatial error was
apparently never significant. (Note that the errors in columns two and three are nearly identical
for k/h = 1/3 where the order ° temporal error dominates, but that below this value the Calahan
method with quadratic splines has errors that are limited by the fixed spatial discretization whilst
the use of cubic splines obviates this problem in the presented range of values of k.) As k was
decreased below the fixed value of & the expected rates of convergence were indeed evident
until the etrors were dominated by the spatial discretization. Results similar to those in Table
3 were obtained for different values of &, as well as for the 1- and 2-stage DIRK methods with
one Newton iteration per stage. For the latter two temporal discretizations the expected orders
of accuracy, 2 and 3, respectively, were observed. We also verified the temporal order of
accuracy by holding k/h fixed suitably and decreasing 4 and k simultaneously. For example,
using the Calahan method with k = A*3, it was found that for & = 1/96 the error E, at time
T = 1 induced when approximating the evolution of a solitary wave was 0.5013(—2), whilst
for h = 1/192 the error E, at time T = 1 was 0.3107(—3). The resulting rate, log(E,/E,)/
log(hy/h;) was 4.012, corresponding very closely to the expected cubic power of k in the
asymptotic error estimate. Similar experiments were performed using the other temporal dis-

cretizations discussed heretofore.
Another issue that was investigated concerned comparisons regarding accuracy and stability

of the DIRK methods with their Rosenbrock counterparts. As mentioned in Section 2 there are
no theoretical results regarding stability and convergence of time-stepping via Rosenbrock
methods of order greater than two in the context of the KdV equation (or any other nonlinear
partial differential equation as far as we know). Moreover, there are conjectures motivated by
the theory of approximation of first-order systems of ordinary differential equations that the
DIRK methods used here enjoy better stability properties in the context of nonlinear problems
than do the Rosenbrock methods. (The latter methods are not B-stable in general-—see [31].)
In Table 4 are recorded an illuminating set of comparative calculations, namely the error E(T)
at time 7 = 1 induced by integrating a solitary wave using 1- and 2-stage Rosenbrock and
DIRK methods. The DIRK schemes featured both one or two Newton iterations per stage. The
errors in the first group of three columns were obtained with one-stage methods and quadratic
splines, so methods having an accuracy of order k* + h*. The second group of three columns
were obtained using two-stage methods with quadratic splines whilst the third group of three
columns were computed with two-stage methods and cubic splines. In each group of three
columns, the resulting errors are recorded for the appropriate Rosenbrock and DIRK schemes,
the latter with one Newton iteration (DIRK-1N) and two Newton iterations (DIRK-2N) per stage.
Observe that within each group of three columns the values of the errors are quite similar for
the same value of k/h. This phenomenon persists for smaller values of k/k, not shown in Table
4, but for such values the spatial component of the error figures strongly. In the last row of
Table 4 are recorded the average CPU times in seconds per time step for each column of runs.
As expected, the DIRK methods are more expensive (consult Table 1) than their Rosenbrock
counterparts. On the basis of Tables 3 and 4, it is concluded that as far as accuracy is concerned,
at least for relatively small T in the problem at hand, the two-stage, third-order Calahan method
holds a clear advantage over the corresponding DIRK methods, whilst there is not much to
choose between the second-order Rosenbrock method and its DIRK-IN counterpart.

Another interesting conclusion may be drawn from the data presented in Tables 3 and 4,
concerning the variation in the error generated by the fully discrete schemes under consideration
as k/h varies. Recall from the discussion in Section 2 that for certain of the schemes used here
there is available a rigorous convergence proof. The relevant theorems featured restrictions on
the relative size of k and h. Two aspects of our numerical experiments indicate that no stronger
restriction than one of the form k/h < constant should be required to obtain optimal order
convergence rates for any of the schemes considered herein. First, in all our calculations it
transpires that taking k/h < 1/2 was adequate to guarantee that for small 4 the observed errors
were dominated by the temporal asymptotic rate. On the other hand, no catastrophic instability
was ever observed for calculations made with large values of &/h.

The work estimates developed in Section 3 were also subjected to comparison with the
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results of actual computational experience. Table 5 provides comparison of the ratio of actual
CPU time in milliseconds used per time step by the various schemes to the number N of spatial
intervals with the numbers in Table 1 which express the approximate number of multiplications
per time step per spatial interval for the same schemes. The actual timings were determined by
runs in which 7 = 1.0, » = 1/96, and with various time steps. The CPU-seconds per time
step were determined as the averages of the timings for all these runs; the result was then divided
by N.

The efficacy of the estimates obtained in Section 3 is seen in the relative constancy of the
ratios of the number of multiplications with the actual CPU seconds per step per interval (the
row labelled “‘ratio’’). The discrepancies owe at least to the facts that C; measures only mul-
tiplications, and then only those relating to calculations performed on each spatial interval during
each time step. Consideration of the relative times per step per interval for the various schemes
shows the predictions of Table 1 to be within about 10 percent of the computationally obtained
ratios (the columns labelled ‘‘ratio’’). The general picture that emerged from Table 1 is borne
out by the computationally obtained information presented in Table 5.

With these preliminary but important considerations in hand, we turn now to comparing
the computational efficiency of the various schemes. Distinguished below are comparisons made
by integrating a solitary wave over a relatively short time interval, from 7 = 0.0to T = 1.0,
and integrations over longer time scales.

For the approximation of solitary-wave solutions of the KdV equation over a relatively
short time interval, it is evident from the results reported in Tables 1, 4 and 5 that the 1-stage
Rosenbrock method is always as efficient as its DIRK-IN counterpart and that the Calahan
method is more efficient than the two-stage DIRK-1N method. Hence it seemed appropriate to
compare only the two Rosenbrock methods. Also, because the one-stage method coupled with
cubic splines requires very small time steps in order that the spatial and temporal accuracy be
balanced, it was not considered in the detailed comparisons, so leaving three fully discrete
schemes, the one-stage Rosenbrock with quadratic splines and the Calahan method with quadratic
and cubic splines.

A standard way to compare the relative efficiency of various numerical techniques for one-
dimensional evolution equations is the following (cf. [32]). First a suitable measure of the error
is fixed; in our context this is the function E(T) given at the beginning of the section. Then an
approximate expression for E(T) as a function of k and h is needed. Qur tests assure that for
k and h small enough the error can be expressed to excellent approximation as

ET) = C\h + Gk, (4.2)

where C, and C, depend on the particular scheme used, on T, on the solution of (4.1) that is
being approximated, and on & and . It will be taken as valid that C, depends only on the degree
of splines used and not on the time-stepping method, and that C, depends on the time-stepping
scheme and not on the degree of splines used in the spatial approximation. This presumption
was checked in practice and found to hold to a high degree of approximation. By computing
the errors at T = 1 for various values of k and /1 and suitably extrapolating over several
experiments, the following values of C, and C, were determined.

C,=1010 ifr =3, C =16947 ifr = 4,

C, = 5467 ifp =12, C,=424073 ifp = 3.

These values proved to be quite robust for small values of & and 4. A second ingredient needed
to compare the efficiency of various schemes is a measure W of the work required to achieve
the error E(T). For this we took the number of multiplications that are required to obtain the
given error E(T), which to a good approximation is given by C;NJ, where J = T/k as before
and Cs is a constant that depends on the particular scheme under consideration, and whose
values are provided in Table 1. In the special case where T = 1.0, the work estimate is

W = C,/kh. 4.3)
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If the error E(T) is held at a fixed level, then it is a simple calculus problem to determine the
values of k and & that minimize the value of W as defined in (4.3). These optimal values, kop
and h,, say, are given by

3 E(T)r ' _{ E(Mp '
N co+pf S

The optimal values of k and &, when substituted into (4.3), determine a minimal value W,;, for
the work level required by each method of approximation to obtain the given error level. The
various numerical schemes may be compared at each error level on the basis of the associated
optimal work estimate W;,.

The three, fully discrete schemes were tested using the criteria, just explained, of computing
the optimal work estimates. The results for six different levels of error are presented in Table
6. The outcome is not surprising and may be summarized as follows.

() The second-order, one-stage Rosenbrock method with quadratic splines is competitive
only at low levels of accuracy.

(ii) At accuracies between 10~' and 107° the Calahan method with quadratic splines
appears to be the most efficient combination.

(iii) For higher accuracies the Calahan method with cubic splines holds the advantage.

(iv) The values of hy, and k,, in Table 6 all gave quite acceptable ratios of k/A. In the
first column, ko /hoy Tanged from 0.1 to 0.14, in the second column it was always
0.13, whilst in the third column it ranged from 0.13 to 0.05.

Considering the concatenation of approximations that underlies Table 6, it seemed appro-
priate to devise independent checks of its validity. We used the values of k,, and h,, determined
in Table 6 to actually compute an approximation to the solitary wave from T = 0.0to 7 =
1.0 and recorded the error. The values of k,, and &,, were then systematically perturbed whilst
holding their product constant, so that the associated value of W was fixed, and the solitary
wave again approximated up to 7 = 1.0 using the perturbed values of the parameters k and h.
In all the cases tested, the error associated to the perturbed values was larger than that obtained
using the theoretically determined optimal values. A typical example is recounted in Table 7,
which was constructed using the Calahan method with quadratic splines and E(T) = 107, The

Table 6. The values of Ay, &y, and W, respectively, for three, fully discrete schemes for six given levels of
error £(T) where T = 1.0 and the error is that generated by using the scheme to approximate the solitary-wave
solution (4.1) of the KdV equation.

Method
One -stage Rosenbrock Calahan with Calahan with
Error with quadratic splines quadratic splines cubic splines
level E(T)
-1 0.3409(-1) 0.3313(-2) | 0.3672(-1) 0.4904(-2) | 0.3988(-1) 0,5127(-2)
10 8.4x10° 7.5 x10° 1.14 x108
10-2 0.1582(-1) 0.61048(-2) 0.1704(-1) o0, §276(-2) 0.2243(-1) o, 2;380(-2)
5.7x10 3.4x10 4.4x10
10-3 0.7344(-2) 0.?313(-3) 0.7911(-2) O, ;056(-2) 0.1261(-1) 0. 17105(-2)
3.9x10 1,62x10 1.67x10
10-4 0.3409(-2) 0.1048(-3) | 0.3672(-2) 0.4904(-3) | 0.7091(~2) 0.5127(-3)
2,7x 108 7.51107 6.4x107
10-5 0.1582(-2) 0.:3 13(~49) | 0.1704(-2) oO. 5276(-3) 0.3988(-2) 0. 2:&)(-3)
1.8x10 3.5 %10 2,5 x10
10-6 0.7344(-3) 0111(:)48(-4 0.7911(-3) oO. ;056(-3) 0.2243(-2) 0. 18105(-3)
1.2x10 1.6x10 9.4x10
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Table 7. A check of an entry in Table 6. The error associated with several values of k and & using the Calahan
method with quadratic splines to integrate the solitary wave. Here T = 1.0 and E(T) = 1073.

N=1/h | IJ=1/k E(T) CPU secs
126 (opt) | 948 (opt) | 0.5798(~3) 345
150 796 0, 7731(-3) 340
100 1194 0,1161(~2) 333

last column reports the actual number of CPU seconds that the run required using the stated
values of k and A.

Experiments using the solitary-wave initial data were also performed over longer time
intervals from T = 0.0 to T = 5.0. The computed approximate solutions were compared in
several ways with the exact solution given in (4.1). In addition to the normalized L,-error E(T),
we kept track of amplitude, phase, and shape errors (cf. [23]). The shape error E" is defined
for each time stepn = 0, 1, . . ., J as follows. Fix n and consider the quantity

f' [ux, v — U"(x)]* dx
0

&) = , (4.5)

f u¥x, 0) dx
0

where u(x, T) is given in (4.1) and U" is the computed solution at the time step n. Let v* denote
the value of T near nk where £%(7) takes its minimum value. If U" resembles a solitary wave in
shape, it follows that 7* is well defined. Then E" = &*t*) measures by how far the computed
solution differs from the original solitary wave as regards its shape, as measured by the nor-
malized L, norm. The phase error P" at any time step n, 0 < n < J, is defined to be nk —
7*, It measures the error in the position at which the wave is located. The amplitude error A"
is defined to be (A — U, /A where A is as in (4.1) and U*%,,, is the maximum value of U"(x).

In our computer program the shape, phase, and amplitude errors were determined as follows.
The quantity £%(t) was minimized by finding a zero of its derivative using Newton’s method.

2.0

x1073

0.0

0.0 25 T 5.0

Fig. 1. The Ls-error E(¢) (curves 1, 2, and 3) and the shape error £ (curve 1', 2', and 3’) resulting from the

approximation over the time interval from T = 0.0 to T = 5.0 of a solitary-wave solution, as specified in

(4.1), of the KdV equation. Curves 1 and [’ were obtained using the DIRK-IN scheme with quadratic splines

and N = 128,/ = 15,200; curves 2 and 2' were obtained using the (1, 2)-Rosenbrock scheme with quadratic

splines and N = 128, J = 15,200; and curves 3 and 3’ were obtained using the Calahan method with cubic
splines and N = 192, J = 7,250.
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Taking 7, = nk, a sequence {7;}X_, is generated by

d
I E(r))
T .
'Tjﬂ:'l}—FE—'}:U,l,-u- 4.6)
d-r-"! E?-(.Tj)

Of course, up to a multiplicative constant,
d 1
7. §m) =2 f [utx, 7)) = U")Ju(x, ;) dx,
dr :

and this quantity is actually calculated using a Riemann sum with 1024 equidistant points
on [0, 1]. A similar remark applies to d%?*(t)/dt*. The iteration (4.6) is terminated when
|ti41 — 7| < 107! and T;,, is then declared to be 7*. The shape error E" is then computed
using the same subroutine that approximates the normalized L,-error E(T). Once 7* has been
approximately determined as 7;,,, then P" is given as nk — T,,,. The quantity U?%,, is simply
taken to be the maximum of U”", a number that is easily determined.

The two Rosenbrock methods and their DIRK-1N counterparts were compared first. The
normalized L,-errors and the shape errors for the one-stage versions of these methods with
quadratic splines are plotted versus time in Fig. 1 (curves 1 and 2). The plotted data was obtained
taking N = 128 and J = 15,200, corresponding therefore to A = 0.781 X 1072 and k =
0.329 x 1072, values that are very close to optimal for these methods to achieve E(1) = 1073,
The shape errors for both methods are practically identical and remain sensibly constant in time,
whereas the total L,-error appears to increase linearly with time. The DIRK-IN method has the
smaller L,-error of the two, with the difference between the two errors being some 11 percent
at 7 = 5.0. In Fig. 2 the phase errors for both methods are plotted for the same run. Both
techniques display linearly growing phase errors, and again the DIRK-1N method holds a small
advantage with the difference in the two errors reaching about 14 percent at T = 5.0. The
relative amplitude errors were not plotted as they were essentially identical for both methods
and remained very small, fluctuating in sign with a maximum value of about 0.8 X 1073,
The DIRK-IN method was slightly more expensive, requiring 0.285 CPU seconds per time
step compared with 0.270 CPU seconds for the one-stage Rosenbrock method. (The one-stage
DIRK-2N was also tried on the same time interval with results nearly identical to those obtained
with the one-stage DIRK-1N, but at a cost of 0.354 CPU seconds per time step.)

(©)
CY
(o)
e
4.0 @
@
00 I e ,
00 25 50

T

Fig. 2. The phase error P" resulting from the approximation over the time interval from7 = 0.0to T = 5.0

of a solitary-wave solution, as specified in (4.1), of the KdV equation. Curve 1 was obtained using the DIRK-

IN scheme with quadratic splines and N = 128, J = 15,200, curve 2 was obtained using the (1, 2)-Rosenbrock

scheme with quadratic splines and N = 128, J = 15,200; and curve 3 was obtained using the Calahan method
with cubic splines and N = 192, J = 7,250.
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The results for the two one-stage methods point to the interesting possibility that these
schemes may possess numerical solitary waves. That is, the numerical schemes themselves may
have exact discrete solutions that are travelling waves with a shape and a phase speed very near
to that of the solitary-wave solution of the KdV equation. This interpretation js consistent with
the constancy of the shape error. In this light, the linear growth of the relative L,-error is
attributable almost entirely to the small difference between the discrete and the continuous phase
speeds. Further support for this view is gleaned from the observation that the difference in the
Ly-errors between the one-stage DIRK-IN and Rosenbrock methods corresponds very closely
to the difference in their approximation to the phase speed of the solitary wave.

Turning to the two-stage, third-order time-stepping techniques with cubic splines, the
Calahan method was compared with its two-stage DIRK-1N counterpart in a run with N = 128
and J = 4700. With T = 5.0, this corresponds to £ = 1.06 X 1073 while » = 0.781 X 1072
as before. Unlike the situation that arose with one-stage methods, there was no practical dif-
ference in the various errors generated by the two methods. For example, at T = 5.0 the
difference between the normalized L,-errors was about 0.1 percent, the difference between the
shape errors was about 0.06 percent, the difference in the phase errors was about 0.07 percent,
and the relative amplitude errors were identical. For the present problem, the cost of the Calahan
method was some 0.366 CPU seconds per step as compared with 0.427 CPU seconds per step
for the two-stage, DIRK-1N method, and in consequence the latter method was excluded from
further consideration in longer-time experiments.

The stage was now set for a confrontation between the Calahan method with the one-stage
techniques. The Calahan method was run on our standard solitary wave to T = 5.0 with N =
192 and J = 7250, so h = 0.521 X 1072 and k = 0.69 x 1073, The ratio k/h for this
experiment was about 0.13, so approximately optimal at T = 1.0 for a normalized L,-error
level between 1073 and 107*. These particular values of k and h were chosen so that the total
processing time for this experiment, some 4.21 X 10* CPU seconds, was about the same as
the total processing time, 4.10 X 10° CPU seconds, for the one-stage Rosenbrock method in
the run described earlier and reported on in Figs. 1 and 2. The errors associated with the run
using the Calahan method are also recorded in Figs. 1 and 2 (curves 3). The relative L,-error
increases nearly linearly for T < 1.0, but then shows a superlinear growth, reaching 2.191 x
107* at T = 5.0, about twice the value generated by the one-stage Rosenbrock method. The
shape error showed a slow but definite linear growth throughout the time interval, overtaking
the constant shape error of the second-order methods at about T = 4.0. The phase error is
shown in Fig. 2. It is initially negative, but by time 5.0 is positive and about double that of
the one-stage Rosenbrock scheme. The relative amplitude error was small, but positive, reflecting
the dissipativity of the third-order scheme. It did not increase appreciably on this time interval,
and its maximum observed value was 1.2 x 107%

These comparisons afford several conclusions. First, the third-order schemes surely do not
possess numerical solitary waves, as the shape errors continue to grow. Secondly, while the
third-order Calahan method was superior to all other schemes tested over shorter time intervals,
the second-order schemes appear to be more efficient over longer intervals due to the linear
increase in their phase errors and their constant shape error. In some sense, the second-order
methods seem to capture important qualitative features of the overlying differential equation
not shared by the higher-order schemes, and in long runs this may be more important than
higher-order convergence rates.

This last remark may be amplified a little by consideration of how the first few integral
invariants of the KdV equation respond to the various numerical schemes. Considered here are

| | !
i 1= f u(x, t)dx, I, = f u¥x, r)ydx, andl/ly = f [i3(x, ) — 3 e ul(x, )] dx.
0 0 ]

1t is straightforward to verify that for smooth solutions of the KdV equation which are periodic
of period 1, /|, /,, and /; are independent of time (cf. [1]). It is also easy to see that all the
schemes considered herein preserve /, up to round-off error. Hence attention is restricted to the
variation of /, and /5. The schemes represented in Figs. | and 2 were used to approximate the
solitary-wave solution (4.1) of the KdV equation and the values of /, and /; corresponding to
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Table 8. The variation with time of the functionals /, and /, for the (1, 2) DIRK and Rosenbrock methods and
the Calahan method for the integrations reported in Figs. 1 and 2.

12 13

(1,2) methods| Calahan {1,2) methods | Calahan

t=0 | ,227440(-2) . 227440(~2) .310516(-3) |.310523(-3)
t=1| ,.227440(-2) . 227405(-2) .310516(-3) |.310444(-3)
t=5 | .227440(-2) | .227266(-2) .310516(-3) |.310128(-3)

this approximation were computed and recorded at various times. A typical sample of the
outcome of this experiment is provided in Table 8 where the values to six digits of /, and I
arerecordedatT = 0.0,7 = 1.0, and T = 5.0. The values of /, and /5 at T = 0.0 are obtained
from uj = Pu® rather than from u° itself.

The results obtained from these experiments are revealing. The two second-order schemes
were indistinguishable, and so are reported as a group. Both of the second-order methods
appeared to conserve /, and I, whereas these functionals suffered a small but steady decrease
when the third-order Calahan time-stepping was used (with either quadratic or cubic splines).
The existence and stability theory for solitary waves in a broad class of continuous systems
like the KdV equation relies upon a pair of conserved quantities analogous to 7, and I3 (cf.
[33]). Thus the results in Table 8 may be interpreted as further evidence that the second-order
numerical schemes considered here possess travelling-wave solutions analogous to solitary
waves, and that the more accurate Calahan method has long-term effects which are not reflections
of aspects of the partial differential equation, but instead reflect the numerical modeling.

We digress for a moment to discuss in more detail the work of Taha and Ablowitz[6].
They have provided a careful, comparative view of a wide range of techniques for approximating
solutions of the KdV equation. In one set of experiments, they took the equation in the form,

uw, + 6uu, + u,, =0, (4.7a)

with solitary-wave initial data,
u(x, 0) = A sech?(kx), (4.7b)
where A = 2k2. The solution of (4.4) is written explicitly as
ux, 1) = A sech’(kx — wt) 4.8)

where o = 4k°. For several values of A the solution of the initial-value problem (4.7) was
approximated over the time interval [0, 1] by eight different, uniform mesh, fully discrete
schemes (see [6, Tables I, II, and III]). The accuracy achieved was measured by the quantity,

e(t) = max {Ju,(x;, 1) — Ui},

where j = /At and U/ denotes the relevant discrete approximation to u, at the point (x, 1) =
(iAx, jAt). The error, e(1), was in each case specified to be at most a given value and At and
Ax were adjusted to yield about the smallest CPU time a particular scheme needed to achieve
this level of error. All the methods examined in [6] were coded in PL1 and run on an IBM
4341 computer using the optimizing compiler.T The best performances were obtained using a
local scheme proposed by Taha and Ablowitz, though the pseudo-spectral scheme of Fornberg
and Whitham[11] was also quite competitive (see, again, [6]).

It seemed appropriate to make a direct comparison of the results obtained by Taha and
Ablowitz with those obtainable with the schemes studied herein. At the time these comparisons
were made, we were working on an IBM 3081 instead of the IBM 3031 that was available

1The authors thank Professors Taha and Ablowitz for this information, and for several helpful discussions regarding
their work.
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during the rest of our study. In consequence, account must be taken of the differing machines
utilized in generating the respective approximate solutions. As both machines are standard
mainframe computers, and as the codes are both of the same numerically intense character, a
pretty accurate constant of proportionality is known to relate the speeds of execution on the
two machines. For the IBM 4341 used by Taha and Ablowitz versus the IBM 3081 used by us
in the present comparisons, this constant is about six.

Three cases are considered, namely, A = 1.0,A = 2.0, and A = 4.0 in (4.7b). We used
the Calahan method with quadratic splines to approximate (4.8) by integrating the initial-value
problem (4.7). Considering the relatively large errors that Taha and Ablowitz specified, this
choice seemed to be dictated by the results reported in Table 6. The outcome of our runs were
compared with the best results obtained in [6]. For A = 1.0 the best performance computed
on the IBM 4341 and reported in [6] was an error of 0.00173 at + = 1.0 in 7 CPU seconds.
Using N = 96 and J = 25, we obtained an error of 0.00178 on the IBM 3081 in 1.02 CPU
seconds, a time that corresponds to about 6 CPU seconds on the IBM 4341. For A = 2.0 the
best performance given in [6] was an error of 0.00332 at 1 = 1.0 which was obtained in 23
CPU seconds. Taking N = 144 and J = 45, an error of 0.00288 was obtained on the IBM
3081 in 2.81 CPU seconds, a time that corresponds to about 17 CPU seconds on the IBM 4341.
Finally, for A = 4.0 the error level e(1) achieved in [6] was 0.01747 in 140 CPU seconds on
the IBM 4341. We took N = 172 and J = 140 and found an error e(1) of 0.0171 at¢ = 1.0
in 10.2 CPU seconds, so corresponding to some 61 CPU seconds on an IBM 4341.

Thus it seems that even for relatively coarse calculations on comparatively small solutions
such as those reported in [6], the best of the schemes proposed here are competitive with others
in the literature. For larger amplitudes, or for smaller values of specified accuracy the trend
appears to favor our techniques, though the data available are too sparse to justify any categorical
conclusion in this direction.

5. DISCUSSION

A range of fully discrete, numerical techniques for the approximation of solutions of the
KdV equation has been implemented and tested, especially as regards stability, accuracy, and
efficiency. Because solutions of the KdV equation that are relevant to wave phenomena are
smooth, it was appropriate to consider Galerkin-type spatial approximations based on smooth
splines. The temporal discretizations used were diagonally-implicit Runge-Kutta methods and
Rosenbrock methods, mostly of second and third order. When these spatial and temporal
discretizations were combined, there resulted schemes that are stable and accurate even with
relatively large time steps. In addition to verifying these general attributes for each of the
competing schemes, optimal values of k and h required to achieve given error bounds were
determined. This latter information made it possible to give an accurate assessment of the
efficiency of the various schemes. In what follows in this Section, we summarize the substantive
conclusions derived from this study and present an interestng sample computation that relies
on the methods introduced heretofore.

If the aim is to approximate solutions of the initial-value problem (1.1) over a relatively
short period of time, our recommendation depends on the accuracy desired. If relatively low
accuracy suffices, then the Calahan method (a third-order Rosenbrock method) with quadratic
splines seems to be most efficient. If higher accuracy is desired, however, it is warranted to
shift to cubic splines whilst keeping the third-order Calahan time-stepping technique. The success
of the Calahan method is especially useful as regards the prospect of comparing the model’s
predictions with data collected in the laboratory or field, where the use of comparatively large
time steps is very convenient (cf. [34] and [22]).

For longer time spans our experiments indicate that the second-order accurate Rosenbrock
and Runge-Kutta methods, both of which may be thought of as nonlinear versions of the classical
Crank-Nicolson scheme, are preferable to the higher-order techniques, both as far as accuracy
is concerned, and as regards capturing the general structure of solutions of the KdV equation.
The latter point is especially potent when investigations into the asymptotic structure of solutions
for large time is in question.
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Fig. 3(a). + = 0.0. Fig. 3(b). 1 = 0.3.
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Fig. 3. The evolution under equation (5.1) with p = 4 and v = 0 of a sine-wave initial profile as seen via the
Calahan method with cubic splines and N = 1,024. The time step was adaptively determined. (a) ¢ = 0.0, (b)
t =03, (c)r = 0.31908, (d) r = 0.32511, (e) ¢t = 0.32594, (f) 1 = 0.32604.
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If interest is centered on some delicate, detailed aspect of a solution, whether or not it
manifests itself in a relatively short time, then the Calahan method with cubic splines is again
the superior choice among those considered herein. An example illustrating this remark will be
presented presently.

In a subsequent paper, issues of all the above types will be examined for the KdV equation
in the context of the general class of equations of the form,

u, + wu, — vu,, + u,, = 0, (5.1)

where v = 0 and p is a positive integer. It is worth note, therefore, that the conclusions of the
present study go over intact for the initial-value problem for equation (5.1), so providing a
basis for this forthcoming work.

In closing, the presentation of an example is perhaps merited in which a detailed study
such as that given here is useful. An issue that is mathematically rather interesting arises for
equation (5.1) with v = 0 and p = 4. The standard theory for the initial-value probiem of (5.1)
insures that there exists a unique smooth solution u corresponding to given, smooth initial data
u°, at least over some time interval [0, T%), where T* = T*(u% > 0 (cf. Kato[2]). If p < 4,
then 7* may be taken to be + o, because of certain a priori bounds that are available in this
case. However, the question of whether or not T* can be taken to be + in case p = 4 is
open, save for the case in which «° is sufficiently small in L,-norm (see Strauss[35]). In the
particular case p = 4, Weinstein[36] has characterized the singularity that must form if the
solution does indeed lose smoothness at some finite time. Deciding whether or not a solution
blows up in finite time is a rather delicate issue, both analytically and numerically, and so
following our own advice, this point was studied using the Calahan method with cubic splines.
In Fig. 3 we present the outcome of an example numerical experiment performed on (5.1) with
p = 4, v = 0, and smooth initial data. The singularity that apparently forms at about r =
0.326 required the higher accuracy scheme in order that it be properly resolved. In addition,
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as the spatial gradients grew, we found it necessary to refine k in order not to simply step over
the singularity. In the elucidation of this phenomenon, the preliminary study of the numerical
scheme as reported here was invaluable, both technically and as a means of generating confidence
in the outcome of the simulation. Other(numerical evidence points in the same direction as that
displayed in Fig. 3, and thereby it is tentatively concluded that solutions of the initial-value
problem (5.1) do not necessarily remain smooth for all time.
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