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Solitary internal waves in stratified fluids of finite depth are investigated. Using a
general criterion for the stability of travelling-wave solutions of one-dimensional
nonlinear long-wave models and ideas from the theory of totally positive
operators, the stability of the solitary-wave solutions of the intermediate
long-wave equation is demonstrated. In the process of carrying out this
programme of research, new general results are obtained that bear upon the
stability of solitary-wave solutions of a class of model equations of the
Korteweg—-de Vries type that govern approximately the evolution of small-
amplitude long waves.

1. Introduction

THE MATHEMATICALLY exact nonlinear stability theory of solitary-wave solutions of
model equations for long waves began with the appearance of Benjamin’s (1972)
paper on the Korteweg-de Vries and the regularized long-wave equations.
Benjamin’s theory, which was influenced by the old work of Boussinesq
(1872, 1877) and the modern ideas of Arnol’d (1965, 1966) has seen terrific
development and refinement in recent years. Not only have the proofs been
simplified and the basic result sharpened, but also the range of applicability has
broadened. The present paper contributes mainly to the second theme of
elucidation of Benjamin’s ideas by using the sharpest available set of abstract
conditions that are known to imply stability together with a novel argument that
relies upon the theory of totally positive operators to extend the class of model
equations which are known to possess stable solitary waves.

The original observations of a surface solitary wave in a channel by Scott-
Russell (1845) left little doubt about their stability and persistence. Similar
conclusions are warranted regarding internal solitary waves based on laboratory
observations (Walker, 1973) and to some extent various field studies (see Apel et
al., 1975; Farmer & Smith, 1978; Hunkins & Fliegel, 1973; Osborne & Burch,
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1980; Sandstrom & Elliott, 1984). Benjamin’s theory demonstrated this stability
unequivocally in the context of the Korteweg—de Vries equation that governs
approximately the propagation of the sort of small-amplitude long waves
observed by Scott-Russell. However, it has come to light recently in the work of
Bona et al. (1987) that solitary-wave solutions of certain model equations of the
Korteweg—de Vries type need not be stable. Moreover, in some instances,
numerical simulations indicate that the instability manifests itself by the forma-
tion of a singularity in the solution (Bona et al., 1986, 1989). Because the
alternative is known to occur, there is added interest in further studies regarding
stability.

The particular physical situation to which the results to be derived presently
apply is the propagation of internal waves in certain density-stratified fluids.
Consider an incompressible inviscid fluid trapped between two horizontal planes
lying a positive distance h apart. Let x and z denote the horizontal coordinates
and y the vertical coordinate in a standard Cartesian frame. At rest, the fluid is
supposed to possess a stable density stratification p = p(y) which depends only
upon the vertical coordinate. The effects of diffusion are ignored, this being a
sensibly accurate assumption on the time scales of the typical wave motions to be
considered. Because of the stratification, this system can support waves, and
interest will be focused on irrotational motions that propagate in the direction of
the positive x-axis and which are independent of the other horizontal coordinate
z. In this situation, the governing equations are the two-dimensional Euler
equations together with the stipulation that the vertical velocity component is
zero at the top and bottom boundaries.

In the configuration just described, solitary waves are known to exist under a
variety of reasonable assumptions about the underlying density distribution p,
and in both the case of a rigid upper boundary and where the upper boundary is
free (see Benjamin, 1966; Turner, 1981; Bona et al., 1983; Amick 1984; Amick &
Turner, 1986, 1989; Bona & Sachs, 1989).

However, a stability theory based on the Euler equations is not yet available,
even in this two-dimensional situation. Indeed, as remarked in Bona & Sachs
(1989: §6), the ideas that come to the fore in the present paper and its direct
precursors appear inadequate to treat the question of stability of solitary-wave
solutions of the Euler equations.

In certain special circumstances, the Euler equations may be simplified on the
basis of a rational approximation procedure, and model evolution equations
derived. These model equations also possess travelling-wave solutions that
approximate rather well a solitary-wave solution of the Euler equations in the
regime of the model’s formal validity. Depending upon the parameters of the
problem, the appropriate model equation may be the Korteweg—de Vries
equation (the KdV equation; see Benney, 1966), the Benjamin—-Ono equation
(the BO equation; see Benjamin, 1967), or one of the one-parameter family of
intermediate long-wave equations (the ILW equation; see Joseph, 1977, and
Kubota et al., 1978). A recounting of the parameter regimes that lead to the
various models may be found in Redekopp (1983). It is well understood that the
ILW equations converge formally to the KdV or BO equations in certain extreme
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limits. The mathematical theory showing that this is so is contained in Albert et
al. (1987) and Abdelouhab er al. (1989). The solitary-wave solutions of KdV are
known to be stable (Benjamin, 1972; Bona, 1975) as are those of the BO
equation (Bennett et al., 1983). Using these facts and their general theory of
stability of solitary waves, Albert et al. (1987) demonstrated that solitary-wave
solutions of the ILW equation are stable at least in the parameter range where
the ILW dispersion relation is close to that of the KdV equation or, alternatively,
close to that of the BO equation. This theory left unanswered the question of
whether or not solitary-wave solutions of all amplitudes for the entire range of
ILW equations are stable, though, considering the results in hand, it did seem
safe to so conjecture. It is our purpose here to settle this issue.

The plan of the paper is as follows. The next section is devoted briefly to
describing the notation that will be in force and to making a few preliminary
remarks regarding general properties of equations such as the ILW evolution
equations. In Section 3, we recall the existing theory of necessary conditions for
stability of solitary waves. Section 4 is devoted to reducing most of the necessary
conditions for stability specified by the theory to forms which are easily verified in
the case of solitary-wave solutions of the ILW equation. In the process, methods
from the theory of total positivity are brought to bear (see Karlin, 1964, 1968).
This sets the stage for the verification of the conditions for stability in Section 5,
thus leading to the principal conclusion of the paper. The Appendix contains
some commentary on technical issues arising in Section 3.

2. Notation and preliminary remarks

The notation in force throughout the paper will be that which is currently
standard in the theory of partial differential equations. In general, if % is any
Banach space, the norm on % will be denoted || « ||, and, if 9 is also a Hilbert
space, the inner product of two elements f,g € B will be denoted (f,g)s.
However, for Q2 an open subset of Euclidean space, the norm in the L,-based
Sobolev space H*(€Q) will be abbreviated to simply || « ||,. Similarly, the norm on
the standard space L,(£2) will be written |+|,. Note that L,(£) has two
abbreviated notations in this scheme. (Usually, the underlying spatial domain to
which these function classes are referred is the real line R. When no specification
is made, £ =R will be understood.) The inner product in L,(£2) of two functions
f and g is written unadorned as (f, g).

The equations considered in this paper are of the form

U+ uy + (f()x — (Mu), =0, 2.1)
where f : R— R and M is defined as a Fourier multiplier operator by
(Mg)(k) = a(k)g(k)
for all keR. (Here and in the sequel, circumflexes will be used to indicate

Fourier transforms.) The symbol a(k) of M is assumed to be a measurable
function satisfying the conditions

a |k|™ < a(k) <b(1 + |k|)™ 2.2)
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for all ke R, where 1=<m,<m, and a,b >0. For simplicity, it is assumed the
function f lies in C*(R), though the theory developed below is easily adapted to
the situation where f has finite regularity. In case m, =1, we follow Bona ¢t al.
(1987) and make the additional assumption that f and its first two derivatives
grow at most like a polynomial at infinity. That is to say, there exists r e R such
that |f(x)| < (1 +|x|) for all x € R, with similar estimates holding for f’ and f".
Without loss of generality, it may be presumed that £(0) = f'(0) =0.

Primary interest will be attached to the pure initial-value problem in which a
solution u =u(x, t) of (2.1) is sought for (x,f) e R x [0, T] such that it has a
specified initial value u(e, 0) = u,. Here, the parameter T is positive, and, if u
extends as a solution of (2.1) to arbitrarily large values of ¢, we say it is a global
solution. Otherwise, we refer to the solution as local.

In discussing the properties of equation (2.1), the linear space & composed of
those g € L, for which

liglle= ( fw [1+ a(k)]18(k)|? dk)i < 4o

arises naturally. Its dual &* may be realized as the space of all tempered
distributions V' whose Fourier transform V is given by a measurable function for

HiEH
([ PR N
“V””*‘(f_wua(k)dk) &

The pairing between & and &* will find use below; if f € £ and V € Z*, then we
will write (V, f) for V(f). Notice that, if V happens to be given by an L, function
g, then, as follows immediately from the concrete representation of Z*
mentioned above and Plancherel’s theorem, (f, g) = (f, g), the L, inner product.

The local well-posedness of the initial-value problem for various forms of (2.1)
has been studied by Kato (1983), Iorio (1986), and Abdelouhab et al. (1989). For
the purposes of this paper, the following result will suffice.

THEOREM 1 Suppose s >3, let M be as described above with (2.2) in force, and
assume that f lies in the Holder space C°*Y(R). For each u,e W, there exists
T* >0 depending only on ||ug||, such that (2.1) has a unique solution u in
C([0, T*); H*) with u(e, 0)=u,. For any T < T*, the map that associates to u,
in H* the unique solution u in C ([0, T1; H*) is continuous. For all T <T* and j
such that s — j(my+ 1) > —3 — m,, it follows that 3}u lies in C([0, T]; H*~/t"2*D),
Moreover, for T <T¥*, the map that associates the solution u to the initial data u,
is continuous from H' to N,;C([0, T]; H*~/"*Y)  where the intersection is taken
over those j for which s — j(m, + 1)> — 3 — m,.

Remark. In many special circumstances the initial-value problem for (2.1) is
globally well-posed, meaning that for each u, one may choose T* = +. A defini-
tive theory for when this is so is not yet available, but the papers of Kato (1983)
and Albert et al. (1988) contain suggested sufficient conditions, which the numer-
ical simulations of Bona et al. (1986) indicate are sharp.
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3. Sufficient conditions for stability

In this section, conditions are introduced that imply the stability of solitary-
wave solutions of the model equation (2.1). These will be used in Sections 4 and 5
to prove stability of solitary-wave solutions of the ILW equation. The material in
this section is not new, having appeared in various forms in the works of several
authors (see Weinstein, 1983, 1985, 1986; Albert et al., 1987; Bona et al., 1987,
Grillakis et al., 1987). Consequently, the present discussion will be limited to
stating a convenient form for the basic stability theorem and providing some
commentary on the proof.

To begin, define a solitary-wave solution of (2.1) to be a travelling wave of the
form u(x, t) = ¢(x — Ct), where @ € Z, the constant C is a positive real number
larger than one, and the solitary-wave profile ¢ = ¢¢ is then a solution of the
equation

Mo’ +[(C-1) - f'(p)]¢' =0. (3.1a)
Integrating (3.1a) once, and imposing zero boundary conditions at infinity, we
see that @ also satisfies the equation

M +(C-1o—f(p)=0. (3.1b)
Originally, one interprets (3.1) to hold in the sense of distributions, but provided
f is a C” function, a simple bootstrap argument shows that, if ¢ e & is a
distributional solution of (3.1b), then in fact ¢ € H* (¢ and all its derivatives lie
in L,) and so ¢ is a classical solution of (3.1). Even if f has finite regularity, say
f € C* where k =1, we can still infer that @ lies at least in H™*,

It is typically the case, and will be assumed here, that (3.1) has a solution
@ = @ for each value of C>1 and that the correspondence C+ ¢ is a C' map
from (1,) into L,. (The latter assumption is not strictly necessary in what
follows, but it is quite convenient and appears to obtain in many interesting
cases.) For general results on the existence of solutions of (3.1), the reader may
consult Weinstein (1987) or Benjamin et al. (1990).

In studying the stability of a solitary wave @ = @, one considers the associated
linear operator L defined by

Lg(x) = Mg(x) + [(C — 1) — f'(p(x))Jg (x). (3.2)
As explained in Albert et al. (1987: Prop. 1), L is a self-adjoint unbounded
operator on L, whose continuous spectrum is the interval [(C — 1), «), and the
remainder of its spectrum is a finite number of isolated eigenvalues located on the
real axis to the left of C — 1. In particular, (3.1a) shows that zero is an eigenvalue
of L with eigenfunction ¢’.
For any r e R and any function whose domain is R, define 7,(¢) to be the
translation of @ by r, namely,

T,@(x) = @(x +7).
Following Bona et al. (1987), for any n >0, define the set %, by

U={y:iye® and infly—Tgls<n).
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Then g is said to be a stable solitary wave if, for any £ >0, there exists a 6 >0
and an s >3 such that, for u,e U, N H’, the solution u of (2.1) with u(x, 0) = u,
is global and satisfies u(e, t) € U, for all ¢t > 0.

TaeoreM 2 Fix Co>1 and suppose that @ = @, is a solitary-wave solution of
(2.1) possessing the following properties:

(P1) L has a simple negative eigenvalue A;

(P2) L has no negative eigenvalue other than A;
(P3) the eigenvalue 0 of L is simple;

(P4) (d/dC)(J=. (¢c)*dx) >0 at C = C,.

Suppose also that, for some s >3, the initial-value problem

wtu +fu),—Mu =0 forxeR,t=0
u(x, 0) = ug(x) forx e R

is globally well-posed in the sense of Theorem 1, at least for initial data u, lying
simultaneously in H' and in some neighbourhood in & of @. Then ¢ is stable.

Remarks. A commentary on the proof of Theorem 2 is provided in the
Appendix. The conclusion of Theorem 2 remains valid if (P4) is replaced by the
condition

(P4") for any y € &, if Ly = ¢, then (y, p) <0.

A simple computation that involves differentiating equation (3.1) with respect to
the variable C shows that conditions (P3) and (P4) together imply (P4").
Condition (P4') is of interest in a situation where one does not have a family of
solitary waves {@c} depending smoothly on C.

The notion of stability enunciated above entails that solutions of (2.1) which
are global in time emanate from initial data sufficiently near to the stable solitary
wave in question. While this property has been assumed in the statement of
Theorem 2, it is often the case that local existence theories such as that
mentioned in Theorem 1 can be applied iteratively to extend interesting classes of
solutions smoothly to arbitrarily large times by use of additional a priori bounds,
thus providing a global existence theory. Even in the event that such bounds are
not available with respect to solutions corresponding to general initial data, the
stability theory itself may provide them for solutions that initially resemble a
solitary wave. An example wherein exactly this situation obtains is for the
Boussinesg-type equations studied by Bona & Sachs (1988).

In the next section, attention is given to providing easily verifiable conditions
that imply the hypotheses of Theorem 2.

4. Spectral analysis of the operator L

In practice, it may be quite difficult to determine explicitly the spectrum of the
operator L associated with a given solitary wave @. Therefore it is desirable to
find general conditions on @, M, and f which imply that the conditions in the
hypotheses of Theorem 2 are satisfied. In Albert et al. (1987), it was shown that
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property (P1) is a consequence of positivity conditions on the operator M and the
solitary wave @. This result is restated below as Theorem 3. The main result of
this section is Theorem 4, which shows that property (P3) is a consequence of a
‘second-order’ positivity condition on the solitary wave ¢ to be spelled out
presently.

For any p>0, define the function K,(x) by the formula (K,)(k)=[u+
a(k)]". Notice that, as a consequence of the assumption a(k)=a |k|™ with
m; =1, the function K,(x) is well-defined in L,.

THEOREM 3 Suppose K, (x)>0 for all p>0 and x € R, and suppose @(x)>0
for x e R. Then property (P1) holds for L.

Next, for a given solitary-wave solution ¢ € & satisfying (3.1), define a function
K(x) by

K@ =5 [ (o) d.

As noted in Section 3, @ is in H” and hence ¢ € L... Because f € C* and f'(0) =0,
one can infer the existence of a constant A such that |f'(p(x))| <A |@(x)| for all
x € R. It follows that f'(¢) € L,, and so K(x) is well-defined as a function in L.

In the remainder of this section, ¥ = (x;, x,) and y = (y,, y,) will be used to
denote elements of R% Let A= {¥ € R?:x, <x,}, and define K,(%, ) for £,5 € A
by

Ky(%, 7) = K(x1 — y1)K(x3 — y2) — K(x1 — ) K(x2 — yy).

THEOREM 4 Suppose that « and @ are even functions, that

(1) K(x)>0 and §(x)>0 for all x e R, and that
(ii) Ky(x, §) >0 for all X,y € A.

Then property (P3) holds for L.

Remark. 1t is also true that the conclusion of Theorem 4 holds if (ii) is replaced
by the weaker condition

(ii’) {Kz(’f’ =G o e
K%, y)>0 ifx,ye A, x,>y, and x, <y,.
This fact would be useful in applying Theorem 4 to the Benjamin-Ono solitary
wave, say, for which (ii') holds but (ii) does not.
Proof. 1t is required to show that the equation
Mh+(C—Dh—f'(p)h=0 4.1)

has a one-dimensional solution space in L,. After application of the Fourier
transform and division by the function m(x)= a(x)+ (C —1) (where x now
represents the variable in Fourier transform space), equation (4.1) may be
rewritten in the form

fw G(x, y)g(y) dy =g(x),
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where g(x)=h(x) and G(x, y)=K(x — y)/m(x). Therefore our goal may be
restated as showing that A =1 is a simple eigenvalue for the operator S acting on
L, defined by

s50)= | G ) .

To study the spectrum of S, use will be made of the theory of totally positive
operators which was developed for precisely this sort of purpose by Gantmacher
& Krein (1960) and Karlin (1964). Of crucial importance will be the operator S,
defined on L,(A) by

s#()= [[ 65, 7)) 0,
where 4
= =\ _ _K2(-f: )7)
oD me)

and K is as defined earlier. The key identity relating the operators S and S, is
stated in the following lemma, whose proof is elementary.

Lemma 5 For any two functions fi,f, € Ly(R), define f; A f, on L,(A) by

(i A L) (x5 x2) = filx Dfa(x2) — fi(x2)fa(x1).
Then

S:fi Af2) = Sh A Sh.

The spectral analysis of S and S, necessary to complete the proof of Theorem
4 is presented in the next four lemmas. Define the Hilbert space %" to be the set
of all functions g € L,(R) for which

. p
It = (| leG)Pme) dx) <oo
with the inner product
@ o= | _g@h(m) ax,

and let Z be the corresponding Hilbert space of functions g € L,(A) such that

lelle = ([ [ 1eGeFmeeme az) <o

with the inner product

@ 1 = [ [ EmCEImEem(cs) as.

a

LeMMA 6 Suppose g € Ly(R) is an eigenfunction of S for a nonzero eigenvalue y.
Then the function g lies in W and g(x) is a continuous function of x € R.
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Proof. 1t will be shown that Sg is continuous and that S%g = S(Sg) € #'; since
g=(1/y)Sg = (1/y*)S?, this will suffice to prove the lemma. For brevity of
notation, let u(x) = 1/m(x). One then has

1S8()- 85I < 16661~ G’ gl dy
B 3
<(|1KG-yue) - K6 =GP @) gl

<[ ([ 1K)~ )P ay) + ) K1l

and the expression on the right-hand side of this inequality tends to zero as
x—x’', thus demonstratmg that Sg(x) is continuous.

The proof that ||S%g|l4 is finite, although somewhat complicated by the
relatively weak decay to zero of u(x) as |x|— o, nevertheless proceeds by
straightforward applications of Minkowski’s integral inequality, Holder’s ine-
quality, and Young’s convolution inequality. The following sequence of estimates
establishes the desired result.

15% Il =

* —Z2)u(*)K(z — w)u(z)g(w) dw dz
B L L IK(* — z)u(*)llwK(z — w)u(z) lg(w)| dw dz

= f f (f [K(y = 2)Pu(y) dy)i K(z — w)u(z) [g(w)| dw dz
= [ ([ sk - wucz)idz) lsom e,

<[ (K2l 1G0T 19 )]
<|K2*pld lud)} |K?* pilk (gl
<Ky lulbludl} 1} Igl,

Since |u(y)|<b(1+|y|)"' for some b>0, all the quantities in the final
expression of the preceding inequality are finite. O

LemMA 7 The restriction of S to ‘W' is a compact self -adjoint operator on ‘W and
the restriction of S, to % is a compact self -adjoint operator on %.

Proof. If W is viewed as the weighted L, space L,(dv(x)), where dv(x) is the
positive measure on R given by dv(x) =m(x) dx, then the action of S on an
element g of % may be expressed as

ss)= [ SEDenay=[ G e avin,

m(x)
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where G(x, y) = K(x — y)/[m(x)m(y)] satisfies G(x, y) = G(y, x). The assertions
of the lemma concerning S will then follow immediately from the theory of
Hilbert—Schmidt operators once it is shown that G(x, y) € L,(dv x dv), a fact that
follows at once from the inequality

00
o0

f:o J: [Gx, Y dv(x)dv(y) = [; (f_ K*(x — y)u(y) dy)y(x) dx

= [ & w @) dr <K
<K Julz <o

A similar estimate shows S, to be a Hilbert—Schmidt operator on %. The
lemma is thus established. O

A consequence of Lemma 6 is that, to prove Theorem 4, it suffices to show that
A =11s a simple eigenvalue for S viewed as an operator on %". Therefore, in the
spectral analysis of S that follows, the space upon which S will be considered to
act will always be %#. By Lemma 7 and the spectral theorem for compact
self-adjoint operators on a Hilbert space, % has an orthonormal basis {;}i—,
consisting of eigenvectors for S which correspond to real eigenvalues {A,;}i—,
whose only possible accumulation point is zero. We number the eigenvalues of S
(which are not necessarily distinct) in such a way that |Ag| = |4, = |A,| = -+ =0.
Similarly, we denote the eigenvalues of S, acting on & by {u;}i~,, where
|ttol = {uy| =+ =0.

The next two lemmas form the backbone of the theory of totally positive
operators. Their statement and proof appear in Karlin (1964) in a somewhat
different context. The proofs provided here are for the reader’s convenience, and
take account of the simplification available due to the self-adjointness of the
operators in question.

LemMma 8 (a) The eigenvalue A, of S is positive, simple, and has a strictly positive
eigenfunction (x). Furthermore, we have |A|<Ay. Let My be the one-
dimensional subspace of W spanned by ,. Then there exists a projection P of ‘W'
onto My such that S = A\P + Q, where the spectral radius of Q is |A,|. In addition,
one has Ag"S"™ — P as n— «, in the strong operator topology.

(b) The statements in part (a) are all valid if S is replaced by S,, the eigenvalues
Ao and A, are replaced by u, and p,, and P, My, and Q are replaced by the
appropriate operators and subspaces of Z.

Proof. The eigenvalue A, of S having the largest absolute value is determined by
the elementary formula

A= £ sup [(Sg, g)wl.
lighw=1

Let 9 be any eigenfunction of S corresponding to the eigenvalue A, and suppose
llY|lw =1. By Lemma 7, v is continuous, and so, because the kernel G of S is
everywhere positive, if 1 takes both positive and negative values, then S(|y|) >
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|S(¥)| = |Ag| |3]. But then (S(|y|), |¥|) > |Aol, a contradiction. Thus, we may
take it that any eigenfunction y associated to the eigenvalue A, is one-signed, and
in particular that there is an eigenfunction 1y, which is nonnegative. But since
Moo= S(1y), it follows first that A,>0, and then that y,(x) >0 for all x e R.
Such a , cannot be orthogonal to any nontrivial one-signed function in %", and
S0 Ag is a simple eigenvalue. Notice that the preceding argument shows also that
—Ap cannot be an eigenvalue of S, and it therefore follows that |4, < A,.

The decomposition of S into the form S = A,P + Q, where P is the orthogonal
projection on f,, PQ = QP =0, and spectrum (Q) = spectrum (P) — {A¢}, is a
standard result from the spectral theory of self-adjoint operators (see Kato, 1984:
Chap. V.3.5). In the present case, the spectral radius of Q, being the supremum
of the absolute values of the numbers in the spectrum of Q, is |A4|, which is
strictly less than Aq. In consequence of this observation, it follows that

'(_‘—A"P)"..+ g Q: < lim |11n|"=
] AO n—o Aro

where triple bars have been used to represent the strong norm on the space of

bounded operators on #’. This completes the proof of the assertions in part (a) of

the lemma. Since the arguments given in the above proof clearly apply just as
well to S, as to S, there is no need to say more concerning part (b). O

= lim

n—x

— P||| = lim

n—o

lim

n—so

0,

Sn
2 _p
%57

-

LemMMA 9 In the notation introduced prior to the statement of Lemma 8, the
identity po= Ay, holds.

Proof. Notice that A¢A; is an eigenvalue of S, with eigenfunction g A 9;.
Hence, by Lemma 8(b), to prove Lemma 9 it suffices to show that |AgA,| = u,.
Suppose to the contrary that |A,| <(uo/Ag). Let P be as in Lemma 8 and write
W = My@ N, where My=range P =span {vy,} and & =ker P. Notice that the
restriction of S to N has spectral radius |A,]. Let f; and f, be arbitrary elements of
W, and write f, = mYo+ w1, fo=NYe+ w,, where 1,7, €R and w,,w, € N.
Then we find that, for any positive integer »n,

(S2/ 1o)" (i A ) (31, %2) = N[ @o(x1)(S/ B) Wa2(x2) — @o(x2)(S/B) 2(x1)]
+ N[ Po(x2)(S/B) Y1(x1) — @olx1)(S/B) " P1(x,)]
+(S/20)" Y1(x1)(S/ BY " ¥2(x2)
— (S/20)" P1(x2)(S/B) " Po(x1),

where B = (uo/Ag) > |A,|. Since (S/Ay)" converges strongly as n— %, and § is
strictly greater than the spectral radius of the restriction of S to W, each term on
the right-hand side of the preceding equality tends to zero as n— . But the set
of all f A f, with f;,, € W is dense in Z, and so the preceding computation shows
that (S,/p)"g—0 as n— » for any g € Z. This then contradicts Lemma 8(b),
which asserts that (S,/u,)" converges strongly to a nonzero projection operator.
The proof of the lemma is therefore complete. O

The next step in the proof of Theorem 4 is to show that the eigenvalue A, of S
is simple. Let 9, be an eigenfunction for A,, and write ¥, = y$ + ¢, where ¥§
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and 3 are the even and odd parts of v, (that is, Y$(x) = 3[¥,(x) + ¥,(—x)] and
Y3(x) = 3[¥.(x) — ¥:1(—x)]). Both ¥$ and y? are also eigenfunctions for A, as
follows from the fact that S maps even functions to even functions and odd
functions to odd functions in %". Furthermore, ] A ¥, is an eigenfunction of S,
with eigenvalue A;Ao= po. Hence, by Lemma 8(b), ¥ A v, is either identically
zero on A or does not vanish at all on A. Since (YiA YPo)(xy, x,)=
Y0 Polx2) — Yi(x2)Wo(x;) for x; <x,, it follows that, if y{#0 on R, then y$
can have at most one zero on R. Then, since ] is even and continuous (by
Lemma 6), this implies that either 1] =0 or else y§ does not vanish on R except
possibly at zero, and in any case it would then be of one sign everywhere else.
But the latter possibility is excluded by the fact that yi and v, being
eigenfunctions of S for distinct eigenvalues, must satisfy (Y3, Yo)w =0.
Therefore, y§=0, and so vy, is odd. Again, applying Lemma 8(b) to the
eigenfunction 3, A ¥, for the eigenvalue u,= A¢4,, one concludes that ¥, can
have at most one zero, and since 1, is odd, this zero must be at the origin.

The function ¥, in the preceding paragraph was an arbitrary eigenfunction for
A,, and consequently what has actually been shown is that any eigenfunction for
A, must be an odd function which vanishes only at x =0. But, clearly, no two
such functions can be orthogonal in %". Therefore A, must be a simple eigenvalue
of S.

To complete the proof of Theorem 4, then, it remains only to show that A, = 1.
Now equation (3.1) shows that ¢’ is an eigenfunction of L for the eigenvalue 0,
and so @' is an eigenfunction of S for the eigenvalue 1. But § is, by assumption,
a positive even function on R, and therefore ¢'(x) = —ix@(x) is an odd function on
R which vanishes only at x =0. Since v, is also odd and vanishes only at x =0,
we must have (¥, ¢')y #0. It follows that i, and ¢’ cannot be eigenfunctions
of S for distinct eigenvalues. This proves that A; must equal 1. O

The final result of this section is a lemma which is useful for verifying condition
(ii) of the preceding theorem. It is an instance of more general results detailed by
Karlin (1968).

LemMA 10 Suppose K is twice differentiable on R and satisfies K(x) >0 for x e R
and (d*/dx?) [log K(x)) <O for x #0. Then K,(%, 7) >0 for all %,7 € A.

Proof. The hypotheses imply that K'(x)/K(x) is strictly decreasing on R.
Supposing % = (x4, x,) and = (y,, y,) are in A, then, for any x € R, we have

K'(x —y1) <K'(x — )

K(x—y) K&x-y)
The mean-value theorem applied with respect to the variable x allows us to
conclude that

K(x; — y1)K(x2— y2) — K(x1 — y2)K(x2 — 1)
= K(x; — y1)K(x2— y1) (

4.2)

K(xz— y2) ' K(x, _)'2))
K(xa—y) K(xi—y)

= K =K== g (5 =22)

x=n
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K(n—y)K'(n—y,) — K(n—y,)K'(n “,V1)}
[K(n —y)F

for some 7 with x; < 7 <x,. But the term in braces is positive by (4.2), and so the
lemma is established. 0O

= K(x; = y1)K(xy — y2)(x2 — xl){

5. The ILW equation

The theory developed in the preceding two sections will now be applied to the
ILW equation

u, + u, +uu, — (Mu), =0, 5.1)

where f(u) = 3u? and M is the Fourier multiplier operator with symbol

w(k) = ay(k) = k cothkH — I%I ,

with H >0 a fixed constant. Equation (5.1) is derived, for example, by Kubota et
al. (1978) as a model equation for long weakly nonlinear internal gravity waves in
a stratified fluid of finite depth. The parameter H, which is related to the depth of
the fluid, is allowed to take any positive value, so that (5.1) actually represents a
one-parameter family of equations.

Joseph (1977) found that, for any C>1 and H >0, equation (5.1) has the
solitary-wave solution u(x, t) = ¢(x — Ct), where ¢ is given by

b
cosh? ay + (b*/16a*) sinh* ay

@(y)= (5.2)
Here a € (0, n/2H) and b € (0, ) are determined uniquely in terms of C and H
by the equations

aH

1- =+ aHtanaH =(C—1)H, aHtanaH =}bH. (5.3)

tana

The goal of this section is a proof of the stability of Joseph’s solitary waves for
all values of C>1 and H > 0. Of the four conditions which must be verified in
order to prove stability using Theorem 2, (P1) and (P3) yield easily to the
techniques of Section 4, while (P4) is verified by an elementary computation. The
remaining condition (P2) will be handled by perturbation theory as in Albert et
al. (1987), together with a continuity argument.

It is appropriate here to mention an alternative method, due to Weinstein (1987),
for verifying that solitary waves satisfy condition (P2). Weinstein shows that (P2)
holds for those solitary-wave solutions of (2.1) which are minimizers of a certain
nonlinear functional on Z. Unfortunately, there is a technical difficulty involved
in applying this elegant approach to the problem under discussion here. Briefly
put, the difficulty arises from the fact that it has not yet been proved that the
solitary-wave solutions of ILW which minimize Weinstein’s functional are the
same as those given by Joseph’s explicit formulae (5.2) and (5.3), although the
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available evidence certainly suggests that this is in fact the case. While the
technique used below for verifying (P2) is special to the ILW equation, it does
have the advantage of circumventing this difficulty.

TreorEM 11  For any C>1 and H >0, the solitary wave defined in (5.2) & (5.3)
is stable as defined before the statement of Theorem 2.

Remark. The well-posedness properties of ILW are studied in Abdelouhab ef al.
(1989), where it is shown that the quantity T* defined in Theorem 1 is equal to
infinity for all initial data that lies in H® for s > 3.

Proof. It suffices to show that conditions (P1)-(P4) of Theorem 2 are satisfied for
the operator L associated with the solitary wave (5.2). As was observed in Albert
et al. (1987), a change of variables shows that (P1)—(P4) hold for L with b = b,
and H=H, if and only if they hold with b=b, and H=H, whenever
boH, = b, H,. Therefore, it suffices to verify (P1)—(P4) for a fixed value of b, with
H allowed to take arbitrary positive values. For convenience, choose b =4, in
which case (5.2) may be rewritten as

e(y)= L8 ( ! ) , (5.4)

a*-+1 \cosh 2ay + cos &
where
a’—1
5=
S0=

and 9 lies in the range (0, 7).

Property (P1) is verified for ILW solitary waves by application of Theorem 4.
The inequality K, (x) >0 for all 4 >0 and x e R was shown to be valid for the
ILW equation in Albert et al. (1987: p. 364), using a residue calculation.

To prove property (P3) holds, one uses Theorem 4. From (5.4) and a table of
Fourier transforms, it is found that

[ 4 1 \ sinh (6x/2a)
K(x)= ()= <a2 + 1><sin 6) sinh (7ux/2a)’

Thus K(x) >0 for x € R, and it is readily verified that (d*/dx?) [log K(x)] <0 for
x #0. The validity of (P3) then follows from Theorem 4 and Lemma 10.
To verify property (P2), let & be the set given by

€={w>0:(P2) is false for H=w and b =4}.

It is intended to show that the assumption % # J leads to a contradiction.

Assume €#(J, so that wo=inf & exists. As shown in Albert et al. (1987) by
use of the perturbation theory of operators, (P2) holds for all sufficiently small
values of the quantity bH. Therefore w,> 0. For any w >0, let ¢,, be the solitary
wave given by (5.4) & (5.3) with b =4 and H = w, and let L,, denote the operator
associated with @, as in (3.2). By definition of w,, there exists a sequence {w;}7,
converging to w, from above and eigenvalues «; of L, such that a;€(4;,0),
where 4, is the least eigenvalue of L,,.

As explained in Albert et al. (1987), the spectrum O(L,) of L, depends
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continuously on w, in the following sense. Fix w = & and let I be any contour in
the complex plane, disjoint from O(Lz;) and surrounding a set of eigenvalues of
L with total multiplicity m. Then, for w sufficiently near to @, the contour I
also surrounds a set of eigenvalues of L, with total multiplicity m.

In particular, if A is the least eigenvalue of L,, then A,— A, as i—> .
Therefore, by passing to a subsequence if necessary, one may assume that there
exists aq € [Ag , 0] such that o;— a,.

It will now be argued that each of the three possibilities aq= 4y, ay=0, and
&g € (A9 , 0) leads to a contradiction. If ay = Ay, draw a contour I'in C such that 4,
is the only eigenvalue of L, enclosed by I'. Since A, is simple, it follows that
when i is large, L,, has only one (simple) eigenvalue enclosed by I'. But this
contradicts the fact that both A; and «; are enclosed by I for large values of i. For
a, =0, a contradiction may be reached by the same argument. (Notice that, at
this stage of the proof, crucial use is made of the fact, established above, that
(P3) holds for L, for all @ >0.)

Finally, if 4y < a9 <0, draw a contour I; enclosing only the eigenvalue A, of L,
and a contour I, enclosing only the eigenvalue oy of L, so that I and I have
disjoint interiors and do not intersect the nonnegative real axis. Since O(L,)
varies continuously, there exists a value of w less than w, for which I and I; each
enclose a (negative) eigenvalue of L,. But then w e &, contradicting the
definition of w,.

These contradictions show that & =(J necessarily, and hence (P2) is seen to
be true for b =4 and all H>0.

To complete the proof of the theorem, it remains only to show that (P4) holds
for all C>1 and H>0. As remarked above, it is sufficient to show that (P4)
holds for a fixed value of H and arbitrary values of C > 1.

Setting H =1, one sees from (5.3) that a ranges from 0 to in as C ranges from
1 to », and that

d_C _4a—sinda
da  (sin2a)?
for all a > 0. By the chain rule,

([ e ax) =g ([ ot os) &

and thus it suffices to check that the left-hand side of the last equation is positive
for all a € (0, 3m).
From (5.3), we have b = 4a tan a, and so (5.2) gives

4datana
cosh? ax + tan® @ sinh® ax

@clx) =

An explicit integration then shows that

d /= , ) d [ ( 2a )] 16 ( . ) 2)
& _ 9 T 6al1— _ X B
da (L,, Pclx) dx da 6a sin® 2a — 2a sin 4a + 4a?) ,

tan 2a sin®a
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which is positive for all a >0. Thus (P4) is verified, and the proof of Theorem 11
is complete. O
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Appendix

In this Appendix, we return to Theorem 2 and its proof. Proofs of the
assertions in Theorem 2 (and in the accompanying Remark) may be found in the
papers of Weinstein (1983, 1985, 1986). A concise proof using a somewhat
different approach may be found in Section 5 of Bona et al. (1987). However,
there is a step missing in the exposition contained therein, and the opportunity is
taken here to repair this omission.

In Lemma 5.1 of Bona et al. (1987), it is shown that, if y € Z is nonzero and
satisfies (y, ¢) =(y, ') =0, then (under the assumptions of Theorem 2 above)
one has (Ly, y) >0 where (V, f) denotes the £* — & pairing mentioned earlier.
However, the proof of Theorem 2 given in the last-quoted reference actually requires
a somewhat stronger result, which is stated and proved now.

Lemma  Suppose properties (P1)—(P4) (or (P4')) hold for ¢. Let n be defined by
n=inf {{Ly,y) :y € X, (y, ®)=(y, ) =0, and (y, y)=1}.

Then the constant 1 is strictly positive.

Proof. In light of Lemma 5.1 of Bona et al. (1987), it suffices to prove that 5 #0.
To accomplish this, it will be supposed that 5 =0, with a view to obtaining a
contradiction.

Let {g,}.-1 be a sequence of functions in & such that (g,,, ¢) = (g., ') =0 and
(g, 8») =1, for all n, and lim,_... {Lg,, g,) = 0. It follows from the estimate

0= (Mg1, 82) = (Lew 8) ~ (Co= Digw 8+ |1 (0()ga ()P
< (Lgw gn) + sup If'(s)]

that the sequence {(Mg,, g.)}n-1 is bounded as n ranges over the positive
integers. Hence {g,},-, is bounded in &, and so some subsequence of {g,}o_,
must converge weakly in & to a function g,. We will continue to write {g,}n.,
even though reference will henceforth be to the subsequence. In fact, in the
argument to follow, several further subsequences will be extracted, all of which
will be written as simply {g,},_ rather than with some more definite relabelling
of the indices.

Because of condition (2.2) on the symbol « of the operator M, the space % is
continuously embedded in H2, and hence in L, for all finite p =2. It follows that
{gn}n-1 converges weakly to g, in both L, and L,, and in particular, {g,};_, U
{g4} is a bounded set in L,. Since H:((—k,k)) is compactly imbedded in
L,((—k ,k)) for any finite, positive value of k, and since a sequence that is
strongly convergent to a function in L,((—k,k)) has a subsequence that is
convergent almost everywhere to that function, a Cantor diagonalization argu-
ment leads to a subsequence {g,},-; that converges to g, in L, (R) and
pointwise almost everywhere in R. In consequence of the fact that {g,}_, is
bounded in L,, it follows that {g2};_, is bounded in L,, and hence passing to a
further subsequence allows us to assume that {g2};_; converges to some L,
function G, say, weakly in L,. It follows that {g2}7_, converges in the sense of
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Schwartz distributions ®'(R) to G. But, if 3 € Cg(R) with support contained in
the interval [a , b], say, then Holder’s inequality implies that

f_ [82(x) — g3 ()] (x) dx| <18, — 8xllyqa, s N WL lignllL, + lglILL)-

The second factor on the right-hand side is a constant, the third factor is bounded
independently of n, and the first factor tends to zero as n tends to infinity. It is
therefore concluded that g2— g% as n—  in ®'(R); whence G = g5. Thus, by
successive extraction of subsequences, we are left with a subsequence {g;}r-, of
the original sequence {g,},—, for which

0=lim (@, g) = (> 8+),
0=lim (¢', g) = (¥", 8+),
lim (f'(¢), 80) = (f'(9), £3);
and, by the lower semicontinuity of the norm with respect to weak convergence,

(Mg, g+) <lim inf (Mgy, &)
and

llg«llf, = (8, 8+) < lim inf (g, gx) = 1.

Combining the above relations, we have

(Lgx, 8+) sliglglf (Lgk, gx) =0.

Furthermore, since (Mg, g) =0 for all g € &, it follows that
0= ’El_l;ll (Lgk: gk)

> liirl inf (Mg, gc) +(Co—1) — fmf (@(x))g(x) dx

==~ e ax

Since Cy— 1> 0, the last inequality shows that g, # 0. Therefore, one may define
fx =8+/lg«llo, thereby obtaining a function satisfying (f,, @)= (fs, ¢')=0,
(fer f*) =1, and

1

~ ligalld

But Lemma 5.1 of Bona ef al. (1987) shows that such a function cannot exist.
This contradiction means that 7 must be nonzero, and the proof of the lemma is
now complete. [J

(Lfs fo) (Lgy, g+) <0.
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