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Abstract. Benjamin recently put forward a model equation for the evolution of waves on the
interface of a two-layer system of fluids in which surface tension effects are not negligible. It is
our purpose here to investigate the solitary-wave solutions of Benjamin’s model. For a class of
equations that includes Benjamin’s model featuring conflicting contributions to dispersion from
dynamic effects on the interface and surface tension, we establish existence of travelling-wave
solutions. Using the recently developed theory of Li and Bona, we are also able to determine
rigorously the spatial asymptotics of these solutions.

1. Introduction. Considered here is the evolution of waves on the interface of an
idealized, incompressible, two-fluid system consisting of a light fluid of density p,
and depth h;, resting on aheavier fluid of density o, and depth k5, bounded above and
below by rigid horizontal planes. We assumethat o, > p1,h1 >> hay (orhy >> hy),
and focus attention on wave motion that doesn’t vary in the direction perpendicular
to the primary direction of propagation. The fluid domain is described quantitatively
by a standard x-y-z-Cartesian coordinate system so oriented that gravity acts in the
—z-direction, the interface between the two fluids at rest is located at z = O, the
primary direction of wave propagation is along the x-axis, and so the dependent
variables describing the fluid motion do not depend on the independent variable y.

If the surface tension is neglected and the waves are uni-directional, of small
amplitude and long wavelength, the fluid motion can be described approximately
by the Benjamin—Ono equation

Nt +Nx +nnx — Ly, =0,

where L = H 9, is the composition of the Hilbert transform and the spatial derivative
in the direction of primary propagation, or, equivalently, L is a Fourier multiplier
operator with symbol |€|, which is to say Lv(§) = |£|0(£). Here, n = n(x, t) is the
vertical displacement of the interface between the two fluids at the spatial point x at
time ¢, and the equation is written in a nondimensional, scaled form (see Benjamin
1992, Benjamin 1996, Albert et al. 1997).
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If surface tension cannot be safely ignored, the interfacial waves are described
at the same level of approximation by the Benjamin equation,

Ne+ Nx + 10 —aLne & B =0,

where L is as above and « and § are nonnegative constants. For a detailed analysis
of the circumstances under which this equation is likely to be physically relevant,
see Albert er al. (1997, Section 2). Define the new dependent variable u by the
transformation n(x, t) = u(x+t, t) if the plus-sign appears and u(x, t) = —n(—x—
t, t) if the minus-sign holds; in terms of u, Benjamin’s equation becomes

U +uuy T aluy + Buye, =0. (1.1)

As written in (1.1), the equation reduces to the Korteweg—de Vries-equation (KdV-
equation henceforth) when oo = 0 (dispersive effects are dominated by surface
tension), and to the Benjamin—Ono equation (BO-equation henceforth) when 8 = 0
(negligible surface tension). In this paper we are interested in solitary-wave solutions
of (1.1) in case both @ and 8 are nonzero. Unlike the situation that obtains for the
KdV-equation, the solitary-wave solutions of (1.1) feature algebraically—rather
than exponentially—decaying outskirts. Moreover, depending on the sign in front
of o Lu,, the tails of the solitary waves may feature a finite number of oscillations
as they evanesce.

Provided 8 > 0, a rescaling of x and ¢ allows us to assume 8 = 1 in (1.1)
without loss of generality. To study solitary-wave solutions, it is natural to substi-
tute the travelling-wave form u(x, t) = ¢(x — ct) into (1.1). After a few simple
manipulations, this format for u leads to the operator equation

¢ = A, (1.2)

where the constant ¢ > 0 is the propagation velocity of the wave and the operator
A is defined by

o]

1 .
Ap() =S+ L7 o(x) = / k(x — y)9* () dy, (132)
-0
with the kernel k given explicitly in terms of its Fourier symbol:
1
2E £alk[+0)

k&) = (1.3b)
Our purpose here is several-fold. In Section 2, we bring to bear techniques from
nonlinear functional analysis, notably positive-operator ideas and concentrated-
compactness methods to establish a satisfactory theory of existence for solitary-wave
solutions of (1.2). Section 3 is devoted to a rigorous analysis of the decay of these
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solitary waves. There are conflicting formal analyses of this aspect by Benjamin
(1992, 1996), and our theory settles a couple of aspects of the spatial asymptotics of
these waves. In Sections 4, 5 and 6, we take up a natural generalization of equation
(1.2) which features at the same time more general nonlinearity and more general
forms of competing dispersion. The theory is broadened to include existence and
decay results for solitary-wave solutions of this general class of nonlinear, dispersive
wave equations.

2. Existence of solitary waves. The discussion of existence of solitary waves
is broken into two parts. First, consideration is given to the case of a plus sign in
front of the term o« Lu,. For this situation, positive-operator methods come to the
fore and existence is seen as a consequence of extant theory. Section 2.2 treats
the more interesting case where a minus sign appears, and the dispersion arising
from surface tension competes with the usual frequency dispersion brought on by
finite-wavelength effects. Here, methods of concentrated-compactness (see P.-L.
Lions 1984) win the day.

2.1. The symbol of L is £2 + a|£]. To establish existence in case the kernel k
has Fourier symbol Wﬂil—flﬂ? where o > 0, we rely upon the theory of solutions
of nonlinear convolution equations of the form (1.3) put forward in Benjamin et al.
(1990). The conclusion of the theory is that, provided the kernel k = k. satisfies
appropriate hypotheses, equation (1.3) has a solution ¢ (x) = ¢.(x) which is an
even function, decaying monotonically to zero as x — =+00. Moreover, ¢ and all
its derivatives lie in L1 (R) N Lo (R). In fact, more is true as will be seen presently.

The following technical lemma demonstrates that the kernel satisfies the hypothe-
ses needed for the validity of the principle results in the last-quoted reference.

Lemma 2.1. Let k be defined via its Fourier transform as in (1.3b) for the case of
a plus sign. Then k has the following properties:

(1) k is a real-valued, even, bounded, continuous function and k(x) — 0 as
[x] — oo,

(2) k is positive on R, k € Li(R),

(3) k is monotone decreasing on (0, 00), and k is strictly convex for x > 0.

Proof. Write k as a Fourier integral thusly:

_ __1_ % 1 f°° cos(x¥)
k(x) T . k(§)d§ T o C+a$+€2d€-
From this representation, it is clear that k is real-valued and even. Since k is the
Fourier transform of an L;(R)-function, the Riemann—Lebesque lemma assures
that k is bounded, continuous and tends to zero at +00. To establish the rest of the
properties, it is convenient to represent k in another way.
Consider the complex function

eiwz
c+az+z?

f@=
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where w > 0, and z = x + iy. Since ¢, @ > 0, f is analytic in the closed region

Q={z=pe’:0<p<R, 0<6=<%})

[SIE

By Cauchy’s theorem, for any R > 0,

/ f(@)dz=0.
EYe)

Parametrizing 92 in the obvious way reveals that

R iwx . iwRe"
————dx , —iRe'® df
/; c+ax +x? +/(; ¢+ aRel® + RZ20 ¢

0 e~ Wy
———idy=0. )
+,/R c+iay—y21 Y @)

As in the usual proof of Jordan’s lemma,

IIJ'JR(,
i0
|/ c+aRe? + R2e 7l Re' dG\ — O0as R — oo.

Taking the real part of the relation (2.1) and then passing to the limit as R — 00
thus yields

cos(wx) —w

1
dx = dy,
«/271/(; ¢+ ax + x? \/27:./ (c—v)2+a2y2 Y

for w > 0. Because k is even, it follows that for all x € R,

k(w) =

ate Wi
V2m ./—oo (c— &2)2 4 02E? ds. 2.2)

Clearly, the representation (2.2) entails that k(x) > 0 for all x € R. Moreover, for
x > 0, it is easily seen that

k(x) =

, 1 a.‘;ze""'e
k =—
(x) mf (c — £2)2 + a2€2 d§ <0
and that
" % _-tE
k .
i J_/(c £2)? + o §d§>0

Thus k is monotone decreasing and strictly convex on (0, co), and the lemma is
proved.[]
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Theorem 2.2. For o, 8 > 0, the Benjamin equation with the +-sign in front of
the term aLu, has a nontrivial, solitary-wave solution u(x,t) = ¢.(x — ct) for
each ¢ > 0. The solitary-wave ¢. may be chosen to be an even, positive function,
strictly monotone decreasing on (0, 00), and such that ¢ and all its derivatives are
bounded, continuous L1(R)-functions.

Remark. Theorem 2.2 follows immediately from Benjamin et al. (1990, Theorems
3.7 and 3.9), because the hypotheses of this result are a consequence of Lemma 2.1.

2.2. The symbol of L is £2 — a|&|. To assure the operator A has a kernel & that
is free of certain types of singular behavior, the parameter o must be less than 2./c.
This restriction is already discussed in detail in Benjamin (1992). Proceeding as
in Section 2.1, but using the Residue Theorem instead of Cauchy’s Theorem, the
symbol k is determined to be

1 o Of_ve_l't]-" R 2 _ Af4c—a? x| o
k(x) = — v 5 ~dy + e 2 COS —X.
M2 Jo o (€= yH)* +afy” Ve — a? 2

Because the kernel & fails to be nonnegative, an existence proof using positive
operator theory is not available. We turn instead to the concentration-compactness
theory (see Lions 1984, Weinstein 1987, Albert 1997).

Consider the equation
1
(c+ L) = ¢" 2.3)

Following Weinstein, we introduce the functional A for our variational analysis,
namely

[ fle+L)f

A(f) = - -
) (f fAx)dx)s

Throughout, an unadorned integral will always mean an integral over R. Define
also the functional J on H!(R) by

JWw) = f u(c + Lu,
and for A > 0, let
o)) = inf{J(u) ue H'®R), f W (x) dx = x}. 2.4)

Remark. The restriction A > 0 can be replaced by A # 0 because if u is a solution
of (2.4), then so is —u.
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Lemma 2.2. (1) The equation (2.3) is solvable if min{A(f): f € H!, f # O} is
solvable; (2) Problem (2.4) is equivalent to min{A(f) : f € H L f £ 0}; more
precisely, if f is a minimizer of ®(X) for some ). > 0, then a simple rescaling
p=2071_ 2@(1)1; solves (2.3).

A

Proof. (1) If f is a minimizer of A(f), then the Fréchet derivative of A at f must
vanish. For h € H', we have

0=A(fHh=
2(f ) dx)} [ e+ Dhdx —2 [ e+ O)f dx [ f*hdx([ f2(x) dx) >
(/ £ dx)?
whence [fe+0rd
c x
/f(c+£)hdx= [ F7dx /fzhdx
for any h € H'. It follows that
. [fe+L)fdx ,
CcH+Of = =1
and this equation is the same as (2.3) except for the coefficient. If we define ¢ by
2 + L) fdx i
o= 2LEEDIR ; —anip—L— —zen T,
% ([ fdx)? A3

then ¢ does not depend on A and satisfies equation (2.3). [

The next two results are taken from Lions (1984) and repeated here for the
readers’ convenience.

Lemma 2.3. Let {0x}n>1 be a sequence of nonnegative functions in L(RN) satis-
fying [ pu(x) dx = A for all n and some A > 0. Then there exists a subsequence
{0n, Yk=1 satisfying one of the following three conditions:

(1) (Compactness) there are yy € RN fork = 1,2, ..., such that p,, (- + y)
is tight, which is to say that for any € > 0, there is an R large enough that

f P (X)dx = A — €,
[x—ye|<R

(2) (Vanishing) for any R > 0, it SUPycgn |, <g Pn, (¥) dx = 0;
(3) (Dichotomy) there exists « € (0, L) such that for any € > 0, there exists
ko > 1 and p}, p? € LiRN), pl, p? > 0 such that for k > ko,

”pnk - (P/: +pl%)”L| =€,
|f oldz =gl = &, |f pldx — O —a)| <,
RV RV

supp ol Nsupp p? = @, dist{supp p;, supp pi} — 00 ask — oo,
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Remark. In Lemma 2.3 above, the condition f Pn(x)dx = A can be replaced by
[ pa(x)dx = A, where A, — A > 0. To see this simply replace p, by £¢ and apply
the lemma.

Lemma24. Let] < p <ooand1 < q < oco. Assume forn = 1,2, ..., that u,
is bounded in Ly (R), u;, is bounded in L, (R), and for some R > O,

y+R
supf lu, ()| dx — 0,
yeR Jy—R

as n — oo. Then it transpires that for any r > q,

u, — 0asn — oo in L,(R).

Theorem 2.5. Letc > 0bea given wave-speed such that minyer {x*—a|x|+c} > 0,
and let )\ be any positive number. Then every minimizing sequence {un}n>1 of the
problem (2.4) is, up to a translation in the underlying spatial domain, relatively
compact in H I(R). Hence, there is a solution of the problem (2.4), and therefore
there exists a nontrivial solution of problem (2.3) by Lemma 2.2. Thus the Benjamin
equation has solitary-wave solutions corresponding to the wave speed c.

Proof. We begin with a couple of observations about the functional J. Since o <
2./c, it follows that

J(u)=/u(c+£)u =fa(k2—a|k|+c)ﬁ

2 2
(4 (87
zmuuwuzmwimr—Imwﬁngwﬁpngm

and, in any event,
stf@MwWFsﬂwm,

where y = %(1 - Z—Z) min{1, ¢}, ¥ = max{1, c¢}. This means that 0 < ®(A) < o0
and that the minimizing sequence {u,},>1 is bounded in H L(R).

Denote by p, the quantity [u,|? + |uj|?, and let [ p,(x)dx = pn. Then uy is
bounded, and furthermore, @, = |ju, ||§1. > ||u||i3 > (f u3(x) dx)§ = )ﬁ,because
H'! ¢ L, with an embedding constant less than one.

Without loss of generality, suppose (i, — u as n — oo. To prove the theorem,
we apply Lemma 2.3 to the sequence {0,}>1, after ruling out the possibilities of
Vanishing and Dichotomy. Suppose there is a subsequence {pp, }i>1 of {on}n=1
which satisfies either Vanishing or Dichotomy. If Vanishing occurs, which is to say
for any R > 0,

lim supf Pn,(x)dx =0,
k=00 yelk Jix—y|<R
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then
lim supf [n, x)|*dx = 0;
lx—y|<R

k—00 yeR

so, by Lemma 2.4,
o0
lim / fitn, (X)|?dx = 0.
k— 00 PN

This leads to a contradiction since

0< A= / (U, (%)) dx < foo |, (X)) dx — 0.

—00

If Dichotomy occurs, there is a i € (0, u) such that for any € > 0 there
corresponds a ko and p;, p? € Li(R), p}, p? > 0 such that for k > ko,

lone = (o4 + PDIlLy <€,

[ohax-mize o[ pax-w-pise 25)
R R

supp ,o,l M supp p,f = ( and dist{supp p,:, supp p,f} — 00 as k — 00.

Without loss of generality, it may be supposed that the supports of ,o,: and ,o,f are

separated as follows: supp p; C (yx — Ro, yx + Ro), supp p7 C (=00, yy —2R)U
(Vk +2Ry, 0o) for some fixed Ry > 0, for some sequence {y; }x>1 C Rand Ry — o0
(see the construction in Lions 1984).

To obtain splitting functions u; and u% of u,,, k = 1,2, ..., let¢, ¥ € C° with
0 < ¢, <1 be such that
£(x) =1 when |x| <1, ¢(x) = 0 when |x| > 2,
¥(x) =0when |x| <1, (x)=1when |x|>2.

Denote by & (x) = ;(";y"), Yr(x) = 1//(";3*), for x € R, where Ry > Ry is

chosen large enough that I

| / (1Zettn, 12 + 10 Gttn) 2 — o)) dx| < € 2.60)

and
| f Wity 12 + 18 Getn )P — 02) dx] < €. (2.6b)

To see this is possible, first note that from (2.5),

€ > lon, — (0f + 0D,

=/ |pnk—p,2|dx+/ |pnk—p,3|dx+f Bl
lx—y|<Ro [x—yk|=2Ry

Ro=<|x—yx|=<2R
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whence

1 2
/ |pnk_pk|dx <€, / lpnk_pkld.x <€,
[x—yx|<Ro [x =y |22 Ry

/ On, dx < €.
Ro<|x—yk|<2Ry

In consequence of these relations, it transpires that

| f (2t 2 + 18 Cetn) > = 1) dx)

= | (12t 12 + 185 Gt ) > — i) dx]

fx— el <2R

= (lune 1 + 1, 1> = ) dx|

lx—yel<Ro

2 2 2 2 2
+f (ittn I+ 120 Pl 2 + 1812108, 12) dx
Ro<|x—yk|<2Ry

< f 0w, — bl dx + max{15(0) P + 15,0} f Gl
lx—yel<Ro xeR Ro<|x—y|<2R,

<e+e=0(e€)

ase — 0, and

I/ (h”ku”k I2 ot |ax('/fkunk)|2 - ,0,%) dxl

= (1Weten, I + 18 Wraen,)I* = p7) dax]

[x—yx|= R
219 2_ .2\ 4
<| (1Wkt I* + 105 (Yettn ) |* = 0f) dx|
Ri<|x—yx|<2Ry
2 2 2
+ | ([t [* =+ lup, 17 = p) dx|
[x—yk|>2 Ry

< 111l§lu§{|¢k(x)|2 + |¢I/c(x)|2} f

2
pudx+ | |on, — pF] dx
Ri<|x—ye|<2Ry [x—Yk|=2 Ry

= O(¢)

as € — 0. Thus if we set uy = Cxltn,, U2 = YUy, and define wy by u,, =
ul + u? + wy, then u}, uf, we € H', [|up(x)]’ dx is bounded, and there exists
a subsequence of {u,lc}kzl, still denoted {u}(}kzl, for which there is a kg > 0 and
o, B € R such that for k > ko,

|fu,t(x)3 dx—fl < Ifuﬁ<x)3 dx— (=Pl <e,

[SIE]

Jwellm = 1(1 = & — Va)tme e = CC&, ) / o dx)E = O(e)

Ry <lx—yi| <2R
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as€ — 0, where C({, ¥) = maxyer{|1— i (x) — i (x) |+ (1 = & (x) — ()Y} is
a constant dependent only on ¢ and 4, and dist{supp u}, supp u?} — oo as k — oo.
A simple calculation shows that

I n) = J (g + us +we) = J@)) + J@?) + J(we) — 20 f upHu?) dx

+2/u,1c(c+[,)wkdx+2/uf(c+£)wkdx,

where Hu' = [ ';—l%) dy is the nonlocal operator whose Fourier symbol is |£|. Notice
that, as € — 0,

14¢

J(wy) < Tllwkllip = 0(e),

[f ul(c + Lywedx| < yllubll lwella = 0
and

|f u2(c + Lywedx| < y il lwellm = O(e),
and that

A,uz(y)
|fu,1H(u§)’dx| . |fu,1(x)/ ;jv dy dx|
2R, ‘

a. 2
= uw SO ,
—2R, ly=ylzRe X =

l/yk+2Rl dy “E()’)
Y

ydx|

1
uk(x)
—2R, y—wl=Re XY

.y / o ~u}(y)
Y

dydx[

Uy (x)

dydx
«—2R, |y=yi|= Ry (x — y)z |

2R, 1

< max(lz 1, W@ lHun I, { [ N flm ordxdy) >0

as k — 00, because R; — oo and R is fixed. In consequence, it is seen that
OK) = lin}linf{J(u,,)} = lin}(inf{J(u,,k)}
= 1imkinf{1(u,1) + Jud) + J (wy)

_2a/u,1H(u,%)’+2[u,1(c+,c)wk +2fu§(c+.c)wk}

> liminf J (u}) + lirr}cian(ui) + O(e)
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ase — 0.If [ul(x)>dx — B =0, then by (2.6a),
1in}(inf J(u) = lin}cinlelu,lclli]] > lirriinlelp; i, + 0(€) = yit + O(e)
as € — 0, and therefore
®(4) > yji+liminf J (4}) + O(€)
as € — 0. Letting € — 0 in the last relation leads to
O() = yi+O() > O().
If, on the other hand, [ u}(x)*dx — B # 0, then
(M) = ©(B) + O — B) + O(e),
and letting € — 0 gives
() = 0(8) + 6@ — B).
But,for8 e R, ®(6A) = |9|%®(A). If we write B = @A, then

0>00) > 00N +0(1-0)1 =030 +1-6150()
= {1613 + 11 - 6510(0) > O,

another contradiction. Thus Dichotomy is seen to be impossible.

Since Vanishing and Dichotomy have been ruled out, it is concluded that there
is a sequence {yn}s>1 C R such that for any € > 0, there are R < coand np > 0
such that for n > no,

/ Pu(x)dx = p — €, f pn(x)dx < €,
|x—yal<R Jx—yn|=R
|f ()’ dx | sf n ()P dx < uunnmf on(x)dx < 0(E)
jx=yn|=R |x—yn|>R lx=ya|=R
as € — 0. It follows that
|f u,,(x)3dx—-A| <e.
Ix~yal<R

Letting i, (x) = u,(x — y,) for x € R, the above property means that i, (or a
subsequence) converges weakly in H 1. almost everywhere on R, and strongly in
L;(R) to some H!-function #, say, and

fﬁ(x)3dx = limf i,(x)dx = A,
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Furthermore,
O) = liminf/ uy(c+ Lyu, dx > f u(c+ Ludx.

Thus the function i solves the variational problem (2.4) and therefore ¢ = Z%ﬂﬁ
solves the problem (2.3). Theorem 2.5 is proved.[

The uniqueness up to translations of these solutions appears likely. For both
the KdV-equation and the BO-equation, solitary waves corresponding to a given,
supercritical value of the wave-speed c are known to be unique up to translations in
the underlying spatial domain. For the KdV-equation, this follows from phase-plane
analysis, but for the BO-equation or its near relative the ILW-equation, the issue is
far more delicate (see Amick and Toland 1991 and Albert and Toland 1994).

While having nothing to report about uniqueness, we can at least assert that
corresponding to a given value of c, there is at least one solitary-wave solution of
Benjamin’s equation having positive Fourier transform.!

Corollary 2.6. Let ¢ > 0 be a wave-speed such that min,>o{x* — a|x| + ¢} > 0.

There is a minimizer ¢ of the variational problem (2.4) such that ($(éj) > 0 for all
& € R. It follows that ¢ is an even function.

Proof. This follows directly from the first part of Theorem 5.1 in Albert (1992).
Indeed, the idea of Albert’s proof is take any minimizer ¥ of (2.4) and let ¢ be the
inverse Fourier transform ¢ = F~1(| 1} |). The function ¢ is real-valued since |1[Af| is
real-valued and even. Then the numerator in A (¢) is the same as the numerator of
A () and the denominator in A (¢) is greater than or equal to that of A(y). Thus

¢ also minimizes A and so a¢ is a solitary-wave solution for some constant a. On
the other hand,

N 2 1 . .
b® = ®I=—= f ¥ (x) cos(xE) dx — i f V(o) sinxg) dx|

1
- E\/I/W(x)cos(xg)dxf_{_|/w(x) sin(xs)dxlz

is an even function; hence,

[, il
60 = = / 36 costet) ds + — f $(&) sin(xé) d

1 n
== / $(&) cos(xE) d

is an even function. The corollary is proved. O

!'The authors thank John Albert for pointing this out.
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3. Asymptotic decay of solitary-wave solutions. In the previous section, we
discussed existence of solitary-wave solutions of the Benjamin equation. In this
section, attention is turned to the asymptotic properties of such solutions. According
to a recent result reported in Bona and Li (1997) they resemble those of the kernel
k. Here is the relevant theorem.

Lemma 3.1. Suppose that f € Lo, with limyy0 f(x) = 0 is a solution of the
convolution equation

fx) = f k(x — GO dy,

where the kernel k is a measurable function satisfying keH* for some s > % and
G is a function such that |G(x)| < C|x|" for all x € R, and for some constants
C > O0andr > 1. Then f € Ly and there is a constant | with 0 < [ < s such that
|x|! f(x) € L1 N Loo. Furthermore,

(1) if there is a constant m > 1 such that lim,_, 1o, |x|"k(x) = Cy for some
constants Cx € C corresponding to limits at +00 and —oo, respectively,
then

Jim W15 = Ca [ GGy,

(2) and if lim,_, +00 €®*lk(x) = Cy, then sup e f (x)| < oo and

lim e%* f(x) = Cy f e G(F (1)) dt
x— 00
for some constants Cy corresponding to limits at +00 and —00, respec-
tively.
In the present context, based on Lemma 3.1, the following may be concluded.

Theorem 3.2. For the problem (1.2) where o > Q is as restricted previously,
lim x%2¢p(x)=C
x—+o0

for some constant C € R, C # 0.

Proof. Obviously, k € H* forany s < % Hence it will suffice to find a suitable

expression for k. For the case k) = =

! : .
raETEy» it was found earlier that

1 /oo aye Rl
"_F > d .
2x Jo (€= yH)? + a?y? y

The change of variables £ = xy transforms the right-hand side to

k(x) = Flk(x) =

o0 atet

1
d
V2752 fo EP+ @ 202 + 2

k(x) =
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and thus ;
1 ® wke™ o
lim x%k(x) = / dE =
x5>%00 2w Jo 042 s V2me?

by the Dominated Convergence Theorem.
" _ 1 . .
For the case k(§) = Te—alEliEs it was seen previously that

1 aye Kl V2m e«
. sdy + ——=e"" 7 “cos—x.
Vo2 J (e —y?)t+a?y? Nbe — a? 2

The same transformation § = xy gives

k(x) =

o« b Eet N2 e a
k(x) =— _ —d§ + e 7 *cos—x.
V2rxt Jo (e — (2?2 + o282 Vac —a? 2

Applying the Dominated Convergence Theorem again leads to the conclusion

04
lim x%k(x) = — ;
x— 00 ( ) /27'[6‘2

By Lemma 3.1, the theorem is proved. U

Remark. Notice that this rigorous result shows clearly that Benjamin (1992) is
incorrect in his assertion that the tails of solitary-wave solutions ¢ (x) of his model
equation possess an infinite number of oscillations (zero-crossings) as x — F00.
The present theorem does square with Benjamin’s second formal analysis of these
solitary waves in his 1996 paper. We expect that a more refined analysis will show
that these solutions approach zero monotonically as x — Z=o0, but that they do
feature a finite number of oscillations as one sees from the numerical approximations
reported in Albert et al. (1997).

4. More general nonlinearity and dispersion. In this section and the next,
attention is turned to an extension of the theory developed in Sections 2 and 3.
Consideration is given to the situation where the effects of dispersion are modelled
by a competing pair of homogeneous terms and the nonlinearity is a pure power.
Thus the operator L is defined by

Lu(g) = (—algl + €12")a), (4.1)

and the nonlinearity has the form

F(p) =

L o1, 42)
p—1

where m and p are positive integers, p > 2, and r is a real number with0 < r < m.
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We aim to establish existence and asymptotic decay rates for solitary-wave so-
lutions of the nonlinear, dispersive wave equation

u+ Fu)y — Luy =0, (4.3)

where F and £ are defined in (4.1)~(4.2). Some of the development can be ab-
breviated because it parallels the discussion of Benjamin’s equation in Sections 2
and 3.

As before, the assumption that u(x, t) = ¢(x — ct) is a solitary-wave solution
of (4.3) implies that ¢ is a solution of

1
p—1

(c+ L) = oP7L (4.4)

The proof of the following theorem is the goal of the present section. In Section 5,
the issue of the large-space asymptotics of solutions of (4.4) is taken up.

Theorem 4.1. Let ¢ > 0 be a given wave-speed and suppose m, p € L*, p > 2,

and 0 <r < m. Ifa lies in the range o < T_"iil;;, equation (4.4) has a solution
¢ € H®. "
Remark. Notice that if ¢ € H!(R) satisfies (4.4), then necessarily ¢ € H*(R).
This follows because the assumption on the range of « implies that the symbol of
¢ + L has the property

c—alg +EP" = >0

for all £. In consequence, there are positive constants y and y such that

y(L+ [EP™) <o —alg + EP" < 71+ 151, (4.5)

for all £. Hence ¢ + L is an isomorphism of H s+2m(R) onto H*(R) for any s > 0,
say. Therefore, if ¢ solves (4.4) and ¢ € H'(R), then ¢P~' € H'(R), and hence

¢ = > 1_ T(c+ L£)y"'¢P7 ! e H"(R).

It then follows that ¢?~! € H'*2™(R), whence

¢ = - 1_ -(c+ £)7lgP7t e H'M(R).

Continuing this argument inductively demonstrates that ¢ € H®(R). An applica-
tion of the theory of Li and Bona (1996) shows also that these solitary waves are
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the restriction to the real axis of a function holomorphic in a strip {z : |J(z)| < o}
for some o > 0.

To prove Theorem 4.1, introduce the functional
[ fle+Df
(f frdxr

and, in direct analogy with the developments in Section 2, define J for u € H™(R)
by

A(f) (4.6)

J(u) =fu(c+£)udx
and ® for A > 0 by

OM) = inf{J(u) ‘ue Hm(R),fup(x)dx = x}. 4.7)

Remark. Actually, ®(1) = ©(—) if p is an odd number, and so we need only
require A # 0 instead of A > 0. Also, p need not be an integer in our theory. The
development is unchanged if p = 7 where m and n are relatively prime and n is
odd, if we choose the branch of z — zi that is real-valued on the real axis.

By the same argument as that in Lemma 2.2, the following result appears.

Lemma 4.2. (1) The problem (4.4) is solvable if min{A(f) : f € H™, f # 0}

is solvable; (2) minimization of A(f) in (4.6) is equivalent to (4.7); namely, any

solution of (4.7) is a minimizer of (4.6), and if f is a minimizer of (4.6), then the
1

rescaling f +— ”"—T;L— [ is a solution of (4.4). Therefore if the problem (4.7)
(f frdav

has a nontrivial solution u, then (4.4) is solved by the function ¢ defined by the
rescaling

p— DO = L
; (( : A,) ( )>p2“ ((P 1)@(1));112“ :’lt, (|8)
which is independent of \.

Proof of Theorem 4.1. It is first shown that any minimizing sequence {u,},>1 of
the variational problem (4.7) is, up to translations in the underlying spatial domain,
relatively compact in H™(R). Because of the restriction on «, (4.5) applies and it
is concluded that any minimizing sequence {u,},>1 is bounded in H™(R) and that
0<0O(0) <ooifA > 0.

The following representations will be useful in the arguments presented presently.

Sublemma. Let M be the operator defined by m(é) = |&|"iu(€) foru € H™,
where 0 < r < m, m a positive integer. It follows that

(1) ifr =2nforn € Z™", then

Mu(x) = (=1)"82" u(x);
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() ifr =2n -+ 1forn € Z*, then

2n+1
T 1)”\/_/ 92 u(y)

() ifr=2n+38forneZ*,0 <8 <1, then

a'ZrH lu(y)

|x — y[®

dy,

Mu(x) = (—1)"\/§(cos(§2£)l“(l - 6))_1 f sign(x — y)=

where T connotes the usual gamma-function;
@) andifr=2n+1+38forneZ*,0 <8 <1, then

a"rH—-
Mu(x) = (=1)"" ‘\/:(mn(—)l“(l—&)) f—ﬂldy-

lx — yI?

Proof. Part (1) is obvious. Part (2) is proved by taking the Fourier Transform of
the right-hand side of the expected equality and using the formula [ S1X Jy =71 to

obtain
_ 1y _% —1{q2n+1 —1 l
( 1),/nf {87 u(x)}f {-}

—(_1\" _2_ 2n+1p —le
= 1>\/: G536 —= f

1
=;i52”+1ﬁ(§)( — i sign(§)r) = |§1>"Ha).

(3) When r = 2n + 8, the Fourier Transform of the right-hand side of the desired
relation is

(— 1)"\/—(008(—)1"(1—8)) {a%?}mgn(x)| 7

n" -—u;r
= 2) (cos—r(l—a)) (15)2"+1u(§)f81gn(x) P dx
=D cos(ra - ) e (<20 / W4
= g0,

where the formula f, - s")‘fx dx = cos(‘sE)l"(l 8) can be found in Oberhettinger
(1957, p.5).
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When r = 2n + 1 4§, then the Fourier Transform of the right-hand side of the
advertised equality in (4) is

—

ael [T, . 6T SipEr 1
= (=1)*! 5(5111(7)1“(1—5)) 92 +2uW
(_l)n—l . 8w - ’ o0 ,—1Ex
=" (s1n(7)l"(1—8)) (i&)? +2f_oo P dx
Dt sm Ar o ® coséx
=— (s1n(7)f‘(1—6)) 3% +22f0 ——dx

= [E"F10aE),

where the elementary formula f0°° %ﬂ dx = sin(%)l"(l — §) can be found in
Oberhettinger (1957, p.116). The sublemma is established. O

Attention is now given to finishing the proof of Lemma 4.2. Denote by p, and

[ the quantities o, (x) = |up(x)|* + 192"u,(x)|* and u, = [ pa(x)dx. Then
2
{1n}n=1 is bounded, and u, = llpallz, = lull?, > (f un(x)? dx)? = A%, because

H™(R) C L,(R) with an embedding constant less than one for any p > 2. Without
loss of generality, suppose 1, — u as n — oo. To prove the theorem, apply
the concentration-compactness principle Lemma 2.3 to the sequence {p,},>1 and
aim to rule out the possibilities of Vanishing and Dichotomy. Suppose there is
a subsequence {pp, }k>1 Of {0n}n>1 Which is either Vanishing or Dichotomous. If
Vanishing occurs, which is to say for any R > 0,

lim sup/ Pn, (x)dx =0,
lx—y|<R

k— 00 yeR

then
[ i, (X) > dx < €.
Jx—y,|<R

On the other hand, we already know that {u;k}kzl is bounded in L,(R), so by
Lemma 2.4,

[0 0)
f |p, (x)|7dx — 0 foranyq > 2,

[e.0]

as n — o0. This leads to a contradiction since
0<i< / [, (x)|? dx — 0.

Thus Vanishing does not occur.
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If Dichotomy occurs, then for any € > 0, there is a ko > 0 and oL ,o,f € Li(R),
p}, p? > 0 such that, for k > ko,

pn, = (0 + PNL, S €,
lfpi(x)dx—ﬁlfé, !/PE—(u*ﬂ)lse, 4.9)
supp p; N supp p? = @ and dist{supp ,0,:, supp p,%} — oo ask — o0,

As in the proof of Theorem 2.5, the supports of p; and p; may be taken so that

supp p; C (& — Ro, Yk + Ro), supp p? C (—00, yx — 2Ri) U (9 + 2Ry, 00),

for some fixed Ry > 0 and sequences {yi}x>1, {Ri}k=1 C R, where Ry — oo.

To construct the splitting functions u} and u? of u,, fork =1,2,...,let¢, ¥ €
C{° be as defined in Section 2.2, and & (x) = {("—;l&), Yr(x) = 1/;("_;21) for
R; > Ry chosen large enough that

/ |(Zkttn, | + 10" Getn )1 — | dx < € (4.102)

and
f [ Wettng 2 + 18" (Grttn)I? — 02| dx < e. (4.10b)

The reason (4.10a) and (4.10b) obtain for large R; is the same as argued earlier in
Section 2.2.

Let ul = Citty, U2 = Ykl Wk = U, — Uf — UL OF U, = U} + u2 + wy. Then
ul,u?, w, € H' and the supports of u, and u? lie in (yx — 2Ry, yx + 2Ry) and
(=00, yx —2R1) U (yx + 2Ry, 00), respectively. Moreover, ) u,{,(x)" dx is bounded,
so there is a subsequence of {u}}>1, still denoted by {u}}x>1, such that [ u;(x)? dx
converges to some number B, say. Then for any € > 0 and k sufficiently large, we
have

lf(u,t(x»"dx — Bl <e, If(uim)" dx — (L= B)| < e,

and

lwicldm = 1 = &k = Vi) thm, |7

= /‘(1 — &k — Vi, ; + ‘am ((1 — & — Wk)unk)

2
dx

< C@E¥) (|tens|* + |87 un, |*) dx
Ri<lx—yx|<2Rx

R o dx < 0(€)
Ry =lx—yk|<2Ry
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as € — 0, by the first inequality in (4.9), where C (¢, ¥) is a constant dependent
only on ¢, 1. As before

@) = T+ T@2) + I (wy) — 20 f EP Rl E) i (€) dE
+2/u,1(c+£)w,, +2[ui(c+£)w,,.

Here, there appears the nonlocal operator defined by the Fourier symbol |£)|?" if r is
not an integer. In any event, we always have

J(wi) < 7llwellim = O(e),
| f up(c + Lyweldx < /(c — alE "+ EMb )] [TRE)] b
< 7llugllgn llwill g = O(e)
and R
| f uz(c + Lywi|dx < f(c — €[+ E¥MuF )| Wi (§)| d§
< Plluglam lwill m = O(e)

as € — 0. To deal with the integral [ |&[2"ul(&)u2(&) d&, use is made of the
Sublemma.

(1) If 2r = 2n for some n € Z*, £%" is the symbol of a differential operator, and
therefore

[ erid©neds = 1 [sdwsdea=o

due to supp u,lc (N supp u% = 0.
(2)If2r =2n+ 1forsomen € Z*, thenm > n + 1,

/ £l () dE = / (& al () (GE)™ (=i sign(€)nd(®)) d&

1 [ o ui(y
=fa;u,1(x) —/-‘—*—')dydx,
4 —y

X

and hence

~ 1 N ui(y)
| f @@ ds| < - 97l (1) P x|

22
x—yI<2R, -y 22, (X — ¥)*

i 3
{/ f g dx dy} — 0,
—yl<2R, JIx—ylz2Re (X — )
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since Ry — oo with Ry > O fixed.
If2r =2n+ 8 forn e Z*,0 <8 < 1, then

f €2 Ul (E)ul (§) d§ = / (=1 (GE)"ul®)) (G5 u2®) 151 dé

= (-1 / drul ()0m 2 (€16 1P dE

aullu (y
=C(6)/8"u (x)fmgn(x—y)ﬁﬁl dydx

where C(@) = (=1)" (2eos() 7y e ) 0

a’fu?'(y)
/ 3" up(x) e dydx
[x—ye|<2Ry |x—yx|=>2Rk [x —y|
1
| 1
< Ciu .“H'{f f ——dxd } -0,
ni Jx—y|<2Ry V|x—y|22Ry |x = )’12+2§ 4

as Ry — oo.
(3)2r=2n+1+8f0rneZ+,0<8 < 1, then as Ry — 00,

| / £ ) )ik (6) dE| < C(6)

f £ 20 (i (8) dE = f 21 (8 Rl (6)) (8 ©)) 1P dt

()i / Gl (©)0m (6 |E P dE

e au—l—]uz(v
= C;(8)i* ‘fa;'“ (x)fmgn(x-—y) > "y! )dydx

where C;(8) = [2sin 57" Jy e dy]~! and

" uz(y)
3" ul (x) X dy dx
, R
supp supp u? (x—y)

1 1
< C1(8)|lu IIZ,{/ / ez ] }2—>0.
MEH L e yai<ary Jix—yiz2r, (6 — )2 i

Thus in all cases, it is observed that

[eraodo s za

©0) = lim{J (un)} = lim{J ()} = lirr}(inf{J(u,lc) + T )+ T(wy)

_Za/u,chuf+2fu,1c(c+£)wk+2/u,€(c+ﬁ)wk}
> liminf J (u}) + liminf J () + O(€)
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ase€ — 0. If [ u;(x)? dx — B =0, then
lin}(ian(u,lc) > lin}cinf)?||u,1c||Hm = limkinf)7||p,1 Iz, >0,
SO
©@) 2 y i+ liminf J (u;) + O(€) = yfi + O(A) + O(e)

as € — 0, and therefore we reach the contradiction @ (A) > ®(A) for sufficiently
small values of €. If [ u}(x)? dx — B # 0, then

() = 06(B)+ OG- p) + 0(e),
and letting € — 0 gives
M) = 6(p) + B - B).
As before, ® (1) = 9%®(k) for 6 > 0. Writing 8 = 6, we have
0>00)=06BA+0{(l-0))1) = 9%®(A) +(1- 0)%@()\)
= (67 + (1 -6)7)O() > O,
another contradiction. Thus Dichotomy is seen to be impossible.

Since Vanishing and Dichotomy have been ruled out, it is concluded that there
is a sequence {y,},>1 C R such that for any € > 0, there is an R < oo satisfying

/ Pn(x)dx > p — €,
lx—yal<R

or, what is the same,

f pn(x)dx <€,
|[x=yn|=R

for n sufficiently large. Reinterpreting in terms of u,, this amounts to

f lun(x)|P dx < €,
‘x_yulzR

f u,,(x)”dx—)\‘ < e.
lx_ynlfR

Denote by i, the translated function i, (-) = u, (- — y,). The above estimates mean
that the sequence u, (or a subsequence) converges weakly in H™ and strongly in
L, to some function & € H™, and

fﬂ(x)" dx = lim fﬁn(x)p dx = A.
n—>oo

whence

Furthermore,
o0 = liminf/ up(c+ Lu, dx > f u(ic+Lyndx.

Thus the limiting function # solves the variational problem (4.3), and therefore

¢ = (‘J’;'Rﬂi)ﬁﬁ solves the problem (4.1). Lemma 4.2 is proved and with it
Theorem 4.1. [J
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Theorem 4.3. Problem (4.1) has a solution in H*(R) when L is defined by the
Fourier symbol a|E¥ + &¥ with m a positive integer, 0<r <mandanya > 0.

The same proof as that put forward in Lemma 4.2 concludes Theorem 4.3.

Remark. As mentioned before, the nonlinear term ¢f may have p noninteger
provided p = %, m,n relatively prime and n odd so that y” € R if y € It. For the
convolution equation (4.4), the theory would still be available if the nonlinear term
had the form ¢7|¢|° where ¢ > 0 is an integer, & > Oisreal,andg +0 = 2. In
Section 6, we offer brief commentary on a more general class of dispersion operators
than those considered thus far.

5. Asymptotic decay of solitary-wave solutions. To determine the asymptotic
property of the solitary-wave solutions discussed in Section 4, write problem (4.2)
in the form

| 1
e+ DT = o= / K=o dy, (5D

¢ =

as in (4.4). The kernel k is the inverse Fourier transform of I%(S ) = W,
where m > O is an integer and r is a real number in the range 0 < r < m with

« > 0 such that min, g {c = a|x| + x|} > 0.

Theorem 5.1. Suppose ¢ is a solitary-wave solution of 5.1).
@) If r is a positive integer or if o = 0, then there is a 0o > 0 such that for any

o < 0y,
el (x) — 0,

as x — £oo.
(ii) Otherwise, there is a constant | such that

1
W‘P(X) —> W

as x — Loo.

Proof. To prove the theorem, it is sufficient to determine the spatial asymptotics of
the kernel k in (5.1) and then apply Lemma 3.1. To this end, it is useful to write
k in a more suitable form. Let f,(z) = z_'—ta%"_M:.’ and without loss of generality,
suppose w > 0. The proof breaks naturally into three parts.

(1) If 2r is an even positive integer or o = 0, then f, is analytic in the entire
z plane except for 2m poles. Since o and ¢ are real, the 2m poles divide evenly
between the upper- and lower-half planes. Thus we may order the poles {z j}f‘"l $0
that Imz; = y; > Ofor j = 1, ..., m. The Residue Theorem leads to

k(w) = J% f Fu(x)dx = le_Re{2niZCje'yfw+i‘fw], (5.2)
o .

'
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for w > 0. Since k is an even function, it follows readily from (5.4) that
lim e""k(x) =0
x—>+00

for any o < 0p = min;<;<u{y;} > 0.
(2) If 2r is an odd positive number and o £ 0, let 2 be the closed quarter-disc

Q={z:2=pe’:0<p<R, 0<0<Z}

[SYIE]

Then the function f,, is analytic in € with finitely many simple poles, {z; = x;+iy; :
J=1,2,...,k}, say. Appealing again to the Residue Theorem, it is determined
that

2 e <]
= w(x)d 5.3
k(w) _2:1/0 Jw(x)dx (5.3)
g%y

2 o9 —X) |
+/ i _/ T idy+2mi C,e Yivtixw
2 { 0 (—1)ymy2m _a(_l)—zlfy:’-’ +c ; ! }

= : /oo (_1)2";—1 )’Ej-enﬂ d +2«/2_R {ZC —YJIU+inw}
- V T Jo (C_|_(_1)::'!},2"!)2_!_&2),4:‘ y Ui | - j€ :

Since k is an even function, (5.3) implies

r-d

k(x) _ E /~oo (“‘]) 2 y2re—-\',-.' dy N 2,\/—2;9%{1. che_yj|xl+ix,-|x|}
v T Jo (C + (-1)"'))2"')2 + Qz_}’4r - b
5.4)

for all x € R. Changing variables in (5.4) gives the representation

2.

(—1)*F yZre~y

k(x) = : |
(x) |x|2r+1 /0 (c + (_I}m(%)mn)ﬁ 3. wz(?}}m,

dy+Re{dmiy Cjewtinw)
J

of k. Since the y; are all positive, it is straightforward to determine that

x>
lim |x|2r+1k(x)=(—1)2r2+l—-/ y¥e ™ dy.
x—+o00 c2 0

(3) Lastly, if 2r > 0 is not an integer, the origin of the x-y plane is a branch point.
Cut the plane through the negative x-axis, and consider the branch of the logarithm
which makes 17 = 1. Define the domain

Q= {z=pe: €e<p=<R, 0<6<

}’

(SYRE
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where € > 0 is sufficiently small and R > 0 is sufficiently large that there is no
number outside £ and inside the first quadrant which makes z2" — az*" + ¢ equal
to 0. As before, an application of the Residue Theorem leads to

k(w) = \/—25—; /0 " ol (5.5)
2 R s 4r .
= ﬁ;Re{/o fw(_ty)ldy}+E’¥,res’{f(z):2j}
2

00 ’-eiurii)')

Re{f i d C; ixjw—yjw
V2r o @ —a@)? +e i X,: N
2 /°° —a sin(rm)y¥ e :

7)o (c—acos(rm)y + (=1)my?m)2 4 o2 sin(rm) y* Y
+ Re Z Cjeixjw—ij’
J

where C; are some complex constants dependent on the singular points of f,,(z).
Using the fact that k is even, and with the change of variables y — |x|y, there
obtains

k) = -/°° —asin(rm)y¥e™

WP o (e —acos(rm) (DY + (=122 + asin(rm) ()T

+ Re Y _ Cje ikl (5.6)
J

dy

1t is thus clear that
; 2asin(rm) [
2r+1 — 2r -y =

as x — +00. Applying Lemma 4.1, Theorem 5.1 is proved. U

6. Further discussion. In the previous sections, we discussed the generalized _. .
version of Benjamin’s equation where the nonlinear term is a pure power and the
effects of dispersion are modelled by homogeneous terms in which the hi ghest-order
term corresponds to a differential operator. In this section, interest is turned to the
situation where

k
Lu®) =Y olEl*74(8) ©6.1)
j=1
with the nonlinear term 1
F@)=—— -6P 7 6.2)
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as before, p > 2 is a positive integer and the parameters «; are real numbers with
oar > 0,0 <ry <ry <--- <r,butrgis not an integer. This corresponds to the
situation where the highest-order term in the dispersion relation is not local.

The goal is, as before, to establish existence and asymptotic decay rates for
solitary-wave solutions of the nonlinear, dispersive wave equation

uy+ F(u)y — Lu, = 0. (6.3)

This amounts to finding a suitably behaved solution of the convolution equation
(5.1) where F and L are as above and ¢ > 0 is the wave velocity. As the outline of
the theory in this more general case parallels that developed already for the simpler
situations considered earlier, the exposition in this section will be abbreviated, and
concentrated on the points where additional argument is needed to bring the theory
to completion.

As before, for f € H™*(R) define

_ [ F(x)(e+ L) f(x)dx

A(S) 7
(f fx)Pdx)?

15 = [ e+ LG
and, for A > 0, set
O0) = min{J(u) tue H", / uP(x)dx = A}. 6.4)

Then as in Lemmas 2.4 and 4.2, a solution of (6.4) yields a solitary wave.

mem&LUﬁmamedemqumM6®JMn¢=@E¥%hﬁu=
((p — DO(1)) 721" % u solves (5.1).
Theorem 6.2. For any wave-speed ¢ > 0 and dispersive parameters aj, 1, j =
1, ...,k satisfying

() re=3— 5 and

(2) mingxo{c+ Y a;x?1} > 0,
every minimizing sequence {u,}n>1 of the variational problem (6.4) is, up to a trans-
lation in the underlying spatial domain, relatively compact in H™(R). Therefore
the problem (5.1) has a nontrivial solitary-wave solution ¢ = ¢, € H™*(R). Fur-
thermore, if ry > % — %, then ¢ € H*(R). Moreover, ifro =min{r; : r; ¢ Z, j =
1,...,k}, then ¢, satisfies

d 2rg+1
im x*+g,0 = C,

for some nonzero constant C.

Remark. In Theorem 6.2 above, if ri € Zforj =1,2,..., then ¢.(x) decays
exponentially, which is to say, there exists a op > 0 such that for all o < 09, ¢.(x)
satisfies

lim €""¢(xg) = 0.

x—+00
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The proof of this remark is the same as that of the first part of Theorem 5.1.
As in Theorems 2.5 and 4.2, there are two positive numbers y and y such that

Yl < J @) < 7lule.
This means 0 < ®(L) < oo and any minimizing sequence {u,},>1 is thus bounded
in H™*(R).

To deal with the problem (6.4) via the concentration-compactness principle in the
present, more general circumstances, it is useful for s > O and s ¢ Z to endow H*
with a slightly unusual version of its norm. If s = m + 8, where m is a nonnegative
integer and 0 < 8 < 1, then

Nl = f (1 + e |a)|* de

~ / (14 €™ + 5P YA€) dE ~ lulfm + f 1612137 dt
P / 8™ u(x) — 3" u(y)|
Hm

_yll+23

dydx,

where ~ stands for equivalence of norms.

Lemma6.3. Let p > 2and f be anonzero element of H®, where s > 1.1 _p2

1
2" p 2p °
Then for any R > 0, there are jo € Z and n > 0, dependent only on || f |7, and R,
such that

Go+3)R
f | f()|P dx = n.
{

Jo—$R

Proof. It suffices to establish the result in the case s < 1. Using the equivalent norm
above, we have

2
/If(x)lzd +/ CAC f;fi)' ydx = | 1% = '|']§‘i‘if”f|f<x>|"dx,
Le

or, what is the same, for any R > 0,

i /.<j+%)R(|f( Y +/|_f{_)ii:__g}_dy)dx

IS JU-DR
112 f"’* bR
- |F(OIP dx.
[ ,_Zoo 67 *

Comparing both sides of the last equality, it is seen that there must be a jo € Z for
which

(o+3)R (x) — : 2 rlotpR
[, (rer+ W SO 1) ax < MLz [ ypa,

Go—DR | S “{tn Go=$R
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and hence,
(ot 3R (o+$R  plio+1R |f(x) — fu,)|2
[ irwr e f VR JON dyax
Go—DR Go— bR lx — yl
W1 [OotDR
< i | £ ()17 dx;
NN Jeia—brr
1.e.,
i 1
o NG DR
||f|l =< [ f ()P dx.
1 (o= DR G+ )R) [Falye (o—DR

On the other hand, by Sobolev-imbedding theory,

H*(Go = DR, Go+ DR) € L?(Go = HR, o+ DR)

fors > % - %, so there is a positive constant k = k(R, p, s) such that
1 e (-t ) Z Do (G i )
whence,
Wf I [O 2R G ;
f serds= ([ irerax)”,
“f”LP (jo— (o—$R
and thus

et R A=
[fIPdx 2 = (71077,
.[ug—%)R ( i, )

as advertised in the statement of the lemma. O

Below is a slightly different version of Lion’s Lemma 2.4 that will be used in the
present, more general context.

Lemma 6.4. Let p > 2ands > % - %. Suppose {u,},>1 is a bounded sequence in
H*. If there is an R > O for which

n—>o0

lim sup |[u, |l gs(y—r,y+r) = 0,
yeR

then it follows that

lim / |un(x)|” dx = 0.
n—0oo

Proof. We argue by contradiction. If [ lu,, (x)|p dx — 0 is not true, then there
must be a subsequence of {u,},>1, still denoted by {u,},>1, and an A > 0 such
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that f |, (x)|? dx > A for all n. Then, by Lemma 6.3, there exist, for each n, real
numbers y, and > 0 such that

Yat+R
f |, (x)|P dx = 1.
Yy

II_R

Note that 1 depends only on R, s and p. It follows from the Sobolev imbedding
Theorem that

Ya+R
p
fy a1 dx <B Kl s, s

—R

where k = k(R, s, p) does not depend on n. This contradicts the assumption. The
lemma is proved. [J

Sketch of a proof of Theorem 6.2. Denote by

Ouy (x) — 8 un ()2
]x__y[].{Qﬁ ys

Pn(x) = |t O + 187w ()| +f ]

and u, = f pu(x)dx. Then p, is bounded, so it may be supposed that p, — @
as n — oo. Suppose there is a subsequence of {0,},>1, still denoted by {pn}n>1,
which satisfies either vanishing or dichotomy. If vanishing occurs, then, as before,

lim sup ||« . =
"""ooye]lg Woenll s y—R,y+R) = O.

By Lemma 6.4

0<)»=fu,,(x)"dx S/Iun(x)l"dx — 0.

If dichotomy occurs, thereis a it € (0, ) such that for any € > 0, there corresponds
an g and functions p;, p2 € L1(R), pl, p? > 0 such that for n > ny,

low = (o5 + Pz, < €,

Ipr,‘,(x)dx—ﬂl s I[A@d-@-pise
R

supp p! Nsupp p? = @ and dist{supp p,, supp p;} — 00 asn — oc.

As before, it may be assumed that

supp p! C (y4 — Ro, Yu + Ro) and supp p; C (—00, yp — 2Ra) U (yn + 2Ry, 00)

for some fixed Ry > 0, and real sequences {yn}n>1, { Ru}n>1 With R, — o0. Then,
we have

/ pn(x) dx S 6’
Ro<|x—yi|=2R,
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which is to say,

107 e (%) — Ot () |2
et 1 o - yk|<2R,.>+/RO<|X - f X — i dydx < e.
(6.5)
To construct the splitting functions u! and u2? of {u,}us1 forn = 1,2,..., let
€ C°with0 < ¢ < 1besuchthat 0 < ¢(x) < 1forallx, {(x) = 1 when
x| <1, ¢{(x) = 0 when |x| > 2, and define ¥ (x) = 1 — {(x). For R; > Ry
sufficiently large, and forn = 1, 2, .. ., define

£ax) = £ (5 y"), V(%) = ™,
and set
e * f n R i —=Jn 2 no
n,t(x)={§( ) mEERN ot RS x syt 2R
otherwise,
2 {5(%&)—4("—;&) if yo — 2Ry <x <y, — Ry,
N, (x) = ! " ,
0, otherwise.

It follows that for any x € R, &, (x) + ¥, (x) + n,{ (x) 4+ nﬁ (x) =1, and supp n,ﬂ C
(y;:—sz ,)Jn'_'R!)- supp Hﬁ S ()‘;:+R| ) yn+2Rn)s supp é-n C (}'n—le, ¥n +2R1)!
supp ¥, C (—00, yx — 2R,) U (¥4 + 2R, 00). The functions {u,},s can then be
decomposed as

Up = Culhy + Yuty + U,I;uu + Wiun-

Notice that

7" (i) (X) — B (mpn) ()2
Ul ~ g+ f [ STy

02" (mpun) (x) — O (pun) ()
< C(c)uu.,|[i,,,mufu_},“|mﬂ)+[f x (Myttn y dy dx,

|x — y|t+2

where C(Z) is a constant dependent only on ¢. The second term on the right-hand
side of the last inequality may be bounded above thusly:

\3"'(?1,.u;r)(x) 0y’ (n,ﬁun)(.v)\z
yl‘ 5 dy dx
m m 2
WH2Re e t2Re |9 (1) ) (X) — B (Mun) )|
= 1+26 dydx
Yo +Ry Ynt+R) lx — yl

Yi+2R, Yu+R1 o0 am(r Iu ) X 2
+2f (/ +/ )—ﬁ-—\ = V0 ”1523‘ dy dx
YakR) —o0 yot2R X =Y
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f“n f“n O™ (hun) (x + yn) — 35 (uan) (y + yn)\ i
|x — y[1+2

auif o |op a1 /2’*" x(??f,u-n)(x-i-_vn)\z o
5 (x — R))* 8 R (2R, — x)%#
2R, 2R | 0 (M) (00 0 un (x4 ya) = 8 InhaJualy + y)[°
=/ f 1425 dy dx
R IR lx — ¥l

1 2R |27 ()0 Toh (e + y)ddun(x + y,,)l2
=5 le |x — Ry|% dx

2 |3 (MO (x4 ya)ddun(x +yn>|
*3 /R 2R, — x|®

We make detailed estimates of the summands in the terms on the right-hand side of
the last inequality: for j = 0,1,...,m,use (6.5) repeatedly to conclude

sz,. /2R,. \8’" f’r;,,aJl (X + yu) — 05 ‘n,llagfu,,(y + y,,)\2 S

| Vll-i-zs

2R, amJI +n axn n——a‘]n n
{f ] l @ + yo) P80 un x + yn) un(y + ya)|* dydsx

|x — y|i+2s

2y (20 (9 (x4 ) — 8l + )| |87 (y + )| P
R |x — y|1+28 e

< ||17,l IIC;;. ||u,l "H"'+5(y,.+R..y,.+2R,.) +0()= 0O() as e—>0,

fZR" lam J l(x + yn)ayun(x + )In)|

Ry Ix — Ry|?
e "n,‘,(x + ya)[?
< max | P s sz = O(€) 25 €= 0

and, similarly,

2Re | (nhun) (x = yo)|”
X Nl "
/R, 2R, — x|* x () as e€e—>0

Combining these last three estimates and using (6.5) once more yields

||r),1lun||§,,k =0() as e—0. (6.6)
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By the same argument, it appears that
In2unl|3m = O(e) as € — 0. (6.7)

If u) = Suttn, u2 = Ypu, and w, = nlu, + Mzuy, then it transpires that supp ul C
(yn — 2Ry, yo + 2Ry) and supp uZ C (=00, y, — 2R,) U (y, + 2R,, 00). Using
(6.6) and (6.7), it is deduced that

Ml 2 = Nt} + 6212, + OC€) = [l + 12 |2y
2
4 (3 uy () + 32 (x)) — (87ul(v) + 87uZ ()]
Ix — y|1+28

2
Yut2R /y,.+2R1 |8J’c"u,ll(X) - a;f'urlt(y)l
yn_ZRl |x _ y|1+28

dydx + O(e)

12 212
e 2 + 1212 +/
}'n"ZRI

2
- / f [ un ) — By )] dy dx
=yal22Ry J1x—yn|22R, |x — y[1+28

Ja 2R, amu,l:(x) . a:f:u?.(v) 2
+2f fl X g POl 4y i+ 00
x“y”|22 n

dydx

W—2R Jx — y|1H2

Yut2R, |3mMI(I) . 31{:1‘2()’)‘2
= e g + 121 +2/ f =Wl — )ty dx + 0(e)
i n ym=2Ry JIx—y,|>2R, |x — y[1+2

= llup % + 1204 + OCe)
as € — 0. Then for large n and small €, we have

1,2 2 212 2
0 =< lluplgme < Nutnllgn, O < Nyl < Nt e,

H't
From this information, we may derive the contradiction 0 > ©(1) > ®()), as

before. Thus Dichotomy is ruled out. By simply adapting the details of the proof
of Theorems 2.4 or 4.2, the existence portion of theorem 6.3 is proved.

To prove the decay part of the theorem, it is only required to determine the inverse

. =1 .. . . }
Fourier transform of (c + Z};l aj|‘§|2r!) . Similar calculation as in previous
sections leads to the result

k SO 2 a—vlx|
2 [ o o(sinpm)ysie™
k(x) =,/—f el : 5 dy
T Jo ( A

: 2 8 .
¢+ ijl (cos ) y)" + (32—, o sin(rym)y?i)
+ terms with exponential decay in x,

and so there is p19 € [0, 1] such that [|u}]|3,, — 1o and ||u2||%,, — w — uo.

whence
o 2r0+1
lim |x| k(x) =C,
x—>to00

for some constant C. The theorem is complete. [(J
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Theorem 6.5. If the parameters ¢ and o; satisfy

() r> 1,

(2) miﬂxz[){c + Y i} > 0,

(3) 3 aj(sin r_,-:r)yz’f > 0 forall y = 0, and
4) forany p = 0and0 <6 < x

c+ Zajpj?rfeizrje £0,

then

(1) the equation (5.1) has a nontrivial solitary-wave solution ¢ = ¢ €
H*®(R), and ¢, may be chosen to be an even, positive function, strictly
monotone decreasing on (0, 00) and such that ¢. and all its derivatives are
bounded and continuous Li-functions.

(2) Moreover, if ro = min{rj crp¢Z,j=1,.. .,k}, then ¢, decays at the
rate

lim |x"**¢e(x) = C,
x—to00

for some constant C.

Proof. Write (5.1) in the form

1 1
= c+ E 1P = — / k e p
¢ e 1( )P o1 (x = y)¢f () dy, (6.8)
where k is defined by the Fourier symbol
~ 1
k() = —————+
B Tk

Computing as before, it is seen that

2 [ 3. a; sinrjmy¥ie”
k(x) = k(—x) = \/jf AR 5 dy,
mJo (c+ X, @jcos rimy?i)" + (3; o sinrmwy?i

and from this representation, it is obvious that k satisfies all three conditions in
Lemma 2.1. Hence the existence part of the theorem is in hand. It is straightforward

to check that
. 2 agsinrgm [
lim [x]*Mk(x) = Jo20 0 yre™ dy
x—+o0 T c? 0 ’

where o is the coefficient corresponding to the power ro in the definition the symbol
of L. Applying the results in Section 3, the decay part of the theorem is thereby
concluded. O



84 HONGQIU CHEN AND JERRY L. BONA

Acknowledgment. Part of this research was carried out while both authors were
visiting The Centre de Mathématiques et leurs Applications, Ecole Normale Su-
perieure de Cachan. The research was partially supported by the National Science
Foundation, USA. The authors thank John Albert for pointing out that at least one
solitary-wave solution must have a positive Fourier transform. They also thank Yi
Li for helpful comments on the original draft of this paper.

REFERENCES

{11 R.A. Adams, Sobolev Spaces, Academic: New York, 1975.

(2] 1P Albert, Positivity properties and stability of solitary-wave solutions of model equations for
long waves, Comm. PDE 17 (1992), 1-22.

[31 J.P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal
equations, To appear in the Amer. Math. Soc. Conference on Partial Differential Equations held in
Baton Rouge in May, 1996,

[4] J.P. Albert, J.L. Bona, and .M. Restrepo, Solitary-wave solutions of the Benjamin equation, To
appear in the SIAM J. Appl. Math.

[51 J1.P. Albertand J.F. Toland, On the Exact solutions of the intermediate long-wave equation, Differ-
ential Integral Equations 7 (1994), 601-612.

[6]1 C.J. Amick and J.F. Toland, Uniqueness of Benjamin’s solitary-wave solution of the Benjamin—Ono
equation, IMA Journal of Applied Mathematics 46 (1991), 21-28.

[71 T.B. Benjamin, A new kind of solitary wave, J. Fluid Mech. 245 (1992), 401-411,

[8] T.B.Benjamin, Solitary and periodic waves of a new kind, Phil. Trans. Royal Soc. London A 354
(1996), 1775-1806.

[91 T.B. Benjamin, J.L. Bona, and D.K. Bose, Solitary-wave solutions of nonlinear problems, Philos,
Trans. Royal Soc. London A 331 (1990), 195-244.

[10] J.L. Bona and Y.A. Li, Decay and analyticity of solitary waves, J. Math. Pures et Appliq., 76
(1997), 377-430.

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman; London, 1985.

[12] M.A. Krasnosel’skii, Positive solutions of operator equations, Groningen: Noordhoff, 1964.

[13] Y.A. Li and J.L. Bona, Analyticity of solitary-wave solutions of model equations for long waves,
SIAM J. Math. Anal. 27 (1996), 725-737.

[14] P-L. Lions, The concentration-compactness principle in the calculus of variations, Part I, Ann.
Inst. H. Poincare, Analysis Nonlinear 1 (1984), 109-145.

[15] E Oberhettingger, Tabellen Zur Fourier Transformation, Springer-Verlag: Berlin, 1957,

[16] M.I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in

long wave propagation, Comm. Partial Differential Equations 12 (1987), 1133-1173.




