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" ON THE COMPARISON OF SOLUTIONS OF MODEL
EQUATIONS FOR LONG WAVES*

J. L. Bona M. Scialom

Abstract

The purpose of this note is to understand the dependence of solutions
of nonlinear, dispersive equations on the nonlinearity and on the disper-
sion relation. It focuses on the relatively specific, but practically impor-
tant context of Korteweg-de Vries-type equations. The general thrust of
the results are that small perturbations of a given dispersion relation or
nonlinearity make only a small difference in the solution over a relatively
long time scale.

1. Introduction

We are interested in equations of the form
g + gy + f(u)g — Muy =0, (1.1)

where f: IR — IR and M is a Fourier multiplier operator defined via its Fourier

transform as
Mh (k) = m(k)h(k); (1.2)

where in is the symbol of the operator.

The equations in (1.1) arise in a wide range of physical context as mod-
els for the propagation of waves (see [1] and [2]). Typically both nonlinear
effects, modelled by f and dispersive effects, modelled by M, are only approx-
imations to a more complete accounting of these aspects of wave propagation.
In consequence it becomes interesting to understand to what extent the de-

tailed structure of the nonlinearity or the dispersion is reflected in solutions of
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the equations. Attention will be given to this issue in the context of the pure
initial-value problem for (1.1), in which the dependent variable u is specified

for all z at some fixed time t, say ¢ =0, so that
u(z,0) = ¢()

for all z € IR. In the present work we shall consider variations of both the
nonlinearity and the dispersion relation. The question that will be posed is,
for a fixed initial datum ¢, if the dispersion relation m is perturbed, or if the
nonlinearity f is changed, what can be said about the resulting variation of the
solution u? The basic conclusion of the study is that, on a long time scale T
naturally related to the underlying physical situation, the equations predict the
same outcome to within their implied order of accuracy.

The most famous example in the form (1.1) is the equation proposed by

Korteweg and de Vries in [3],

3 1
N+ Ne + 5 MMe + g Nexz = 0. {13)

This model is often used to describe the unidirectional propagation of irrota-
tional, weakly nonlinear, dispersive waves on the surface of an ideal liquid in a
uniform channel. In this equation, n = n(z,t) represents the vertical displace-
ment of the surface of the liquid from its equilibrium position, ¢ is the time and
z is the horizontal coordinate (which increases in the direction of propagation
of the waves). Equation (1.3) is written in dimensionless form, with the length
scale taken to be the undisturbed depth h of the liquid and the time scale to be
(E)“’2 g, where is the gravity constant. It is assumed in the derivation of (1.3)
that the maximum amplitude ¢ of the waves is small and that the waves can
be characterized by a wane §~!, which is large. In particular, it is crucial that
the amplitude scale and the wavelength of the waves are such that €62 is of
order one so that the nonlinear and dispersive corrections to the primary wave
equation 7, + 1, = 0 are of comparable importance (cf, [4]).

Turning back to equation (1.1), let & be a representative value of the ampli-

tude of the motions in question and A a typical value of the wavelength, where it
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is presumed that both there quantities have been non-dimensionalized with re-

spect to underlying length scale present in the problem. In these circumstances

the initial wave profile is naturally scaled as

ple) = ep(A'2), (1.4)

where 9 and its derivatives are of order one. If we suppose the nonlinearity f
and the dispersion m to be homogeneous so that f(u), = uPu, and m(k) = |k|,
then the conditions that nonlinear and dispersive effects are small and balanced
are the requirement that e?PA® is of order one, while ¢ and A~! are both small.
The quantity S = &PA® is a natural generalization of the classical Stokes or
Ursell number of shallow-water theory (see Stokes [5], Ursell (6], Whitham [7]
and Bona, Pritchard & Scott [8]). If the small parameter ¢ is defined to be &
then A has order 6=/ and the relation (1.4) can be expressed in terms of thej

single parameter § as
o(z) = §YPp(6Y°z). (1.5)

The central question that will attract attention here is the following, With
initial data as in (1.4), suppose two different dispersion relations m; and m,
or two different nonlinearities f; and f; to be given, and let u; and wus
be the corresponding solutions of (1.1) emanating from the initial-value . For
relatively small values 4, it is expected that both w; and ws; will be small,
but, depending on the difference m; —my and f; — fo, it may be that u; —ug
is smaller still, at least over certain time intervals.

A result of this sort may be interpreted as saying that the difference between
using m, and f; rather than m; and f is relatively negligible, at least
over certain time intervals. As will appear below, this time interval is often
large, proportional to an inverse power of §, and, under reasonable hypothesis,
coincides with the time scale over which interesting nonlinear and dispersive
effects appear at the leading order (see [8] and [9]).

The notation employed througout this paper will be that which is currently
standard in the theory of partial differential equations. Thus L, = L,(IR),

fordil < is ¢
< p < oo is the usual Banach space of p'-power integrable functions
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(essentially bounded functions if p = 00) whose norm will be denoted by |« |p-
A circumflex adorning a function connotes that function’s Fourier transform.
The solutions of (1.1) or (1.3) which will be discussed are, for each instant of

time, members of Sobolev spaces H* for some s 2 0. If f € H*, then

i1 = [0+ ervier]

Notice that the Ly-norm has two different notations, between which systematic
preference will be given to |- [2. The spaces H* are Hilbert spaces, but the only
inner product needed here is that of L, which will be denoted simply as ().
If X is any Banach space, the space C(a,b; X) is the collection of continuous

maps u : [a,b] = X with the norm
|lelle@px) = sup [lu®llx ,
a<t<b

where || ||x dennotes the norm on X.

The plan of the paper is as follows. In section 2, a general Theorem of com-
parison for equations of the form (1.1) is formulated and proved. In Theorem
9, it is assumed that the initial-value problem for (1.1) has global solutions
corresponding to reasonable smooth initial data. A similar result, without this
assumption is shown in [9]. Section 3 contains examples of particular compar-
isons made with the use of Theorem 2 together with interpretation in terms of

the physical problems being modelled.

2. The comparison theorem

The main result for equations of type (1.1) is formulated and proved below
as Theorem 2.

In this section we assume that in equation (1.1), the nonlineatity fis
quadratic and the dispersion m is homogeneous, so that f(u), = uu, and
m(k) = |k|*. The more general case wherein f(W)e = uPug, p = 1, will be

discussed in [9].

= P P
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Consider the initial value problems

Uy + vty — Mu, =0,
(2.1)

v+ vvg + v, — Nop, =0,
where ¢ > 1 is integer, the dispersion operators M and N are given and the
initial data is scaled as

u(z,0) = v(z,0) = ep(e) . (2.2)
Rescale u and v by the relations

u(z,t) = elU(e%z,eft) ,

2.3
v(z,t) = eV(e“z,ePft) L
where 3 = 14 a. Then U and V satisfy the initial-value problems
U+ UU, — MU, =0,
(2.4)

Vi VVe+e ViV, = NV, =0,
with
Hz,0) = V(=,0) =(z) .

The rescaled operator M, is defined such that if A is a function of the spatial

variable x, then the Fourier transform of M.h is given as

M.h(€) = e m(e®E)h(€) = m.(E)h(€) ,

and similarly for N,.

The next lemma refers to the pair of rescaled initial-value problems displayed
in (2.4).

Lemma 1. Suppose a is such that for all € and sufficiently small &

Ime(§) — ne(€)] < e[ Poa (€)1, (2:5)

where r > 2 is an integer and Pr_, is a polynomial of degreer—1. Let o € H¥

where k > 0. Suppose that the initial-value problems (2.4) are globally well posed
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in H*" and that the H**" -norms of U and V' are bounded with a bound that
depends only on the norm of p in H**", and not one, at least for e small. Then

there exists an gg > 0 and constants B; such that, for0 <t <1 and0 <e¢ < o,
0(-,1) = V(- 1))l S €Bj t (2.6)

for 0 < j < k. The constants B; depend only on the norms of the solutions U
and V in C(0,T; H*).

Proof. The method employed here is to define w as the difference U — V' and
then apply energy-type arguments for its estimation. Toward this end, note

first that w satisfies the initial-value problem

wy + 3(w?)s + (Vw), — Mow, = (M. — NV, — e ViV,

(2.7)

w(z,0) =0
at least in the sense of tempered distributions. The inequalities in (2.6) will be
established by induction on j. In what follows, calculations will be made as if
the solutions U and V are C®-functions, all of whose derivatives lie in Lz. The
formulas that result therefrom will only involve spatial derivatives of order less
than or equal to k+7. Consequently, these formulas may be justified by taking
a sequence {@n oz, of smooth functions with compact support that approach
p in H**" | making the calculations for the associated solutions U, and V., of
(2.4), and then passing to the limit as n tends to infinity.

To begin, differentiate the equation in (2.7) j times with respect to = and
multiply the result by diw = wy;), where a new notation has been introduced
for partial derivatives with respect to the spatial variable x. Upon integrating
the equation that arises from the just-described operations with respect to =
over the entire real line and with respect to t over the interval [0,¢] and after
suitable integrations by parts, using the fact that w(-,0) = 0, there appears the

relationships

t

lwiiy (5 1))z = *] ([(w®)2)(5ys Wiy s

0
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t i
—2f0 ([(Vw)z] ), wiiy)ds + ?/O (Me = No)Vijpay, wiids (2.8)
t .
—25“'1]0 ((VIV2))s iz )ds
for0<j <k

Formula (2.8)- will be used inductively to derive the bounds advertised in

(2.6). Consider first the case 7 = 0 for which (2.8) may be written in the form

(-, )2 = _j; f_i((wz)wwd:t:ds—2j; [ (Vw)wdeds

+2 /: _/:;(Il/.{s - N)V,wdzds — 26771 /(: /:oo ViVewdzds . (2.9)

Estimating the first and second terms on the right-hand side of (2.9) in a stan-

dard way and applying Plancherel’s theorem, the Cauchy-Schwarz inequality
and (2.5) to the third and fourth terms lead to the inequality

2 t
() < [ Velwlwl3ds

tec /t v Sy T
o J) WVllwlads + == [TV lihulads
where
2‘Pr—l(£)!
o= —_—
0= MR )T G
If we define
Ao = imax [Va('s)loo < 11V ]]e(0,00,52)
and

_ 22
Co= Oggggl(coll(V(-,t)Hr + =7 VI (-, )],

where ¢g is as in (2.10), then Gronwall’s lemma implies that

1
ezt _ |

I'w()t)")_ S EO(] S EB() t. (211)

0
Notice that By depends only on the norm of the solutions U/ and V.

We turn now to the case j = 1. In this case the relation (2.8) can be put as

[wz (-, t) |3 = —3]; f:: Vidads — [‘: foo widzds — 2]5 /m Vigwwydads
-0 0 J-co

t roo
9g9=1 pt poo
+2L /;OO{ME == Ns)lfzrwg:dﬂfds -+ q€+ 1 ] / (Vq+1)mzwzd$d5.
0 J—oo




28 J. L. BONA M. SCIALOM

The second term on the right-hand side of the last relation is estimated using

the embedding of H'/® into L3 and interpolation. The other terms are estimated

in obvious ways. The upshot is

t t t
WAnﬂﬁS—SLHﬁmwﬁﬁ+kgLW%mmWM%s+2L|%ﬂmwbwﬁﬂs

+ecn [: || V|| [wz|2ds + isj:l fot I(V”l)m]ﬂwz}gdmds ; (2.12)

where ko is an embedding constant and ¢ is defined in (2.10). The third term
on the right-hand side of (2.12) is further bounded above using (2.11) as follows:

t ¢
fo Vs ool tlalwslzds < €Bo ju Vaoooltwzlads - (2.13)
Much as before, if we let

As = max(31Va(s Do + kollws (Dl 2)

aIld
C = IIlax(-Eolvrm(' t)lw CD“ :':( t “ j ” (' t)||2)
0<it<1 d ’ ) q ' ,

then Gronwall’s inequality applied to (2.12) and (2.13) yields

1
st -1

lwe(:,t)|z < eCh < eB t.
1

Again, B; depends only on norms of the solutions U and V.

The proof is finished by an inductive argument wherein the desired result
(2.6) is assumed to be valid for j < m where m < k, and then, on that basis,
the result is established for j = m. To this end, consider the right-hand side
of the relation (2.8) with j = m. The first and second terms can be bounded

above in a similar way as is now shown:

-/oo [(wi)x](m]w{m)d(a:) = (2m —1) f_:: wrwfm]d:c +

m m oo
+ QZ ( ) ] w(k)w(m—k+l)wmd’$ )
k=2 k e=ER)

[ (V) dmwmd(@) = [ Vo + Vel
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Expanding the derivatives of the product in the right-hand side of the last

equality, leads to an expression of the form .
o0 2 [ee]
/;m Fuwi,dz + /;Dc Gw(mydz |

where F is a polynomial in V,V,,w and w, and (G is a polynomial in

ViVay ooy Vim)y W, Way .., Wim—1). Estimating the Lo,-norm of F' and the L,-

norm of &, and using the induction hypothesis leads to an inequality of the

form

| (Var)om - Dty )l < g, O + bl Dl

Making similar estimates of terms in the other sums on the right-hand side, and
)

combining these with the bounds

[ (M= No)WVosayopmyde] < ecollV lsm

and
g—1 = g+1 i
€ ‘-/;oo(v )(m+1)w(m)d‘7‘:‘ S Eq 1J|VQ+1||(m+1)|1,U(m)‘2 y

there appears the inequality

t t
|y (-, £)2 SAm/U |w(m)(-,s)|§ds+ecmj0 (- 5)|adls

frgm which it follows that

LAmt _
|wm('1t)|2 S Ecmegfl—l S EBmt

for 0 <t < 1. The constant B,, depends as before on norms of I/ and V' and
on the previous constants By, ..., Bm-1. The inductive step being established,

1t is concluded that (2.6) holds for all j < k and the proof is completed.

As an immediate corollary of this lemma and the transformations (2.3), the

principal technical result to be used in the next section is obtained.
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Theorem 2. Suppose that condition (2.5) is valid for the scaled operators M,
and N, for some value of r and a fized value of o with B = 1 + a. Suppose
in addition that the initial-value problems (2.1) are globally well posed in HEtr
for some k > 0, where k +r = 2. Let ¢ € H*" be given and let u, and v,
be the respective solutions of (2.1) with initial data as in (2.2). Then there are
constants B;, 0 < j < k which depend only on the norm of @ in H*" such that
for0 <5 <k,

183 (e — ve)la S e+ ByePt (2.14)

provided 0 < t < e~?. By interpolation, therefore, it follows that
|03(tte — ve)loo < E¥F¥IC;EPE (2.15)

for0<j<k and 0 <t <e™”, where C;= (B;Bj1)'*.

3. Applications

In this section, a number of examples will be set forth which show the ef-
“ficacy of the theory developed in Section 2. A wide range .of others examples

applying an extension of the present theory will be presented in [9].

3a. Perturbations of the Symbol

The situation envisioned here is perhaps the most straightforward applica-
tion of Theorem 2 as it involues only the dispersion relation. The idea is that
the two symbols m and n of the operators M and N are the same except that
one has a higher-order correction to the modelling of dispersion. A paradigm
for this situation is provided by the surface water-wave problem in which the

full, linearized dispersion relation is

(3.1)

- ()"
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in suitably normalized variables. The Korteweg-de Vries equation is obtained
when c¢ is replaced by the first two terms in its Taylor expansion about the
origin, namely

| cmﬂm=1—%{ (3.2)
which will be a good approximation provided only small values of %k (long waves)
are in question. It may happen that one needs to model dispersive effects more
accurately, however, while still staying in the realm of long-wave models, and in

this situation it is natural to take an additional term in the Taylor expansion

namely

1 19

_k2 N A 2

gk + 260 k (3.3)
(cf. Abdelouhab et al. [10]). The partial differential equations corresponding

to (3.2) and (3.3) are

é(k)=1-

3 1
Ut + ug + -g-uuz+ glaos = 0t

— (3.4.a)

Vet vst gvvx + %vm + -Sls%vmxm =0,
respectively (The factor 2 in the nonlinear term comes out naturally in the usual
non-dimensionalization of variables, as in Benjamin et al. [11]). By moving to a
traveling frame of reference, the linear translational term u, can be eliminated
~and one is then left with the two equations ,

1
us + 5“‘”3 + gurxx =0 )

gd (3.4.b)

Ut+§‘UU + —v +£v =0
2 T 6 T 360 TTTTT .

The natural scaling for small-amplitude long waves on the surface of shallow

: , 1 3
water is that of (2.3) with o = 3 and 3 = - (c[. Bona & Smith [12]). Letting

2
1
M connote the operator —605 and N the operator ~é82 - 51284 we find our-
11 . . .. . ’ 60 -
selves in the situation envisioned in (2.1) with ¢ = 2. Moreover, both equations
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in (3.4) are globally well posed in H* for any k 2 2 (see Kato [13], Bona &
Smith [12])). Hence to apply Theorem 9 in this situation, it is only necessary to
check condition (2.5) of Lemma 1. A straightforward calculation reveals that

the associated operators M. and N, satisfy the relations
19
- P
me(€) — nel)] < a5t

Thus taking r = 5 and supposing the initial data ¢ lies in HF*S for some

non-negative value of k, it is deduced at once that
|63(u — v)|oo < o el (3.5)

for 0 < j < k, provided 0 < < ¢~3/? with similar estimates for the Ly-norm
of the difference. One is thus led to the conclusion that the inclusion of higher-
order dispersive effects is without consequence at the level of modelling inherent
in either equation in (3.4). In the Korteweg-de Vries equation written in the
form (3.4) and with small-amplitude, long-wavelength initial data ep(e'/?z),
we know that nonlinear and dispersive effects accumulate to make an order-one
relative contribution to the wave profile at time ¢ of order 6=3/2 (see Bona et al.
[8]). Equally, at time t of order ¢=5/2_ the error terms inherent in the Korteweg-
de Vries model could in principle make an order-one relative contribution to
the wave profile, thus rendering the Korteweg-de Vries approximation invalid.
The same remarks apply to the extended model because higher-order nonlinear
effects have not been included. Now, refering to (3.5), we see that while u and
v are both order &, their difference is of order e? at t = =32, As £” is the order
that would be contributed by the neglected terms in either model, it is inferred
that the effect of the higher-order dispersion relation in the extended model is
of no consequence on time scales wherein the neglected effects remain relatively

negligible.
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3b. Perturbations of the Nonlinearity

Here we consider the effect of including a higher-order nonlinear term in the
model equation. A case that arises often in pratice is the inclusion of a cubic -
nonlinearity in the Korteweg-de Vries equation. The general nature of u?u, as
the next term in the approximation of nonlinear effects is explained in Benjamin
et al. [11], where it is argued heuristically that this form will generically appear
at the next order of approximation.

Attention is thus given to the two equations

Ut + Ul + Ugzr = 0

and (3.6)

vy + Vg 4 V0 F Ve = 0.
Both equations in (3.6) are globally well posed in H* for any k > 2 (cf. Kato
[14]). Taking the scaling appropriate to the Korteweg-de Vries equation, namely

a=zand f= % in (2.3) and applying Theorem 2 leads directly to the conclu-
sion that for ¢ € H* and 0 < j < k,

183 — v)|eo S Cye®HiH3% (3.7)

at least for 0 < ¢ < ¢~%/2, just as in (3.5). Refering to the discussion in Section
3a, it is concluded that during the time period over which significant alteration

of the initial profile takes place due to nonlinear and dispersive effects, the cu-

" bic nonlinearity remains relatively negligible for data that satisfies the basic

Korteweg-de Vries-type scaling.

3c. Comparison between the Korteweg-de Vries equation
and Smith’s equation

This comparison is a little more subtle than the simple pertubation featured

in Section 3a. The evolution equation
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uy + uwugy — Mu, =0,
where the symbol m of M is (3.8)

mf) = (VI+& - 1),

was derived by Smith [15] as a model for continental shelf waves (the form of
the symbol in (3.8) corrects a minor oversight in Smith’s paper). Because m
is smooth and has the approximate form }¢* near £ = 0, it is natural to ask
whether or not an appropriate version of the Korteweg-de Vries equation might
be just as good as a model for the phenomena in- question. This depends upon
the scaling assumption that applies to the initial data. If the waves to which the
model is to be applied are adequately represented by the scaling sg(el/"’w), then
we will show now that one might as well use the Korteweg-de Vries equation as
a model.

Turning to a detailed analysis of the last assertion, we attempt to apply
Theorem 2 to equation (3.8) and the Korteweg-de Vries equation in the form

1
vy + VU + é’va:ma,' =0. {3'9)

Again we choose @ = % and 3 = 2 which is consistent with the use of the
Korteweg-de Vries equation. The crux of the matter is to establish condition
(2.5) in Lemma 1. As the symbol m is not homogeneous, this is slightly more
complicated than for the perturbation in Section 3a. The operator M. is given
by

R e LG

in fact, and it follows easily that if N = 702, then
1 4
m©) = nelE)] < et

Thus, supposing that ¢ € H**® for some k > 0, the initial value problem
associated to (3.8) is globally well posed in H**5 (see Abdelouhab et al. [10]
and Torio [16]), it may be inferred from Theorem 2 that

B 1] C;etHilH3/2y (3.10)
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for0<t<e3?andfor0<j<k-—1.
One infers from (3.10) that for data that has an amplitude to wavelength
relationship well approximated by the form e (¢!/2z), it doesn’t matter whether

(3.8) or (3.9) is used to model the wave’s evolution. Both give the same answer -

to within the inerent order of accuracy of either.

Remark. A host of other interesting modelling situations may be analysed us-
ing the theory developed in Section 2, or its generalization to appear in [9]. In
addition to KdV-type equations, comparisons may be effected between regular-
ized long-wave-type equations and Schédinger-type equations using a suitable

variant of the theory developed here. These developments will be set out in [9)].
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