THE EFFECT OF DISSIPATION ON
SOLUTIONS OF THE GENERALIZED
KORTEWEG-DE VRIES EQUATION

J. L. BoNnal? | V. A. DoucaLis®* , O. A. KARAKASHIAN® & W. R. MCKINNEY®

Abstract. It was indicated in recent numerical simulations that the initial-value problem for the generalized
Korteweg-de Vries equation is not globally well posed when the nonlinearity is strong enough. Indeed, even o
_initial data that is spatially periodic is observed to form singularities in finite time. The generalized Korteweg-de
Vries equations are Hamiltonian systems that feature a competition between nonlinear and dispersive effects, A
natural question that comes to the fore in consequence of the observed singularity formation is whether or not the

addition of a term modelling the effect of dissipation will eliminate singularities and so result in an initial-value
problem that is globally well posed. It is the purpose of the present paper to study this question both analytically
and numerically. Our concern will be mainly with the addition of a Burgers-type dissipative term because of its
frequent appearance in practical modelling problems. Some commentary is also provided about the situations
{hat obtain when other dissipative mechanisms are introduced. It seems that singularity formation persists in
the presence of small amounts of dissipation, but ceases at a certain critical level whose general form is studied
both numerically and analytically.

1. INTRODUCTION

The present paper is inspired by an earlier one of the same authors and aims to add
considerably to the conclusions drawn therein. In the previous study (Bona et al. 1994),
attention was given to the development and use of numerical approximations of solutions
to the initial- and periodic-boundary-value problem for the generalized Korteweg-de Vries

equation (GKdV equation henceforth)
ug + uPug + EUgge = 0. (1.1a)

Here, the dependent variable u = u(z,t) is a 1-periodic, real-valued function of the spatial

variable z € [0,1] and the temporal variable ¢ > 0 which is prescribed at t = 0 by

u(z,0) = uo(z) (1.1b)
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for 0 < z < 1. In (1.1a), € is a fixed, positive number that is related to a generalization
of the classical Stokes number of surface water-wave theory (see Albert & Bona 1991,
Bona & Scidlom 1993) and p is a positive integer. Special consideration was given in our
previous work to understanding the instability of the travelling-wave solutions of (1.1a)
called solitary waves, and it transpired that this instability manifests itself in blow-up in
finite time. More precisely, if p > 4 in (1.1a), then perturbations of solitary waves form a
similarity structure under the evolution (1.1a) and this structure in turn blows up, leading
to the inference that there is a point (z*,1*) such that u(z,t) — +oo as (z,t) — (z*,t*).
These earlier numerical simulations showed also that this special blow-up phenomenon has
more scope than might be expected. A broad class of initial data uo has the property that,
under the evolution (1.1a), the resulting solutions rapidly decompose into a finite number
of pulses resembling solitary waves, the first and largest of which then becomes unstable,
forms a similarity structure and blows up in finite time. As nearly as could be discerned
from the numerical simulations, the process of singularity formation for general initial data

up was the same as that appearing in the instability of the solitary wave.

It is worth noting that the blow-up phenomenon just described subsists on both nonlin-
ear and dispersive effects, and it can only occur if the nonlinearity overpowers the disper-
sion. Three facts support this conclusion. First, if ¢ = 0, so that dispersion is absent, there
are large classes of initial data whose corresponding solutions form singularities in finite
time, but it is the derivative that becomes unbounded, not the solution itself. Second, if
p < 4, then smooth initial data uo lead to global solutions u of the initial-value problem
(1.1), regardless of the size of the data (see Kato 1983, Albert et al. 1988). Finally, even
for p > 4, if the initial data ug is reasonably smooth and small enough so that one expects
nonlinear effects to be relatively insignificant, then the initial-value problem (1.1) still has

global solutions (cf. Strauss 1974, Schechter 1978, Kato 1983).

The GKdV equations arise in modelling the propagation of small-amplitude, long waves

in nonlinear dispersive media (see Benjamin et al. 1972, Benjamin 1974). The case p =1
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is the classical Korteweg-de Vries (KdV) equation about which much has been written in
the last three decades, and which arises in a number of interesting physical situations (cf.
Benjamin 1974, Jeffrey & Kakutani 1972, Scott et al. 1973). In real physical situations,
dissipative effects are often as important as nonlinear and dispersive effects (see the ex-
perimental study of Bona et al. 1981) and this fact has given currency to the study of the

Korteweg-de Vries-Burgers equation

as a model that incorporates all three effects (see Grad & Hu 1967, Johnson 1970, Bona
& Smith 1975, Bona et al. 1981, Bona & Schonbek 1985, Pego 1985, Amick et al. 1989,
Bona et al. 1992). In (1.2), the parameter € is as before and § > 0 is another parameter

expressing the relative strength of dissipative to nonlinear effects.

A natural question arises as to whether dissipative effects in the form of a Burgers-type
term, say, overcome the nonlinear-dispersive interaction that leads to blow-up. It is to this
and related questions that the present work is directed. For the most part, attention is

given to the initial-value problem

uy + uPugz — OUgy + EUgre = 0,

(1.3)
u(w, 0) = U()(.’L'),

where p > 4, up is a reasonably smooth, 1-periodic, real-valued function on the real line
R, and ¢ and é are positive constants as indicated previously. It is straightforward to
show that the initial-value problem (1.3) has unique solutions corresponding to reasonably
smooth initial data, at least locally in time, by semigroup methods (Kato 1975, 1983) or

by regularization techniques (Bona & Smith 1975).

It is also easy to ascertain that a solution of (1.3) defined locally in time has a global
extension if it remains bounded in a suitable norm on bounded time intervals (see Kato
1983, Albert et al. 1988 or Bona et al. 1987). However, standard energy techniques seem

unable to establish the @ priori deduced bounds needed to guarantee global existence.

3



It will be shown below that for fixed ¢ > 0 and for any given initial datum wuo, there
is a 6, > 0 such that if § > 6., then the local solution of (1.3) emanating from uo has a
global continuation as a smooth solution of the differential equation. This global result was
motivated by the outcome of a series of numerical experiments simulating solutions of (1.3)
which were designed to cast light on the effect of the dissipative term. Other interesting
points are indicated by these numerical results which are described in the detailed outline

of the paper to be presented now.

The plan of the paper is straightforward. Section 2 contains theoretical results apper-
taining to (1.3) and one of its near relatives wherein the dissipative term —8u, is replaced
by ou. We are able to establish in both cases that if the parameter § or o is sufficiently
large relative to certain norms of the initial data ug, then the solution u emanating from
up exists and is uniformly bounded over the entire temporal half-axis [0, 00). Moreover,
the proofs lead to explicit formulas for an upper bound on the critical values . and o, at
least when ug is a perturbed solitary wave that would blow up in finite time in the absence
of dissipation. When a solution is global in time, results about its decay to a quiescent

state are also derived.

Section 3 contains a description of the numerical method used to integrate (1.3). As
in our earlier study, the scheme is based on a Galerkin spatial discretization with periodic,
cubic splines coupled with a time-stepping procedure which combines a two-stage Gauss-
Legendre implicit Runge-Kutta method with a version of Newton’s method for solving the
system of nonlinear equations that arise at each time step. This basic scheme is augmented
by adaptive mechanisms that adjust the temporal and local spatial grids in an effort to

retain accuracy in the face of large values of the dependent variable.

Section 4 reports on numerical experiments carried out using a computer code derived
from the numerical scheme described in Section 3. In Subsection 4a, computations show
that solutions of (1.3) still blow up in finite time for p = 5,6 or 7 provided the dissipative

coefficient & is small enough. The computed rates of blow-up and the structure of solutions
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as they become singular are virtually identical to those observed for the non-dissipative
problem in which § = 0. An analysis of the data presented shows the interesting conclusion
that the theoretically derived forms for the critical values é. and o, coincide with those
obtained in practice.

Subsection 4b records some data connected with the decay of solutions when the param-
eter § is large enough to prevent blow-up. It is shown in Section 2 that in this circumstance
solutions approach exponentially a constant equal to the mean value of uo. The lapse rate
in the exponential decay depends linearly on é and tends to zero as § tends to zero. The
numerically obtained evidence supports the contention that for any p, the long-term be-
havior of global solutions is determined by the linearized form of the GKdV equation, a
conclusion that agrees with Biler’s sharp decay results for the case p = 1 (Biler 1984).
Commentary is also offered about the transitory, oscillatory break-up of initial data that
occurs at early stages in the evolution prior to the long-term, exponential asymptotics

becoming dominant.

The paper concludes with a summary section that also features remarks on potentially

interesting avenues for further research.

2. THEORETICAL RESULTS

After a review of notational conventions, the principal theorem in our theoretical de-
velopment is stated and proved. Several useful corollaries are then derived which act as a

foil for some of the numerical simulations presented in Section 4.

Notation. In the sequel Ly, 1 < ¢ < oo will denote the collection of L-periodic functions

which are ¢**-power integrable over [0, L] endowed with the norm

L 1/q
|f|q=</0 lf(w)l"dw) ,

with the usual modification if ¢ = co. For s > 0, the space H® = H*(0, L) is the Sobolev

class of L-periodic functions which, along with their first s derivatives belong to Lz. The
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usual norm on H* is denoted by | .

|s. The norm of Ly = H® appears frequently and will
be denoted | - |; rather than || - ||o; the associated inner product is the only Hilbert-space
structure to intervene in the analysis and it is written simply as (:,). In Sections 3 and 4,
we shall restrict attention to the case where L = 1. For the periodic problem, this simply
amounts to a rescaling of the spatial variable z, and no loss of generality results from this
presumption. However, in the present section, it will be convenient to leave L arbitrary

for reasons that will become apparent shortly.

It deserves remark that while it is convenient to present analytical results first, early
numerical results helped motivate the theory which in turn provided significant insights

and guidance into later numerical experiments.

As an example, which sets the stage for Theorem 2.1, the reader may consult Figures
1a and 2 in Section 4 that depict the outcome of two numerical simulations of (1.2), both
with p = 5, ¢ fixed and the same initial data. The difference between the two simulations
lies with the value of the dissipative parameter §; in Figure la, é is rather small while in
Figure 2 it is five times larger. As documented in detail in Subsection 4a, the smaller value
of 6 seems to allow the associated solution to form a singularity in finite time, whereas the

larger value of § appears to prevent the single-point blow-up observed in Figure la.

Armed with these, and other like results, for different values of p, the following theorem

was conjectured and proved.

THEOREM 2.1. Let ug be given initial data that is periodic of period L > 0 and suppose

ug to lie in H*(0, L) for some s > 2. Let ¢,6 > 0 be given.

(1) If p < 4, then there is a unique global solution u of (1.3) corresponding to the
above specification of data and parameters, that lies in C(0,T; H*(0, L)) for every T > 0.

Moreover, ||u(+,t)||1 is uniformly bounded in t.

(2) Ifp > 4, there is a Ty > 0 depending on |luoll1 and a unique solution u €
C(0,To; H*(0, L)) of (1.3) with initial data ue. If ||uo||1 is sufficiently small with respect to
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8, then T can be taken arbitrarily large, the solution is global, and ||u(+,t)||1 is uniformly
bounded for t € [0, +o0).

In all the above cases, the solution u depends continuously on the initial data uo in

that the mapping uo +— u is continuous from H® to C(0,T; H?).

Remark. Part (1) and the local existence theory in Part (2) may be found more or less
as stated in the literature (cf. Bona & Smith 1975, Kato 1975, 1983, Albert et al. 1988
Albert & Bona 1991). It deserves remark that the correspondence up — u has recently
been investigated in more detail by Bourgain (1993) and Zhang (1993), with the outcome
that values of s smaller than 2 can be accomodated and the correspondence, much more
than being continuous, is analytic. Moreover, since § > 0, coarse data becomes smooth
for t > 0. None of these subtle aspects are important in our analysis, however, so we pass

over them in favor of the simpler description in Theorem 2.1.

Proof. Attention will be given only to the case p > 4. As mentioned above, a theory, local
in time, of existence, uniqueness and continuous dependence for (1.3) may be concluded
using standard semigroup theory, and the details are therefore omitted. The focus of
attention here will be to provide a priori deduced bounds that allow the local theory to
be continued indefinitely. Finer results from the local theory can be deduced, but for our
purposes it will suffice to note that if the initial data uo lies in H® for some s > 2, and if
the solution u is bounded, at least on any interval of the form [0, T] for finite T > 0, then
the solution is global in time and lies in C(0,T; H?) for all finite T'. This state of affairs
can be ascertained from Kato’s theory (Kato 1975, 1983, Albert et al. 1988) or from the

estimates to be derived now.

Let u be a solution in C(0,T; H®) corresponding to initial data uo of the initial-value
problem (1.3), where s > 2. Without loss of generality, we may suppose that s is large
enough that the formal calculations to follow are straightforwardly justified. Because of the

continuous dependence of the solution on the initial data, one simply regularizes the initial
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data, makes the calculations with the associated smoother solutions, and after deriving
the desired inequalities, then passes to the limit as the regularization disappears. So long
as the inequalities in question do not involve derivatives higher than those appearing in

the initial data, this procedure leads securely to the desired results.

We begin by multiplying the equation (1.2) by the solution u, integrating the result
with respect to z over the period [0, L] and with respect to t over the interval [0, o], where
to < T. After suitable integrations by parts, and using periodicity to see that the boundary

terms cancel, there appears the simple relation

to
uCota)§+26 [ s O dt = ol (2.1)
0

(Throughout this proof, all the norms are computed with respect to the spatial region

[0, L].) It is deduced from this that |u(-,t)|2 is a decreasing function of time and that

t
/ o, D) dt
0

is bounded independently of t.

The next stage of the estimates is more complicated. As shown in Kato (1983) and
Albert et al. (1988), all that is required in order to infer the boundedness of v in H*®
on bounded time intervals, and thereby to deduce the conclusion of the theorem is to
demonstrate that the Loo-norm of the solution is bounded on bounded time intervals. For
this, it suffices to show the H 1_norm of the solution is bounded on bounded time intervals.
In fact, we shall show that the H 1_norm of solutions corresponding to initial data suitably

small with respect to § is bounded independently of t.

To this end, let wy = % fOL uo(z)dz be the average mass of the initial data. By inte-
grating (1.2) with respect to z, one readily deduces from the spatial periodicity that for
any t > 0 for which the solution exists on [0, 1], one has a(t) = 1 fOL u(z,t)dz = Uo. (This
is a reflection of conservation of mass in some applications of this class of equations to

practical situations.)



Define a new dependent variable v by v(z,t) = u(2,t) — Up. Then the variable v has

total mass zero and satisfies the initial-value problem

vt + ‘_6 ('U + Uo)p+ — bVgg + EVggy = 0,
(2.2)

v(:z:,O) = vo(z) = uo(z) — o.
Multiply the differential equation in (2.2) by v, and integrate over [0, L] to obtain the

following differential inequality:

1 d L L
EE/O. U£d$+6A ’U dw_m/ 3(v+u0)1’+ Vex dz

1 L P+l 1 o
= Tl Oz Z <p+ ) pPt1—I U | viedz
p 0 J

=0
L p-l p+ (2.3)
== 1 . p—J d
1 &= /pt
S p+ 1 = (p ] >(p+ 1 _-7) Iu0|]|v|p J I'Uz|2 Ivz:c|2
1=0
It is elementary that if w is periodic with mean value equal to zero, then
Wz < |wlz lwslz,  [walj < w2 [wasls,
and (2.4)

jwlz < o |wg|2.

If we use the first two of these relations systematically in (2.3), we ascertain that the
right-hand member of (2.3) may be bounded above as follows:

p—1

p+ r:i-__:_
§j( >@+1—4Nwah 0125 [vzala

=0

p2

+ ]_ p—2—j
p (p+1—JHwVwb ~ loals T a2 (2.5)

I/\

= t)
P+ 1 — 11..91/2 2
+2 I |1D |v |vz|22 |vu|2
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The last summand on the right-hand side of (2.5) requires special treatment; using the

second relation in (2.4), one sees that

[0l o215/ vasle < (L/27)? 0sflozl:

< (L/27r)1/2|v|2|v”|§.

Putting this together with (2.5) and (2.3) leads to the differential inequality

| =

[os(, 1)1} + 6 [vaa (-, O3 < Bloza( 1)z, (2.6)

N =
[}

t

where

8 = 0(|vl2, |vz|2, [@ol) =

1|22 /p+t . opei p2=i
Z( ! )<p+1—])|uo|f|v|22 0]

1
P+1 |4

=

+2(Z+ 1) (L/27l')1/2 |ﬂ0|p_1|’0|2 W

Note that since v has mean value zero, then
u(-, 1)l = Luj + [o(-,1)l3
while (2.7)

Juz (-, D)3 = loz(,1)l3

for all ¢ for which the solution exists. In consequence of these inequalities, it suffices to
show that ||v(-,)||1 is bounded, independently of ¢, in order that ||u(-,t)||1 is bounded,

independently of ¢.

The differential inequality (2.6) is employed to deduce a global bound on ||v(:,t)]lx.

Notice that 6 is monotone increasing as a function of its three arguments. Moreover,
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because of (2.1), |u(-,t)|2 < |uo|z whence |v(:,t)|2 < |u(-,t)|2 < |uol2 in view of (2.7). In

consequence of these two inequalities, we see that
- :
|u0|2 J p+2 P= 2—:
o< — Z( Dwrr-i) (o) ol oot
=0
2 p+1 |u(]|2 =
+p__+_‘i‘( )(L/2 )1/2 (L”‘:2 |u0|2
etz |23 (p+1) p+1—7 (|u0|2>j/2 p=2-j
< |uoly? . : Vsly *
Juols {; PO (B2) b
L3 (ptl +(2’”_1)”2 p+1\] (Iuol2\ 7
p+1 -2 p+1 p—1 L

pyz P2 _ i/2 o
< Apluoly? Y (pj 2) (%) o] *=2

i=0

P—2
g _
<A |u0|2 (lLkz + v zll/z) = 6(luolz2, |vsl2),

(2.8)

for some constant A, depending only on p. If one rewrites (2.6) as

d _
= [0 D) + (6 = O)|vas(, )2 < 0,

N =

then it becomes clear that as soon as § < 6, |v.(-,%)|2 becomes monotone decreasing. In
this range, 6 is also decreasing, and consequently if for some to we find that 6 < §, then
for all ¢ > t; the same inequality holds. In particular, if at ¢ = 0 it is the case that
0(|uolz2, [vos|z) = 8(|uol2, [woz|2) < 6, then for all ¢ > 0, |v,(+,)|2 < |uozl2, and so ||v]|; is

seen to be bounded, independently of t.

Referring back to (2.8), if

g2 P
/\p|u0|2 : <L1/2 Iu |1/2 + |u01|1/2) S 6; (2.9)

then ||v(,t)||1 is bounded, independently of ¢.

The theorem is thus established. [J
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Several interesting consequences can be drawn from this theorem and its proof. First,
by letting the period L tend to +o0, a result pertaining to the pure initial-value problem
emerges. (The integrals in the norms mentioned in the following Corollary refer to the

entire real axis R.)

COROLLARY 2.2. Let up € H°(R) for some s > 2 and let u be the corresponding solution
of equation (1.2) for z € R and t > 0 with parameters ¢,6 > 0 and p > 4. There is a

constant u = u, depending only on p such that if
242 p=2
wols T fuosla™ < upd, (2.10)
then the solution lies in C(0,T; H®) for all T > 0 and ||u(:,t)||1 < ||uol|s for all t > 0.

An interesting point arises relative to the inequality (2.10). It appears that this in-
equality is sharp in a certain way to be explained now. Consider the situation in which
the initial data uo(z) = Ay(K«x) for z € R, where A and K are positive constants. Then
luolz = Al|e/K'/? and |uggl|z = AKY2|3p,|y. Viewing o as fixed, but A, K as variable,

we observe that inequality (2.10) becomes
— < ué (2.11)

for a constant ¢ depending on p and norms of 1. Of especial interest are the traveling-wave

solutions of (1.1a) called solitary waves. These have the explicit form
us(z,t) = Asech?/P[K(z — z0) — wt] (2.12a)

for any ¢, where the parameter K governing the spread of the solution and the speed of

propagation w are defined in terms of the amplitude A by

2 AP 1/2 P
- ( p A ) 2K 4 (2.12b)

2e(p+ )(p +2) YT+ +2)
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If the initial data uo lies close to a solitary-wave solution u,(-,0) as defined above, then

(2.11) becomes

AP
pué 2 172
E2Ap )
(2&()}+1)(p+2)

or what is the same,

A=—>Cp, (2.13)

where C, is a constant depending on p and on the Lp-norms of sech?/?(z) and its first

derivative, and so in fact depends only on p.

As mentioned earlier, if p > 4, the solitary wave solutions of (1.2) with 6 = 0 are
unstable (Bona et al. 1987, Pego & Weinstein 1992), and small perturbations were seen
to lead to blow up in finite time (Bona et al. 1986, 1994). Consider now a situation where
¢ > 0 and p > 5 are fixed and initial data is specified to be ug(z) = Au,(z,0) where u, is
the solitary-wave solution in (2.12a) and X is slightly greater than one, (e.g. A =1.01asin
§5 of Bona et al. 1994). With 6 = 0 and this initial data, the numerical approximation of
the resulting solution of (1.2) indicates that it forms a singularity in finite time. Theorem
2.1 shows that for § sufficiently large, the solution of (1.2) emanating from this type of
initial data is uniformly bounded in ¢. One therefore expects a critical value é. of the
dissipative parameter § which defines the boundary between blow-up and global existence.

From the condition in (2.13), it is known that &7 < CpeAP.

In Subsection 4a, an approximation of 6. = 6.(4,¢) will be determined by making
sequences of runs where ug is fixed as above and § is varied systematically. It transpires
that the combination denoted A in (2.13) is central to determining whether or not one
has blow-up, at least for these perturbed solitary waves. It is a little unusual that the
relatively crude energy estimates leading to the conclusion enunciated in (2.10) has this

sharp aspect.

A final point that presents itself as a consequence of Theorem 2.1 is the decay of

solutions to a quiescent state.
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COROLLARY 2.3. If u is a solution of the initial- and periodic-boundary-value prob-
lem (1.3) with § > 0 corresponding to initial data ug € H*(0,L), then |u(:,t) — Uz <
e=3CE) t|uy — gy for all t for which the solution exists. If ug satisfies condition (2.9)

relative to 8, then |uy|y also decays exponentially, as does |0lul, for all j < s.

Proof. First, consider again the differential equation (2.2) satisfied by v = u — %y and

write 1t in the form

v + ('U + ﬁo)pvz + €Vzzg — 6Vgy = 0.

Multiply this by v and integrate the result over the period [0, L] to reach the differential

1d /L ) o
- — vdw+6/ vidr = 0.

Making use of (2.4) then implies that

d ", or\? L,
- — <
dt/[, vdm+26(L) /0 vidzr <0,

whence |v(-,t)]2 < |v(-,0)|26_6(271r)2t or what is the same, |u(+,t) —Uo|2 = O(e“é(zb_")%) as

relation

t — 4o00. Notice that this result is independent of p and the size of the data.

Now suppose the initial data ug satisfies the condition in (2.9). Since the Lj-norm of
v is strictly decreasing and the H!-semi-norm |v,|s is non-increasing, it follows that for

t>0, 8 =6(|v|2, |vz|2,%0) < 6. Upon applying (2.4) to |vz¢(-,t)|2 in (2.6) we obtain that

B +6=0) (25 JoaloHE <0
dtvz(’ 2+ L vx’ 2 = Yy

N —

from which it is deduced that

02 )l < Jos(-, Oz exp [(%”) [e- 6)ds} .

Thus |v,(+,t)|2 is seen to be exponentially decreasing to zero, and since by (2.8) 6(t) < 9 <

= N2
8, the asymptotic form of this decay is 0(6(0_6)(217 ') as t — +oo.
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Similar considerations apply to higher-order semi-norms. We pass over the details. []

Remarks.

(i) Biler (1984) has obtained detailed decay estimates for periodic solutions in the case
p < 2. See subsection 4b below for more commentary on his work.

(ii) This result is in marked contrast to the behavior of global solutions of the pure
initial-value problem for (1.2) corresponding to initial data uo € H*°(R), s > 2.
Such solutions are expected to decay to zero as ¢ — +o0o. However, the rate of
decay is algebraic in t as witnessed by the results of Amick et al. (1989), where for
p = 1 it was shown that

/°° u?(z,t)dz = O (t_l/z)

— 00

and that this rate was sharp in general. (See also the results of Bona & Luo 1993,
Bona, Promislow & Wayne 1994, Dix 1992, and Zhang 1994 for p > 2.)

Dissipative mechanisms other than the Burgers-type appearing in (1.2) arise in prac-
tice. One particularly appealing dissipative mechanism is a simple, zero**-order term

corresponding to the initial-value problem

us + uPug + eugyy + ou =0, (2.14)

u(z,0) = uo(),

where 0 > 0. A theory entirely similar to that worked out for the initial-value problem
(1.3) applies to (2.14). As there are some interesting mathematical points that arise, and

because it ties in with some of the numerical simulations in Section 4, a sketch of the

theory for (2.14) is provided.

THEOREM 2.4. Let ug be given initial data that is periodic of period L and suppose ug

to lie in H*(0, L) for some s > 2. Let € > 0 and o > 0 be given.
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(1) If p < 4, then there is a unique global solution u of (2.14) corresponding to the
above specification of data and parameters which is periodic in z of period L that lies in

C(0,T; H®) for every T > 0. Moreover, ||u(:,t)||1 is uniformly bounded for t € [0, 00).

(2) Ifp > 4, there is a Ty > 0 depending on ||uolj1 and a unique periodic solution
u € C(0,Ty; H*) of (2.14) with initial data uo. If o is sufficiently large with respect to
l|lwollz, then Ty can be taken arbitrarily large, the solution u is global, and ||u(:,t)||1 is

uniformly bounded for t € [0, 00).

In all the above cases, the mapping ug — u is continuous from H*® to C(0,T; H®).

Proof. As in Theorem 2.1, attention is concentrated on the case p > 4. The case p < 4
is essentially contained in the existing literature, and the local well-posedness theory for
p > 4 is a straightforward application of nonlinear semigroup theory. As before, the crux
of the matter is an a priori deduced, Loo-bound on u, and it suffices for this to show the

HZ?-norm is bounded, at least on bounded time intervals.

The analog of (2.1) is
t
0B +20 [ fuC5)ds = fuol}, (215)
0
from which one deduces immediately that

lu(-, )]z = e~ |uo2. (2.16)

The next step, if one were following the line of argument in Theorem 2.1, would be
to subtract the mean value, multiply the resulting equation by vz, where v = u — %o,
and integrate over [0, L]. This does not appear to be effective in the present case. Indeed,
solutions of (2.14) have exponentially decaying rather than constant mean values. However,

multiplying equation (2.14) by usss. and integrating over [0, L] is useful; after suitable
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integrations by parts, this procedure leads to

1 d L L ) 7}
- — uﬁzdw +0 / uiz dz = / (uPugs + pu”_lui)uz”dx
2 dt J, 0 0
5p L L
= uPluzu? _dr — p(p — 1) / u”_zuiuu dx (2.17)
0 0

) _ B
< P lul2s uslooluzs [} + p(p — Dlulsluz o luslelussl>.
Making systematic use of (2.4) for the zero-mean, periodic function u;, together with the

elementary inequality

1
[ulee < 7 lulz + 2lulalusls, (2.18)
it is deduced from (2.17) that
1d B 2
5 gz ues(5 D2 + (0 = Dlues(, O <0, (2.19)
where
5p (1 =
Q@ = QJuly, luzsl2) = > (flulz +2Ju 3/2|uu|;/2) fuly ez
L——2

1 2
o0~ 1) (i + 2l ucels?) T lualuzels

The function Q is an increasing function of both its arguments. According to (2.16),
|u(-,t)|2 is a decreasing function of t > 0. Hence if Q|9 < 0, then |uz.(-,t)|2 is non-

increasing for t > 0. In particular, if

Q (Juol2, [uo,.|2) < o, (2.20)

then the H?-semi-norm |uz(+,t)|2 is bounded by its value at ¢ = 0.

This concludes the proof of the theorem. [J

COROLLARY 2.5. Let ug € H*(R) for some s > 2 and let u be the corresponding solution
of the initial-value problem (2.14) with parameters €,0 > 0 and p > 4. There is a constant
v = v, depending only on p such that if

3p—2 P12
|'U,0|2 * Iuozz|24 S VPU’ (2'21)
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then ||u(-,t)||2 is uniformly bounded for all t > 0.

Proof. Simply take the limit as L — +oo in (2.20). [

Consider again the situation where ug(z) = A(K«z) for some positive constants A

and K. In this case, (2.21) amounts to the inequality
APK L vo, (2.22)

where v is a constant depending on p, ||z, and [tzz]2. In particular, if ug = Au,(z,0)
is the perturbed solitary wave discussed earlier, then our theory implies that the solution

emanating therefrom will exist globally in time provided

o2/3c1/3

Z = _——AF Z CII,, (2‘23)

where C), is a constant depending only on p.

Just as for the initial-value problem (1.3) with § > 0, solutions of (2.14) that satisfy
the initial restriction (2.20), decay to zero exponentially in ¢. This is already established
for the Lo-norm, and for data respecting (2.20), the differential inequality (2.19) implies it
for the H2?-semi-norm. Other semi-norms also decay exponentially. Note that in this case,
the exponential decay rates are still valid in the limit as L — -+oo applicable to initial data
in H*(R).

The theory propounded in this section will provide a framework for the numerical sim-
ulations of (1.3) and (2.14) reported in Section 4. In the next section, a careful description

and associated benchmarks of our numerical schemes are provided.

3. THE NUMERICAL METHOD

After a brief review of preliminaries about splines and Runge-Kutta methods, the nu-
merical technique used to approximate solutions of (1.3) and (2.14) is presented. Through-

out this section and the next, the spatial period L will be normalized to the value 1.
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The numerical scheme is a straightforward adaptation of one of the fully discrete
Galerkin methods for (1.1) that was described in detail and analyzed in Bona et al. (1994).
This scheme will be briefly reviewed below. We shall study its application to the initial-
and periodic-boundary-value problem (1.3). Entirely analogous considerations apply when

the scheme is used to solve the problem (2.14).

Let r 2 3 be an integer and S, = S}, be the N-dimensional vector space of 1-periodic
smooth splines of order r (piecewise polynomials of degree r—1) on [0, 1] with uniform mesh
length h = 1/N, where N is a positive integer. As usual, the standard semi-discretization
of (1.2) in the space S} is then defined to be the differentiable map up : [0,T] — Sp
satisfying

(uht + uzuhx’ X) - e(uh:c:c, X:c) == 6(Uh;,;, X-’B) =0 (31&)

for all x € Sy and 0 <t < T, which is such that

ur(0) = Hpue. (3.1b)

Here II, uo is any of several approximations of ug in S, (for example, Lj-projection,

interpolant, etc.) that satisfy an estimate of the form

[T, uo — uol2 < ch” ||uollr (3.2)

for ug € H", and where c is a constant independent of uo and h. (Constants independent
of the discretization parameters will frequently occur in the sequel and will be denoted by
¢, C, etc.) For smooth, periodic initial data u¢ for which (3.2) holds, and assuming that
the associated solution u(z,t) of (1.3) is sufficiently smooth on [0, T], it may be proved,
following the analysis in Baker et al. (1983) that there is a constant ¢ = ¢(u) depending
on the solution u, but not on the discretization parameter h, for which

R lup — ulz < c(u)h. (3.3)
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Upon choosing a basis for S, and representing uj in terms of this basis, the problem (3.1)
is seen to be an initial-value problem for a system of ordinary differential equations which

may be written compactly in the form

Uht =F(uh)a0StST7

(3.4)
up(0) = IIy uo,

where F' : S}, — S}, is defined by

(F(v)’ X) - _(vp Vg, X) Sir (5'0:” — dvg, X:c) (3.5)

for all x € Sy. Having recognized (3.1) as the initial-value problem (3.4), an appropriate
numerical method for the approximation of systems of ordinary differential equations leads
to a fully discrete approximation to (1.3). In our companion paper on the non-dissipative
case, use was made of the family of implicit Runge-Kutta methods of Gauss-Legendre type.
These were found to possess favourable accuracy and stability properties when applied to
(1.1). They can be extended in a straightforward way to the dissipative case at hand. In
particular, the fact that these methods don’t generate artificial damping is very helpful
when small values of v or o are in question. For simplicity, consideration is given here only
to the two-stage member of the Gauss-Legendre family. Let k be the time step (considered
constant for the moment) and let t, = nk , n =0,1,2,...,J, where J is some positive

integer such that Jk = T. For each integer n € [0, J], we seek a function U™ € Sj, with
U =T, uo (3.6)

and which approximates u, = u(:,t,), where u(z,t) is the solution of (1.3). For n =
0,1,2,...,J—1 the approximation U"*! is constructed from U™ through two intermediate

stages U™! and U™? in S}, that are solutions of the system of nonlinear equations

) 2 ;
U=k B ey O, =12, (373)
]=
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by the formula
2 .
yrtl =yUn 4+ k '21 b; F(U™7), (3.7b)
J=

where the 2 x 2 matrix A = (a;;) and the 2-vector b = (b1, b2)T that define the two-stage

Gauss-Legendre method are given in the following tableau:

1 1 1
a11 212 1 1723
1 1 1
az1 az2 iy W y
1 1
by by 2 2

In view of Lemma 3.2 of Bona et al. (1994), it is straightforward to generalize Proposi-
tion 3.1 of this reference to include the system under consideration here and thereby prove
that for any given U™ € S}, there are elements U™, U™? of S, that satisfy (3.7a). The
scheme that then assigns to U™ the function U™ defined by (3.7b) is stable in L,, which
is to say that

U, <|U%2 for 1<n<J (3.8)

The latter property follows from the well known conservative nature of the Gauss-Legendre
implicit Runge-Kutta schemes implied by the fact that bia;; + bja;; — bib; = 0 for all the
relevant i,j. The fact that the time-stepping scheme is conservative means that U2 =
|U%); for n = 1,...,J in the non-dissipative case § = 0 since then (F(v),v) = 0 for all
v e S), whereas the inequality (3.8) holds when § > 0 since then (F(v),v) < 0 for all ve S.
It deserves remark that the use of a conservative time-stepping scheme to approximate
solutions of a dissipative partial differential equation seemed to work very well in the

numerical experiments to be reported later.

The following remarks are meant to summarize the convergence theory pertaining to
the scheme just outlined. The theoretical analysis of this scheme for (1.3) with 6§ > 0

follows in detail that already derived for the initial-value problem (1.1) with é = 0 in Bona
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et al. (1994). Adapting the convergence proof contained in the last-cited reference leads
immediately to the conclusion that, provided the solution is smooth enough on the time
interval [0, 7] and k/h is sufficiently small, there is a unique solution U™ of (3.7) and it

satisfies the optimal-order Ly-error estimate

n n 4 r
o U™ —u(-,t™)]2 < c(k* + A"). (3.9)

Analogous estimates may be established for higher-order accurate Runge-Kutta time-
stepping methods following the arguments in Karakashian & McKinney (1990). In the

case of a g-stage Gauss-Legendre method with the same hypotheses about smoothness and

k/h, (3.8) holds and (3.9) generalizes to the optimal-order L,-estimate

n __ . 4N < 2q Y.
omax, U™ —u(,t")|2 < (k™ + 27)

It is well known that the temporal rate 2¢ obtained for the Gauss-Legendre method is the

best that can be achieved by a ¢-stage Runge-Kutta method.

A word is appropriate about the numerical linear algebra involved in the implementa-
tion of the scheme described above. At each time step the 2dim Sj X 2dim S), nonlinear
system represented in (3.7a) is solved by a doubly iterative scheme based on Newton’s
method. The work is organized in such a way that each time step only requires the solu-
tion of a small number of sparse, dim S X dim S, complex linear systems with the same
coefficient matrix. The details of the construction and implementation of this solver are
virtually the same as those used earlier in the non-dissipative case described in Section 4 of
Bona et al. (1994). In the numerical experiments whose outcome is presented here, use was
made of only the simplest iterative scheme considered in the last-cited reference, namely
the one corresponding to one “outer” (Newton) and two “inner” iterations at each time
step; this scheme requires solving only two sparse complex systems of size dim S x dim S5,
per time step. We pass over the details since they are adequately covered in the previous
work. For a theoretical analysis of the approximation of solutions of nonlinear systems

such as (3.7a) by Newton’s method, see Karakashian & McKinney (1994).
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It transpires that some of the solutions whose approximation is of interest feature very
rapid spatial and temporal changes. To keep track of the solution in such circumstances, it
proved necessary to introduce adaptive mechanisms into the numerical procedure. These
mechanisms took two distinct forms. First, a criterion was designed to refine the temporal
step size as the solution began to evolve rapidly, and then a procedure was developed to
cut the spatial meshlength in a neighborhood of points where large values of the dependent
variable are detected. The experiments reported here were all performed using a computer
code that featured both of these developments. Their implementation is presented and
discussed in Section 5 of Bona et al. (1994). It is geared toward approximating solutions
that are developing a single peak that apparently becomes infinitely high at a finite time
t* at a well-defined point z*. The spatial refinement is controlled by making use of a local
version of the inverse Lo, — Lo inequality satisfied by members of S}, and the temporal

step is defined by reference to the local, temporal variation of the quantity

I3(v) = ‘/‘; [v”"'z(w) — 6(p F 1)2(p +23) v2(z)| dz. (3.10)

More precisely, the computer code looks at the variation of I3(U™) with n and cuts the
time step when a normalized version of this quantity’s change exceeds a specified tolerance.
The functional I3 came to the fore in the earlier work on the GKdV equation (1.1) because
I3 is an exact invariant of this evolution. That is, if u = u(z,t) is an H!-solution of (1.1),
then I3(u(-,t)) is time independent. Although I3 is no longer an invariant of the evolution
generated by (1.2) when é > 0, its variation was still found to generate an effective criterion

for keeping errors under control by refining the temporal discretization.

4., NUMERICAL EXPERIMENTS

The scheme just presented was used by Bona et al. (1994) in a detailed study of the
initial-value problem for equation (1.1). As mentioned already, considerable attention was

paid to issues surrounding the solitary-wave solutions written in (2.12). Although the
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function u,(z,t) in (2.12a) is an exact solution of (1.1) when this equation is posed on the
entire real line, one may use it to define a solution on [0, 1], say, with periodic boundary
conditions imposed at the endpoints, as discussed in detail in Bona (1981). If A/e is large,
then u, decays very rapidly away from its peak value. Hence if at t = 0 the peak is centered
at the midpoint of the spatial interval (zo = 1/2 in (2.12a)), then to machine accuracy it
defines initial data supported in [0, 1]. Consequently, it may be extended to define periodic

initial data thusly,

o0

do(z) = Y us(z+35,0) (4.1a)

j==oco

and this data used to determine a spatially periodic solution of (1.2), say. As shown in
Bona (1981), the periodic solution of (1.1a) emanating from #o above is, to very good

approximation over relatively long time scales, given by

oo

u(z,t) = Y us(e +4,1). (4.1b)

j=—o0
The same remarks are valid for any initial data that decays rapidly to zero outside a finite
region of space, although the longer the spatial period [0, L], say, the longer the time scale

over which the solution of the periodic initial-value problem is well approximated by (4.1b).

It is known from earlier theory (see Bona et al. 1987) that the solitary-wave solutions
u, in (2.12) are orbitally stable for p < 4 and unstable if p > 4. Also, while (1.1) is always
locally well posed in reasonable function classes, it is known to be globally well posed
for initial data unrestricted in size only when p < 4, (see Kato 1979, 1983, or Schechter
1978). Two natural questions arise from these theoretical considerations. First, what
happens when an unstable solitary wave is perturbed? Second, is (1.1) globally well posed
if p > 4?7 The numerical simulations in Bona et al. (1986) and Bona et al. (1994) indicate
the answers to these two questions are related. The conclusions to which reference was
just made were based on the outcome of numerical experiments conducted with the fully
discrete, adaptive scheme presented in the previous section. It appears that the instability

of the solitary-wave solution manifests itself in a transformation to a similarity solution
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that goes on to develop a single-point blow-up in finite time. That is, there is a point
(z*,t*) € [0,1] x (0,00) such that |u(z,t)| = +oo as (z,t) — (z*,t*), t < t*. A detailed
analysis of a considerable collection of numerical simulations support the more precise

conjecture that the similarity solution corresponding to the blow-up has the form

1 ¥ —z
u(z,t) = = t)2f3px ((t* o t)-‘/3) + bounded terms, (4.2)

where y is a smooth, bounded function. These tentative conclusions in turn yield a negative
answer to the question of whether or not the initial-value problem (1.3) is globally well
posed for p > 4. Further experimentation showed that more general classes of initial data
rapidly decomposed into profiles resembling a sequence of solitary waves, the largest of
which loses stability and evolves into a similarity solution of the type indicated in (4.2)

and thus proceeds to form a singularity in finite time.

4A. BLOW-UP FOR SMALL DISSIPATION

It is the aim in this section to understand how the results just reviewed are modified
by the addition of a Burgers-type dissipative term as in equation (1.2) with small § > 0.
As was seen in Section 2, for § sufficiently large, the solution of the initial- and periodic-
boundary-value problem (1.3) exists globally in time and decays to the mean of the initial
data exponentially. However, if one sets as initial data a perturbed solitary wave that
apparently blows up when § = 0, the numerical experiments indicate that for 6 below a
critical value §., the resulting solution of (1.2) seems also to blow up. Moreover, the various
diagnoses, to be introduced presently, pertaining to the putative blow-up give results that
are virtually identical with those that obtain in the absence of dissipation, though the time
t* of blow-up is retarded by the dissipation. The value of §. depends upon the initial data
of course. The computations show that for a slightly perturbed solitary wave of amplitude
A, the critical value of é. has the form 6, = AP c, where ¢, is a constant depending

only upon p. It is especially interesting to recall that the theoretical analysis of Section 2
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showed unequivocally that for p > 4, there is a constant C), such that if § > ¢A? Cp, then
the solution emanating from initial data uo of amplitude A exists globally in time and
decays to the mean of ug exponentially. This sharp agreement between analytically and
numerically deduced information regarding a supposed scaling law for é. lends credence
to its existence. Analogous numerical experiments for the zero*"-order dissipative problem

(2.14) confirm the validity of a scaling law of the form (2.23) for o..

With this background discussion and preview of some of the more important con-
clusions in hand, attention is now directed to a detailed description of the outcome of
our numerical experiments. Reported first are computations for the initial- and periodic-
boundary-value problem (1.3) with p = 5,6 and 7. The borderline case p = 4 had already
proved to be more difficult to understand when é§ = 0, and so it was not included in the
present study. We first consider, as in the previous study, initial data which is a simple

amplitude perturbation of a solitary-wave, to wit
uo(z) = AAsech??(K(z — ) (4.3)

with K as in (2.12b) and with the perturbation parameter A > 1 typically taken to be
1.01.

Consider the case with A =2.0, A =1.01, p=5and € = 5 x 10~* which was studied
with § = 0 in Bona et al. (1994). As seen clearly in Figure 6 of the last-quoted reference,
the solitary wave rapidly lost it shape and its peak became unbounded, whilst exhibiting
self-similar behavior. Let M(t) be some norm of the solution emanating from (4.3), say,
that becomes infinite in finite time. Its rate of blow-up is p where M(t) ~ (t* — )" as

t — t*, where 1, is as before, the blow-up time. The rate p is approximately equal to

p= — log[M(71)/M(1;)]
log[(m* — 1) /(T* — )]

where 7y, 7, are two distinct instances of ¢t < t*, but near t*, where M (t) is known.

The blow-up rates were computed for the approximate solution for the L,-norms with

¢ = p—1, p, p+1, p+2, oo and for the Ly- and Leo-norms of its spatial derivative (denoted
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L2,p and L, p, respectively). Naturally, the blow-up rates will not usually settle down
to their asymptotic values until ¢ is quite close to ¢*. In Table 1 below are reproduced the
numerically computed blow-up rates corresponding to the approximate solution emanating
from the just-mentioned perturbed solitary wave at the times 7; at which the computer

code calls for the i** spatial refinement. For details, the reader may consult Section 5 of

Bona et al. (1994).

i| L, L, T Lyt | Lo | Lop | Loon
5 | .5029(-1) | .6683(-1) | .7795(-1) | .8590(-1) | .1336 | .3008 | .4657
10 | .5047(-1) | .6729(-1) | .7853(-1) | .8657(-1) | .1348 | .3028 | .4731
15 | .4983(-1) | .6647(-1) | .7759(-1) | .8554(-1) | .1334 | .2992 | .4618
20 | .4989(-1) | .6658(-1) | .7773(-1) | .8572(-1) | .1338 | .2999 | .4690
25 | .5044(-1) | .6728(-1) | .7851(-1) | .8654(-1) | .1347 | .3020 | .4747
30 | .4974(-1) | .6633(-1) | .7741(-1) | .8534(-1) | .1329 | .2985 | .4685
35 | .5001(-1) | .6672(-1) | .7786(-1) | .8583(-1) | .1336 | .3004 | .4654

Table 1

Blow-up rates. Perturbed Solitary wave, p=15, e =5 x 107%, § = 0,
T =.22549 x 107!, f =42, 2* = 61333, Umax = 224,766,
kmin = .23 x 107%°, A7y = .16 x 10738,

The tolerance levels used to trigger the spatial and temporal refinements in the result
represented in Table 1 were chosen on the basis of extensive computational experience.
Simulations to be reported presently of the dissipative case utilized the same values of
these parameters. In the legend of Table 1 are recorded the final time 75 that is achieved
after f spatial refinements, the approximate point z* € [0, 1] of blow-up and the amplitude
Umax that the numerical approximation attained at ¢t = 7s. The parameter kpi, is the
smallest time step arising in the computations and A7y is the temporal increment the
program made between the last two spatial refinements. Initially, the spatial meshlength
was ho = 1/192 and the time step ko = 1073, It is useful to compare the blow-up rates

in Table 1 to those that would obtain if the solution had the form depicted in (4.2). For
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the reader’s convenience, these hypothetical rates for the case p = 5 are displayed in Table
2. The agreement between corresponding values in Tables 1 and 2 lends credibility to
the conjecture in (4.2). Graphs of the solution as a function of & for various values of ¢
provided in Bona et al. (1994) also support the conclusion that the putative blow-up has

a similarity form.

Norm| Ly | Ls | Ls | L1 | Le|Lyp| Leos]|
Rate | .500(-1) | .667(-1) | .778(-1) | .857(-1) | .133 | .300 | .467 |

Table 2

Predicted blow-up rates according to (4.2) for p = 5.

What happens to the picture just outlined when dissipation is added? To approach
this issue, we considered the approximation of a solution of ( 1.3) with all the parameters
for the initial data as in the simulation just described except that § was set to the positive
value 2 x 10~%. The parameters relating to the numerical scheme are also as above except
that the initial time step ko was taken to be 1 /1600 to minimize the numerical errors

associated with the first stage of the integration.

The evolution in time of the approximate solution in the case of positive dissipation is
depicted in the sequence of plots in Figure 1. The first four plots, which comprise Figure
la, show the same response to the perturbation that was observed in the dissipationless
case, namely the formation of a thin spike which proceeds to blow up at about the point
(z*,t*) = (.65812, .038624). In the graphs displayed in Figure 1a, the solution appears to
blow up at zo = 1/2, but this is due to the occasional translations of the peak back to
z = 1/2 to keep the maximum value of the solution located in the interval with the finest
grid. This strategy allowed us to refine the spatial grid in a static way rather than moving
the grid to follow the peak. (Actually, our simulations suggest that the center X (t) of the
peak at time ¢ behaves according to the law X(t) ~ a* + C(¢* — t)!/3 as t approaches t*,

where C' is some negative constant depending on 6, ¢, p and g.) The second set of four
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Blow-up in the presence of small dissipation.
Perturbed solitary wave, p=5, A =2, A=1.01, e =5x107%, § =2 x 10~*,
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Self-similarity of the blow-up. Data taken from the run of Figure 1a.
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graphs in Figure 1b show, on a suitably rescaled set of z-t axes, a detailed view of the
peak as it blows up. In these graphs the peak has been relocated to about z =0 and the
depiction is only that portion of the solution in the interval corresponding to the finest
spatial grid (e.g. [—6.81 x 107'%, 6.81 x 10~1%] in the fourth plot). These plots make
plausible the presumption that there is a similarity structure through which the blow-up
proceeds. Having determined that the solution corresponding to § = 2 x 10™* and the
previously mentioned perturbed solitary-wave initial data appears to form a singularity at
a finite time t*, it seemed appropriate to compute its blow-up rates near t*. These are
shown in Table 3, whose legend provides the precise values of all the parameters pertaining
to this simulation. As in Table 1, there appears to be well-defined asymptotic blow-up rates
associated with this solution, and, moreover, these blow-up rates are sensibly the same as
those in Tables 1 and 2. Similar agreement in blow-up rates was observed in the analogous
numerical experiments with perturbed solitary waves for p = 6 and 7. We also performed

a set of experiments with initial data
uo(e) = Ae™ D, (44)

which is a Gaussian profile not specifically tied to a travelling-wave solution of (1.1a). When
an approximate solution was developed using our scheme and A =1, p=5, e =2 X 10~4
and § = 1074, it was found that the solution apparently blew up in finite time, at about
the point (z*,t*) = (.72886, .37376) where the approximate solution U had attained a
value Ugax = 17,148. The form of the blow-up was much like that observed in the non-
dissipative case (see §5 of Bona et al. 1994). In addition, the blow-up rates of the various
norms of the solution emanating from the ug in (4.4) all agree to at least two digits with
those for the solitary wave shown in Table 3. This lends further support to a scenario that
is described as follows. The Gaussian initial data quickly resolves into a solution dominated
by pulses that resemble solitary waves. The largest of these then becomes unstable and
proceeds to form a singularity in finite time through the same route as seen already for

the perturbed solitary wave in Figure 1.
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i| L, By Lyia Lit2 | Lo | Lop | Leo
5 | .5049(-1) | .6700(-1) | .7814(-1) | .8612(-1) | .1341 | .3009 | .4639
10 | .4995(-1) | .6655(-1) | .7763(-1) | .8555(-1) | .1331 | .2994 | .4594
15 | .5000(-1) | .6670(-1) | .7787(-1) | .8586(-1) | .1339 | .3004 | .4660
20 | .4987(-1) | .6645(-1) | .7747(-1) | .8533(-1) | .1325 | .2988 | .4598
25 | .5012(-1) | .6688(-1) | .7808(-1) | .8609(-1) | .1343 | .3012 | .4683
30 | .5012(-1) | .6681(-1) | .7793(-1) | .8587(-1) | .1334 | .3006 | .4720
35 | .5007(-1) | .6675(-1) | .7786(-1) | .8579(-1) | .1333 | .3003 | .4665

Table 3

Blow-up rates. Perturbed solitary wave initial data, p=15, e =5 x 107%, § =2 x 10™*
T =.38624 x 107!, f =39, 2* = .65812, Umax = 98,050, kmin = .60 x 10738,
ATy = .77 x 1073,

It appears that the major effect of a small amount of dissipation added to the nonlinear,
dispersive equation (1.1) is just to delay the blow-up. This is seen by comparing the
approximate blow-up times 75 in Tables 1 and 3. Since the peak propagates in the direction
of increasing values of x, the blow-up point z* is consequently translated to the right as

well,

This paradigm changes as the level of dissipation increases. For example, repeating
the numerical experiment corresponding to Figure 1, except with § increased to 1073, the
approximate solution was soon observed to develop dispersive oscillations followed by a
steady decrease in the maximum amplitude (see Figure 2). By the time ¢ had the value
.09974, the largest excursion of the approximate solution was only about 1.03. A more
detailed view of the temporal decay of this solution will be provided in the next subsection.

This pair of experiments pointed to the following possibility: For fixed initial data u,
that leads to the formation of a singularity in finite time when § = 0, there is a critical
value é. of § such that solutions emanating from ug will form a singularity in finite time if

6 < 6., and will exist globally in time if § > ..
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time= 0.0000D+00 time= 0.1248D+00
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Figure 2

Oscillations and decay in the presence of larger dissipation.
Perturbed solitary wave, p=5, A=2, A=1.01, e =5 x 1074, § = 1073.
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This hypothesis was copiously tested by several sequences of numerical experiments
with perturbed solitary waves of the form (4.3) as initial data. Some of these results were
presented in detail in Section 4 of Bona et al. (1992). On the basis of such experiments, a
conjecture was stated in the just cited reference to the effect that there is a critical value
¢p, depending only on p, of the parameter A = §%¢/AP, such that if A < ¢, the solution
blows up at a point in finite time, while if A > ¢,, the solution exists for all £. The second
part of this conjecture has now been proved (cf. Theorem 2.1 and subsequent remarks in
Section 2; the constant C} in (2.13) can be traced through the proof and, not surprisingly,

turns out to be much larger than the experimentally observed value c,.)

For a perturbed solitary-wave initial datum of the type (4.3) and a given set of param-
eters A,e,p and A (as mentioned before, we always took A = 1.01 and experimented with
p = 5,6 and 7), we recorded two nearby values §; and 6} of the dissipation parameter,
selected so that there was definite blow-up if § < 6 and definite global existence and decay
if § > 6F. As an example, we show the outcome of one such experiment corresponding to

p="5, A=2, A =1.01, giving 6, and &} for various values of ¢:

€ o, 6F
.10(=3) .10(—3) 11(=3)
25(—3) 16(—3) 17(=3)
50(-3)  .230(=3)  .235(—3)
80(—3) 28(—3) 30(—3)

The transition between ‘definite’ decay and ‘definite’ blow-up was quite sharp. This
enabled us to define with some confidence a computationally determined version of the
critical value é. to be the average of the sharpest achieved values §; and 6} after making
the interval (67 ,67) as narrow as was computationally convenient.

In Table 4 we show, for p = 5,6 and 7 and for various values of the amplitude A, the
value of the parameter §2/e. (This was computationally checked to be independent of ¢
for fixed A,p and JA; the particular data of Table 4 correspond to ¢ =5 x 10™%). We also

record the numbers ¢, = 62/eAP. The data clearly suggest that c, is independent of A
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and seems to be an increasing function of p, equal to about .34 x 1075, 1.22 x 10~%, and

2.42 x 1073 for p = 5,6 and 7, respectively.

A p=39 p=6 p=1
82 /¢ Cp 82 /¢ Cp 6 /e Cp
1.5 .026(-3) .3483(-5) .140(-3) 1.2330(-5) 414(-3) 2.4233(-5)
2 .108(-3) .3379(-5) .781(-3) 1.2207(-5) 3.100(-3) 2.4219(-5)
2.5 .328(-3) .3359(-5) 2.952(-3) 1.2093(-5) 1.485(-2) 2.4332(-5)
3 .832(-3) .3424(-5) 8.862(-3) 1.2156(-5) 5.315(-2) 2.4302(-5)
Table 4

Critical values 62 /¢ and ¢, = §2/c AP

for blow-up of perturbed solitary wave initial value (4.3), A = 1.01.

As discussed already, other classes of initial conditions resolve themselves into solitary
waves plus a dispersive tail, even in the presence of dissipation. One would expect that
if the largest solitary wave that emerges has amplitude A, then for é§ large enough to
guarantee the decay of this solitary wave, there should exist a global solution evolving
from the given initial condition. On the other hand, if § is such that the corresponding A

is below its critical value, then it is expected that the solution will blow up in finite time.

We close this subsection with a brief computational study of the effect of the zerot®
order dissipation term owu on the behavior of solutions of the initial value problem (2.14)
evolving from perturbed solitary-wave initial data of the form (4.3). As remarked in Section
2,if & = (0%¢)1/3 / AP is sufficiently large, a global solution exists, in fact decaying to zero in
L, exponentially as ¢ — co. The numerical experiments conform to this fact and indicate
that there exists a constant c;,, depending only on p, such that if ¥ < c;, the solution blows
up in finite time, whereas if ¥ > ¢}, it will exist globally. In the event of blow-up, the blow-
up rates were almost identical to the ones observed in the case of the (undamped) problem
(1.1), suggesting that a similarity structure of the type (4.2) is formed again. Thus, the

self-similar profile given by (4.2) proves to be quite stable under both types of dissipation
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considered here. It should be noted that (2.14) seems to be a harder problem to integrate
numerically up to blow-up as compared with (1.3), the reason probably being that as the
blow-up is delayed by dissipation, small numerical oscillations may pollute somewhat the
solution as it blows up. Such oscillations are likely to be damped more effectively by the

second-order term —éuyz.

Table 5 shows the results of a series of typical numerical experiments for p = 5 and
various values of 4,0 and €. (We took A = 1.01 as usual.) For a given value of A and o,
we varied e and recorded a pair of nearby values ¢4 and ¢_ chosen so that the interval
[e_,€e4] was narrow, with definite blow-up as the outcome if ¢ = e_ and with definite global
existence and decay if ¢ = 4. For the blow-up value, we also record Upax the maximum
amplitude reached at the end of the computation, as well as 7y, the approximate blow-
up time. The critical value is indeed seen to be a constant, equal to about 1.8 x 1073

independently of A, o and €.

!

Alo € Result | Umax Ts cy

1.7] .4 | .11(-3) | decay
10(-3) | blow-up | 2071 | .0776 | 1.804(-3)
1.8 | .3 | .44(-3) | decay
43(-3) | blow-up | 451 | .1188 | 1.797(-3)
1.8| .4 | .25(-3) | decay
24(-3) | blow-up | 2430 | .0844 | 1.798(-3)
1.8].5|.16(-3) | decay
15(-3) | blow-up | 1951 | .0607 | 1.791(-3)
1.9 | .4 | .56(-3) | decay
55(-3) | blow-up | 107 | .1030 | 1.802(-3)

Table 5
Blow-up and decay of (2.14). Perturbed solitary wave initial data, A=1.01, p=5.

The computed critical value of & = (o%e)!/3 /AP is given in the last column of the

Table. (The value ¢, was taken as the average of the two recorded values ¢4 and e_ of €.)
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4B. DECAY OF SOLUTIONS

In this section attention is restricted to the periodic initial-value problem (1.3) for the
generalized Korteweg-de Vries-Burgers equation in which the spatial period of the initial
data and the corresponding solution is normalized to be L = 1. The dissipation parameter
6 is taken large enough that the problem has a global solution. In this case, it follows from

Corollary 2.3, that the solution of (1.3) decays in L? exponentially fast, indeed, satisfying
|u(-,t) = Tolz < e @™ 8¢ ug — gy, (4.5)

where Uy = fol uo(z)dz. In addition, if uo belongs to H*(0,1), and satisfies the smallness
condition (2.9) relative to §, then all seminorms |8 ulz, 1 < j < s, decay exponentially to
zero as t grows. (In Corollary 2.3 the proof given yields that |u,(-,t)|2 decays with a rate

of O(e=(2™*8't) for some constant §' with 0 < §' < 6.)

As may already be gleaned from the example presented in the previous subsection
(cf. Figure 2), the solution evolving from, say, a solitary-wave initial profile, breaks up,
develops an oscillatory tail that travels around due to periodicity and interacts with the
bulk of the wave, thereby producing an irregular pattern of oscillations. As ¢ grows, the
various modes of the solution decay, with the highest ones vanishing first. Eventually, the
solution settles down to a sinusoidal profile which decays to the constant uy while travelling
with a speed determined by %, and the dispersive term in (1.3). Thus, for very large values

of ¢, the solution is essentially governed by the linearized equation corresponding to (1.2).

In the first part of this section we shall study, by means of numerical experiments, the
details of the just outlined behavior of the long-time decay of solutions. In the second
part we shall present numerical examples illustrating the short-time oscillatory break-up

of solutions and provide a brief commentary on this phenomenon.

Biler (1984), using techniques of Foias and Saut (1984), has proved sharp decay esti-
mates as ¢ — oo for the solutions of a class of nonlinear dispersive equations with dissipa-

tion, posed on an interval with periodic boundary conditions. His theory covers the initial-
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and periodic-boundary-value problem (1.3) for Uy, = 0 and p < 2, and shows, essentially,
that tll.»r{.lo M%ﬂh == tIEEO k’—gl";’ﬁ]i = —6A where A depends on uo and is one of the
eigenvalues (2mn)?, n =1,2..., of the operator —dl:; on [0,1] (i.e. of the differential oper-
ator in the dissipative term), with periodic boundary conditions at the endpoints. Hence,
both |u|z and |ug|z are O(e=%At) as t — oco. Here, for two types of initial conditions u,
and for p = 5 and 6, we shall present computational evidence which, among other things,
suggests that in various norms the solution of (1.3) decays to up in such a way that it is
O(e_(z”)zﬁt) as t — 400. In particular, the decay rate in (4.5) appears to be sharp.

In a first experiment, we took p = 5, ¢ = 0.5 x 1072, § = 0.2 x 1073, and, as initial
value, the perturbed solitary wave of the form (4.3) with A = 1.5, A = 1.01, and mass
Up = .141258. For all norms or seminorms M(+) (see below) considered, it was observed that
the decay was indeed exponential We then determined for each quantity M the constants

B and p such that

M(u(t) —up) ~ Be ™™, as t— oo. (4.8)

This was accomplished by computing M; = M(u(t;) — Up) at times t; = to + 1AL, ¢ =

1,2,..., where At = 2, and determining for each ¢ the values

-1 M,
W=7y 8\, /)

and

B; = Miexp (uit;)

The results are shown in Table 6 for ¢t up to 500. The quantities M(v) are the norms
|v|g, g = 2, p, 00, and also, the seminorms |v|2 and |vg|eo. For each M and different values
of t;, the corresponding computed values of y; and B; are recorded in Table 6a and Table
6b, respectively. We also show the rates and constants for the |v|; norms for ¢ = p — 1,
p+ 1 and p+ 2 only at the final instance ¢ = 500 since their evolution with increasing ¢

closely resembles that of the entries of the LP column.
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t L, L, Lo L, p Lo,p
20 | .15061(-1) | .49132(-1) .10203 .37086(-1) .18847
40 | .10434(-1) | .14300(-1) | .15728(-1) | .16468(-1) | .48906(-1)
60 | .89678(-2) | .53166(-2) | -.33487(-1) | .99156(-2) | .36859(-1)
80 | .83190(-2) | .10563(-1) | .41326(-1) | .10284(-1) | -.18133(-1)
100 | .80498(-2) | .86300(-2) | .19954(-1) | .84097(-2) | -.62585(-2)
200 | .78970(-2) | .78983(-2) | .49293(-2) | .79085(-2) | .14790(-1)
300 | .78957(-2) | .78961(-2) | .83062(-2) | .78961(-2) | .76502(-2)
400 | .78957(-2) | .78957(-2) | .79115(-2) | .78957(-2) | .78744(-2)
500 | .78957(-2) | .78957(-2) | .78934(-2) | .78957(-2) | .79025(-2)

t Lp—l Lp+1 Lp+2
500 | .78957(-2) | .78957(-2) | .78957(-2)
Table 6a

Decay parameters u. Perturbed solitary-wave initial profile, p = 5,6 = 0.2 x 1073, = 0.5 x 1073.

t | Ly L, Lo Lip | Lep
20 | .28507 | .70903 | 2.88439 | 3.78547 | 125.11658
40 | .25131 | .34881 02391 2.29930 | 16.33909
60 | .23425 | .22288 | .31065(-1) | 1.65868 | 14.17259
80 | .22425 | .30862 | 4.66287 | 1.68911 .29991
100 | .21903 | .26574 | 1.06674 | 1.44014 .52915

200 | .21504 | .24510 .16915 1.35432 | 7.59734

300 | .21498 | .24498 .34389 1.35089 | 1.77678

400 | .21497 | .24495 .30599 1.35072 | 1.89423

500 | .21497 | .24495 .30368 1.35072 | 1.91675

t | Lp—1 | Lptar | Lpyo
500 | .23791 | .25044 | .25487
Table 6b

Decay parameters B. Perturbed solitary-wave initial profile, p = 5,6 = 0.2 x 1073,¢ = 0.5 x 1073.
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We observe that after an initial transient stage, the Ly,q = 2,p — 1,p,p+ 1,p + 2
and Ly p rates py and the associated B’s stabilize to constant values. The Lo, and Loo,p
values also stabilize after a larger time period has elapsed; this probably reflects rougher
actual decay of these norms and the extra difficulty generally encountered in pointwise
approximation. The eventual rate of decay that emerges from the L,,q < p+ 2 and
Ly p columns is clearly p = .78957(—2). This is an accurate approximation of (27)%§ =
789568 . .. (—2) to five significant digits. The L, and L, p values have three, respectively
two, correct digits. It seems safe to conclude then from this experiment that all norms
of u — Wy decay exponentially in time with decay rate y = (27)28 and constants B that

depend on the particular norm measured.

In a subsequent experiment, the dissipation constant was doubled to § = .4 x 1073
while keeping all other parameters the same. As a result of the larger value of §, the decay
is faster and the entries stabilized grosso modo by t = 140. The results are shown (at
t = 140 only) in Table 7, and confirm the decay rate u = (2m)26; here the exact value is
(27w)%6 = .157914(—2). We also observe that for all norms the constants B have decreased

almost uniformly by about one percent; hence these constants probably depend weakly on

6.

Norm u B
L, | .15791(-1) | .21269
Lp_y | .15792(-1) | .23540
L, |.15792(-1) | .24237
Lyyq | .15792(-1) | .24781
Lpy2 | .15792(-1) | .25219
Lo | .15549(-1) | .29101
Ly p | .15792(-1) | 1.33652
Loo,p | .16900(-1) | 2.20768

Table 7
Decay parameters p and B at t = 140.
Perturbed solitary-wave initial profile, p=15, § = 0.4 x 1073, ¢ = 0.5 x 1073,
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It should be mentioned that the decay rate (2m)?6 was confirmed for all the norms and
seminorms considered in analogous numerical experiments with a pertrubed solitary-wave
initial profile in the case p = 6. Finally we experimented with a Gaussian initial profile of
the form (4.4) (for which W, = .177245), taking p = 5, € = .2 X 1073, § = 1073 in (1.3)
and integrating up to ¢ = 80 by which time the constants 4 and B for each norm and
seminorm under consideration (including both the Lo, and Loo,n entries) had stabilized.

The results are shown in Table 8. The computational decay rate p is again seen to be very

close to the value (27)2§ = .394784(—1) hypothesized earlier.

Norm w B

Ly | .39478(-1) | .21532
L,_y | .39479(-1) | .23830

L, |.39479(-1) | .24536
Lyt | .39479(-1) | .25086
Lyio | .39479(-1) | .25530

Lo | .39496(-1) | .30514
La.p | .39478(-1) | 1.35293
Loo,p | .39473(-1) | 1.91312

Table 8
Decay parameters y and B at t = 80.
Gaussian initial profile, p =5, § = 1073, ¢ = .2 x 1073,

A sample of the simulated temporal evolution of solutions corresponding to the solitary-
wave initial condition that yielded the results of Table 6, and to the Gaussian initial
condition from which Table 8 was produced, is shown in the sequence of plots of Figures 3
and 4, respectively. In both cases the solutions eventually settle down to profiles resembling

sinusoidal waves travelling slowly to the left as they decay to their respective values of .

An inspection of the first few terms of the series solution of a linear problem associated

to (1.2) proves quite illuminating. Defining w(z,t) = u(z,t) — Uo, one expects that since
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Figure 3a

Long-time decay of solitary-wave initial data. Parameters of Table 6.
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Figure 3b

Long-time decay of solitary-wave initial data, continued.
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Figure 4a

Long-time decay of Gaussian initial data. Parameters of Table 8.
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Figure 4b
Long-time decay of Gaussian initial data, continued.
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w tends to zero as t becomes large, for large ¢ the function w approximately satisfies the

linearized dispersive-dissipative equation
(] + 1’]0.);,; o &Ua:z + EWgzgs = 0, (4.7)

where n = ul. The solution of (4.7) posed with periodic boundary conditions on [0,1] and
with initial condition equal to the 1-periodic function wo(z) = ue(z) — o is given by the
Fourier series

w(:c,t) = Z ane—6(21rn)2t ez”‘"[‘”—(ﬂ—t(21rn)2)t],
n€Z

where a, = fol wo(z)e~?™"edz, n € Z, ap = 0. Keeping only the lowest frequency,

exponentially decaying terms yields the approximation
w(z,t) ~ ae~ (™6t oog {2n[z — (n — (27)%e)t] — €}, (4.8)

where the amplitude coefficient @ and the phase shift £ are constants depending only on the
first Fourier components fol wo(z)et?™® dx of wy. The relation (4.8) predicts the dominant
exponential decay rate O(e'(Z")zﬁt) as t — oo for solutions of the linear equation; as we
have seen this was also observed in the numerical experiments with the nonlinear equation
for u(z,t) — uwg for very large values of t. It also predicts that the decaying solution
asymptotically resembles u plus a sinusoidal wave profile that, as it decays in amplitude,
travels with a speed equal to n — (27)%¢ = (Uo)? — (27)%e. This is actually quite close
to the value that can be obtained from the output of our numerical experiments. As an
example, for the run corresponding to Table 6 and Figure 3, (4.8) predicts a speed equal
to —0.01968, which is an excellent approximation to the numerical speed observed in the
experiment and computed as follows. Let X(¢) denote the point in [0,1] where u(z,t)
attains its maximum. Using ¢; = 2(¢ — 2), ¢ > 3 and measuring the speed of the travelling
wave at time ¢; by the ratio v; = (X (¢;) — X($i=1)) /(ti — ti—1) (where the variable X is
viewed as an element of R/Z and distances computed accordingly) one obtains Table 9

showing the values of X(¢) and v at large values of ;.
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t; | X(%:) Vi
200 | .8975 | -.1853(-1)
300 | .9306 | -.1971(-1)
400 | .9629 | -.1967(-1)
500 | .9948 | -.1962(-1)

Table 9
Long-time speed of the travelling wave, example of Table 6.

Similarly, for the run with a Gaussian initial profile whose evolution was described in
Table 8 and Figure 4, (4.8) predicts a speed v equal to —.00772. The actual value of v at
t = 80 was —.00781.

Of course the linearized equation provides qualitative information only for very large
values of ¢, when the nonlinear term has ceased to be of any importance. For intermediate
values of ¢, the solution may decay in a complicated way, with energy being exchanged
between the lower and the higher modes; in fact, it can be the case that, initially, some
of the lower modes will actually increase for a short time due to the nonlinearity. This
history of nonlinear decay ought to be reflected, for example, in the constants B in (4.6),
which cannot be predicted solely in terms of uo as in the linear case. In fact, the weak
dependence of B on § observed in Tables 6 and 7 is probably due to the nonlinearity in the
problem. See Amick et al. 1989 for commentary on the role of nonlinearity in decaying

solutions of (1.2) when the initial-value problem is posed on the entire real line.

Turning now to the short-time decay of solutions of (1.3) and to the formation of the os-
cillatory tail, we show in Figure 5 the short-time (0 < ¢ < 0.2) evolution, in the case p = 3,
of an initially unperturbed solitary wave of amplitude A = 2, when § = ¢ = 0.5 X 1073,
The oscillatory tail forms, travels around due to periodicity and starts interacting with
the remnant of the main pulse which has not moved appreciably. If the amplitude of

the solitary wave is increased, it is observed that the oscillations become more numerous,
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Initial decay of solitary-wave initial data with A =2, = 0.5 x 1073, § = 0.5 x 1073.
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better formed and travel faster. Finally, Figure 6 shows the interesting initial decay of the

e e e 2
Gaussian ug(x) = e~100(z=1/2)

, allowed to evolve under (1.3) with parameters p =5, ¢ =
0.2 x 1073 and § = 0.6 x 103, The initial profile attempts to resolve itself into solitary-
wave pulses that actually grow in amplitude for a while. Had § been smaller, the leading
one would have proceeded to blow-up, as the numerical evidence presented in Section 4a

and Bona et al, (1994) shows. But, here eventually, the dissipative term dominates and

dictates the decay.

5. CONCLUSIONS

The overarching goal of the preceding discussion was to better understand the addi-
tional effect of dissipation on solutions of nonlinear, dispersive wave equations. The present
study centered around dissipative perturbations of the generalized Korteweg-de Vries equa-
tion (1.1a), but it is expected that the information gleaned for this class of equations will

provide useful guidance in other, related equations.

It is not surprising that even a small amount of dissipation will substantially alter much
of the long-term behavior of solutions. For example, the solitary waves that often appear
to play such a fundamental role in the long-term evolution of solutions of initial-value
problems like (1.1) for L-initial data cease to exist in the face of dissipation. (However,
steadily propagating bore-like solutions may well exist in dissipative cases — c¢f. Bona &

Schonbek 1985 and Bona, Rajopadhye & Schonbek 1994.)

The principal focus here has been to comprehend the effect of dissipation on the pu-
tative singularity formation observed in (1.1) when p > 4. The conclusions that form as
a result of the information obtained from our numerical experiments are compactly sum-
marized as follows. For suitable s, say s > 2, let initial data ¢ € H* be given. Consider a
dissipative perturbation of (1.1a) such as the GKdV-Burgers equation (1.3) or the model
(2.14). Let v > 0 connote a parameter like § in (1.3) or o in (2.14) that specifies the

strength of the perturbation relative to to that of the nonlinear and dispersive terms. Let
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Figure 6
Initial decay of Gaussian initial data p =5, e =0.2 x 1073, § = 0.6 x 1073,
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T, denote the maximum existence time for the H?®-solution of the relevant initial-value
problem with initial datum ¢ and dissipative parameter v. That is, for any T in [0,T)),
there is a unique H*-solution defined on [0,7] and T, is maximal in this regard. The
existence time T, is always positive on account of the local well-posedness of the initial-
value problem, and either T, = +00 or the Lo-norm of the solution becomes unbounded
as t approaches T, (see Kato 1983, Bona et al. 1988). Moreover, simple scaling arguments
together with the continuous dependence results make plausible the conjecture that T, is
an increasing function of v. The outcome of the numerical experiments reported in Section

4 then indicate the following dichotomy: either
(i) To = 400, in which case T, = o0 for all v > 0,
or

(i1) To < +00, in which case there exists a critical value v, with 0 < v, < 400 such
that T, < 400 for all v < v, and T, = +o0 for v > v..

In the second case, we expect T, to be a non-decreasing function of v € Rt with values

in the extended positive real numbers Rt U {4+00}, and continuous except perhaps at v,

where there may be a jump discontinuity.

If Ty < 400, then our experiments also indicate that the structure through which
singularity formation occurs varies only slightly with v until v, is reached. However, the
two different dissipative mechanisms considered showed a different dependence upon the

parameter p.

It would be interesting and relevant to important modelling situations to broaden the
range of dissipative mechanisms considered. A natural class of local dissipative terms that
deserves consideration in conjunction with the GKdV equation is (—1)78%7, j = 2,3,....
It is straightforward to determine that the initial-value problem for the GKdV equation
with the term v(—1)¥82*u, v > 0 appended is globally well posed for arbitrary sized initial
data if p < 4k — 2. It could be instructive to learn what happens if v > 0, £ > 2 and

p > 4k — 2. The case k = 2 may already be quite different from the cases k =0 and k =1
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examined here because for k > 2 the critical value of the parameter p in the nonlinearity
is determined solely by the dissipative term rather than the dispersive term. Non-local
dissipative processes also arise as models in practically interesting situations. Broadening
still further the range of inquiry might lead to the GKdV equation with dissipative per-
turbation v Mgu, where Myv(€) = |€|*6(€) is a homogeneous Fourier multiplier operator.

The decay of solutions of the initial-value problem
U + uPug + Ugzr + vMqu =0,
u(z,0) = g()

has been studied when g is suitably small (see Dix 1992, Bona, Promislow & Wayne 1994,
Bona & Demengel 1994). However, the situation that obtains for larger initial values has

thus far resisted analysis, and careful numerical simulation would be welcome.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support and hospitality from the Institute of Ap-
plied and Computational Mathematics at the Research Center of Crete, FORTH, and the
Mathematics Department at Penn State. The collaboration was materially aided by a joint
travel grant from the National Science Foundation, USA, and the General Secretariat of
Research & Technology, Greece. JLB and OAK also acknowledge general support from

the National Science Foundation and the University of Tennessee Science Alliance.

References

Albert, J.P. & Bona, J.L. 1991 Comparisons between model equations for long waves.
J. Nonlinear Sci. 1, 345-374.

Albert, J.P., Bona, J.L. & Felland, F. 1988 A criterion for the formation of singularities
for the generalized Korteweg-de Vries equation. Mat. Aplic. ¢ Comp. 7, 3-11.

Amick, C.J., Bona, J.L. & Schonbek, M.E. 1989 Decay of solutions of some nonlinear
wave equations. J. Diff l. Egqns. 81, 1-49.

Baker, G., Dougalis, V.A. & Karakashian, O.A. 1983 Convergence of Galerkin ap-
proximations for the Korteweg-de Vries equation. Math. Comp. 40, 419-433.

53



Benjamin, T.B. 1974 Lectures on nonlinear wave motion. In Lectures in Applied
Mathematics 15, pp. 3-47, (A. Newell, ed.) American Math. Soc.: Providence.

Benjamin, T.B., Bona, J.L. & Mahony, J.J. 1972 Model equations for long waves in
nonlinear, dispersive media. Philos. Trans. Royal Soc. London A 272, 47-78.

Biler, P. 1984 Large-time behaviour of periodic solutions to dissipative equations of
Korteweg-de Vries-Burgers type. Bull. Polish Acad. Sci. Math. 32, 401-405.

Bona, J.L. 1981 Convergence of periodic wave trains in the limit of large wavelength.
Appl. Sci. Res. 37,21-30.

Bona, J.L. & Demengel, F. 1994 Non-local dissipation and the decay of nonlinear
dispersive waves. To appear.

Bona, J.L., Dougalis, V.A. & Karakashian, O.A. 1986 Fully discrete Galerkin methods
for the Korteweg-de Vries equation. Comp. & Maths. with Applics. 12A, 859-884.

Bona, J.L., Dougalis, V.A., Karakashian, O.A. & McKinney, W.R. 1992 Computations
of blow-up and decay for periodic solutions of the generalized Korteweg-de Vries equation.
Appl. Numerical Math. 10, 335-355.

Bona, J.L., Dougalis, V.A., Karakashian, O.A. & McKinney, W.R. 1994 Conservative,
high-order numerical schemes for the generalized Korteweg-de Vries equation. To appear
in Philos. Trans. Royal Soc. London A.

Bona, J.L. & Luo, L. 1993 Decay of solutions to nonlinear, dispersive wave equations.
Differential & Int. Equations 6, 961-980.

Bona, J.L., Pritchard, W.G. & Scott, L.R. 1981 An evaluation of a model equation
for water waves. Philos. Trans. Royal Soc. London A 302, 457-510.

Bona, J.L., Promislow, K. & Wayne, G. 1994 On the asymptotic behavior of solutions
to nonlinear, dispersive, dissipative wave equations. To appear in J. Math. & Comp.

Bona, J.L., Rajopadhye, S. & Schonbek, M.E. 1994 Models for propagation of bores
I. Two-dimensional theory. Differential & Int. Equations 7, 699-734.

Bona, J.L. & Schonbek, M.E. 1985 Travelling-wave solutions to the Korteweg-de
Vries-Burgers equation. Proc. Royal Soc. Edinburgh 101A, 207-226.

Bona, J.L. & Scidlom, M. 1993 The effect of change in the nonlinearity and the
dispersion relation on model equations for long waves. To appear in Canadian J. Appl.
Math.

Bona, J.L. & Smith, R. 1975 The initial-value problem for the Korteweg-de Vries
equation. Philos. Trans. Royal Soc. London A 278, 555-604.

Bona, J.L., Souganidis, P.E. & Strauss, W.A. 1987 Stability and instability of solitary
waves of KAV type. Proc. Royal Soc. London A 411, 395412,

Bourgain, J. 1993 Fourier transform restriction phenomena for certain lattice subsets

54



and applications to non-linear evolution equations. Preprint.

Dix, D.B. 1992 The dissipation of nonlinear dispersive waves: The case of asymptot-
ically weak nonlinearity. Comm. P.D.E. 17, 1665-1693.

Foias, C. & Saut, J.-C. 1984 Asymptotic behavior, as t — 400 of solutions of Navier-
Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J. 33, 459-477.

Grad, H. & Hu, P.N. 1967 Unified shock profile in a plasma. Phys. Fluids 10,
2596-2602.

Jeffrey, A. & Kakutani, T. 1972 Weak nonlinear dispersive waves: a discussion
centered around the Korteweg-de Vries equations. SIAM Rev. 14, 582-643.

Johnson, R.S. 1970 A nonlinear equation incorporating damping and dispersion. J.
Fluid Mech. 42, 42-60.

Karakashian, O.A. & McKinney, W.R. 1990 On optimal high order in time approxi-
mations for the Korteweg-de Vries equation. Math. Comp. 55, 473-496.

Karakashian, O.A. & McKinney, W.R. 1994 On the approximation of solutions of the
generalized Korteweg-de Vries-Burgers equation. Submitted.

Kato, T. 1975 Quasilinear equations of evolution with applications to partial differ-
ential equations. Lecture Notes in Math. 448, 25-70.

Kato, T. 1979 On the Korteweg-de Vries equation. Manuscripta Math. 28, 89-99.

Kato, T. 1983 On the Cauchy problem for the (generalized) Korteweg-de Vries equa-
tion. Studies in Appl. Math., Advances in Mathematics Supplementary Studies, Academic
Press: New York, 8, 93-130.

Pego, R.L. 1985 Remarks on the stability of shock profiles for conservation laws with
dissipation. Trans. American Math. Soc. 291, 353-361.

Pego, R.L. & Weinstein, M.I. 1992 Eigenvalues, and instabilities of solitary waves.
Philos. Trans. Royal Soc. London A 340, 47-94.

Schechter, E. 1978 Well-behaved evolutions and the Trotter product formulas. Ph.D.
Thesis, University of Chicago.

Scott, A.C., Chu, F.Y.F. & McLaughlin, D.W. 1973 The soliton: A new concept in
applied science. Proc. IEEE 61, 1443-1433.

Strauss, W.A. 1974 Dispersion of low-energy waves for two conservative equations.
Arch. Rational Mech. Anal. 55, 86-92.

Zhang, B.-Y. 1993 Remarks on Cauchy problem of the Korteweg-de Vries equation
on a periodic domain. Preprint.

Zhang, L. 1994 Decay of solutions of generalized Benjamin-Bona-Mahony equations.
To appear.

55



