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A Generalized Korteweg-de Vries
Equation in a Quarter Plane

Jerry L. Bona and Laihan Luo

ABSTRACT. An initial- and boundary-value problem for the nonlinear wave
equation
ut + P(’M):lc + Ugzz =0 (*)

is considered in the quarter plane {(z,t) : z > 0, t > 0} with initial data and
boundary data specified at ¢ = 0 and on z = 0, respectively. Such problems
arise in the modelling of open-channel flows where the waves are generated by a
wavemaker mounted at one end of a flume, and in other situations where waves
propagate into an undisturbed patch of the dispersive medium. Equation (x),
which is a generalized version of the classical Korteweg-de Vries equation, fea-
tures a general form of nonlinearity in gradient form. With suitable restrictions
on P and with conditions imposed on the initial data and boundary data which
are quite reasonable with regard to potential applications, the aforementioned
initial-boundary-value problem for () is shown to be well posed.

Key words: Generalized Korteweg-de Vries equation; quarter-plane problem;
initial-boundary-value problem; nonlinear, dispersive, wave equations.

1. Introduction

This paper is concerned with the initial- and boundary-value problem

ut+P(u), + tgee =0, for z, ¢t > 0, (1.1a)
u(z,0) = f(x), for z > 0, (1.1b)
u(0,t) = g(t), fort >0, (1.1c)

where v = u(z, t) is real-valued function of the two real variables ¢ and t, P is a real-
valued function of a real variable and subscripts adorning a function connote partial
differentiation. Equations like (1.1a) are mathematical models for the unidirectional
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propagation of small-amplitude long waves in nonlinear dispersive systems. In such
applications, u is typically an amplitude or a velocity, z is often proportional to
distance in the direction of propagation and ¢ is proportional to elapsed time.

The well-developed theory for the pure initial-value problem for (1.1a) wherein
u(z, 0) is specified on the entire real line with zero boundary conditions at £ = Fo00
insures that there exists a unique smooth solution u corresponding to given, smooth
initial data f, at least over some time interval [0, T*), where T* = T*(f) > 0 [15,
16, 19, 24, 25, 28-31, 33, 39]. If P(u) = P, for p < 5, for example, then T*
may be taken to be 400 because of certain a priori bounds that are available in
this case [29]. However, the question of whether or not T* can be taken to be +o0o
in case p > 5 is open. Numerical results [6, 7, 8] seem to indicate that for p > 5,
solutions of (1.1a) corresponding to significant classes of smooth initial data form
singularities in finite time.

The pure initial-value problem is often not practically convenient if one at-
tempts to assess the performance of equations like (1.1a) as models for waves, or
to use them predictively. There will usually be difficulty associated with determin-
ing the entire wave profile accurately at a given instant of time. Indeed, a much
more common situation arises when some sort of wavemaker is used to generate
waves at the edge of an undisturbed stretch of the medium in question, which then
propagate into the medium. This corresponds to the special case of (1.1) in which
f = 0. Guided by experimental studies on water waves in channels see [11, 26,
27, 44|, Bona and Winther [17, 18] considered the Korteweg-de Vries-equation
(KdV-equation henceforth)

Up + Uy + YUz + Ugge =0 (1.2)

with initial- and boundary-conditions implemented as in (1.1) and proved that
such a quarter-plane problem is well posed (see also [20, 22] for theory involving
nonlinearities P having the general form in (1.1), but still restricted to grow at most
quadratically and with more restricted initial data). Earlier, Bona and Bryant [4]
had studied the same quarter-plane problem for the regularized long-wave equation

Ug + Ug + Uy — Uggt = 0 (1.3)

and proved it to be well posed. (This latter quarter-plane formulation of the wave-
maker problem with appropriate dissipative terms appended was later used to test
(1.3) against experimentally determined water-wave data in [11].)

For physical situations other than wave motion on the surface of a perfect fluid,
simple models sometimes yield nonlinearities that are somewhat more complex that
the quadratic one appearing in (1.2) or (1.3). Examples include internal wave
motion and waves in crystalline lattices [37, 38, 41]. This fact gives impetus to
the present generalization of the earlier theory.
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In this paper, we study the quarter-plane problem (1.1) and show it possesses
a unique, global classical solution which depends continuously on variations of the
data f and g within their respective function classes. Of course the nonlinearity
must be restricted for these results to obtain. Other than being smooth, the non-
linearity P will be required to satisfy a one-sided growth condition of the form
A(u) < |u|? for all large values of |u| and suitable values of p, where %ug)- = P(u).
(It is worth note that in our companion paper [9] on the quarter-plane problem for
a generalized version

ug + ug + P(u), — Vgg — @*Uggt =0 (1.4)

of (1.3), a similar, but less restrictive condition appears on P. In this latter reference,
initial- and two-point boundary-value problems for (1.4) are also studied. Such
two-point boundary-value problems seem rather complicated for (1.1a) since they
require the imposition of an extra boundary condition [5, 10, 17].)

The paper is organized as follows. Section 2 outlines briefly the notation and
terminology to be used subsequently and presents a statement of the principal
result. In Section 3 the regularized problem

ug+P(u), + Uzge — €Uzt = 0, forz,t >0, (1.5a)
u(z,0) = f(z), for x > 0, (1.5b)
u(0,1) = g(t), for t >0, (1.5¢)

is considered, and shown to admit a satisfactory theory when e is fixed and positive.
A priori adduced, e-independent bounds for solutions of the regularized problem
(1.5) are derived in Section 4 and Section 5. Passage to the limit as € | 0 in the
weak-star topology is effected in Section 6, where smooth solutions of the initial-
and boundary-value problem (1.1) are shown to exist. In Section 7, these solutions
are shown to lie in more restricted spaces and to depend continuously on the initial-
and boundary-conditions.

2. Notation and Statement of the Main Results

We begin with a review of terminology and notation. For an arbitrary Banach
space X, the associated norm will be denoted || - ||x. If @ = (a,bd) is a bounded
open interval in R* = (0, +00) and k a non-negative integer, we denote by C*() =
C*(a,b) the functions that, along with their first k derivatives, are continuous on
[a, b] with the norm

Ifllor@y = sup |F9 (). (2.1)

z€Q
0<j<k

If © is an unbounded interval, CF() is defined just as when  is bounded except
that f, f', ---, f®) are required to be bounded as well as continuous on 3. The
norm is defined as in (2.1). Similar definitions apply if Q2 is an open set in R . The
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space C®(f2) = N;C/(Q) will appear tangentially, but its Frechet-space topology
will not be needed. D(f) is the usual subspace of C*({1) consisting of functions
with compact support in Q. Its dual space D'(f) is the space of Schwartz distribu-
tions on Q. For 1 < p < 00, L,(Q) connotes those functions f which are pth-power
absolutely integrable on £ with the usual modification in case p = co. If s > 0 is
an integer and 1 < p < oo, let W*P(f2) be the Sobolev space consisting of those
L,(Q)-functions whose first s generalized derivatives lie in L,((2), with the usual
norm,

||f||€vs.r(n) = kZ—O ||f(k)”1!1p(9)'

If p = 2 we write H*(Q) for W*2(£2). In the analysis of the quarter-plane problem,
the spaces H*(Q) will occur often with s a positive integer and @ = R* or Q =
(0,T). Because of their frequent occurrence, it is convenient to abbreviate their
norms, thusly;

Il-Ws=Illlg=@+y and [-ls7 =" |l&s0,m) (2-2a)

If s = 0, the subscript s will be omitted altogether, so that

-I=M1llz,@sy and  |-lz=]"lo7 (2.2b)

Similarly, C¥ (R") appears frequently and will be denoted simply Cf. In case k = 0,
we will systematically drop the superscript and so the class of bounded continuous
functions on Rt is written Cy. The notation H*(Q) = N;H’(Q) will be used for
the C°°-functions on €, all of whose derivatives lie in L2(2). For s > 1, H§(R") is
the closed linear subspace of H*(R™) of functions f such that f(0) = f'(0) =--- =
fG=D(0) = 0. Hf,,(Q) is the set of real-valued functions f defined on § such that,
for each ¢ € D(N), ¢f € H*(Q). This space is equipped with the weakest topology
such that all of the mappings f — ¢f, for ¢ € D(f?), are continuous from Hy, into
H*(Q). With this topology, Hf () is a Fréchet space. If X is a Banach space, T
a positive real number and 1 < p < +00, denote by L,(0,T’; X) the Banach space
of all measurable functions u: (0,7") — X, such that ¢ = [Ju(?)||x is in Ly(0,T),
with norm

llullz,01x) = (/OT ||U(t)][§(dt) 1< p< oo,
and if p = oo, then
1)l 2o (0,7 x) = essential supremumd{||u(t)||x}.
0<t<T
Similarly, if & is a positive integer, then C*(0,T; X) denotes the space of all con-

tinuous functions u: [0,7] — X, such that their derivatives up to the kth order
exist and are continuous. The space L§2,(R*; X) is the class of measurable maps
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u: Rt — X which are essentially bounded on any compact subset of Rt. The
abbreviation B;“Jl will be employed for the functions u: R* x [0,7] — R such that
8i9iu € C(0,T;Cy) for 0 < j <k, and 0 < ¢ < . This space of functions will carry
the norm

||“||3;v' . Z ||3tiaiu||c(o,T;c,,),

0< <k
0<iZl

The space Bg:o will be abbreviated simply Br, so that

|lullp, = sup sup |u(z,?)|.
0<z, 0<t<T
The next few sections are somewhat technical, and it seems useful to state at
the outset a sample of one of our principal results so the reader may keep in mind
the overall goal of the paper. Throughout the development of our theory, it will be
assumed that the nonlinearity P appearing in the differential equation is at least
locally Lipschitz. If B is a bounded subset of the real line, then «(B) will denote
the Lipschitz constant for P on B, so that (B) is the smallest number for which

|P(21) — P(22)| < v(B)|z1 — 22/, for all 21,72 € B. (H1)

It will also be presumed that P(0) = 0, an assumption that entails no loss of
generality since P appears differentiated in the equation.

Main Result. Let there be given T > 0, initial data f € H3(R"), boundary
data g € H?(0,T), and assume the compatibility condition f(0) = g(0) to be sat-
isfied. Suppose that in addition to being locally Lipschitz, P satisfies the one-sided
growth condition

lim sup
|8]—=00

5 <0, (%)

where %&:ﬂ = P(s) and A(0) = 0. Then the initial-boundary-value problem (1.1) has
a unique solution u € C(0,T; H3(R*)) which depends continuously on the auziliary
data f and g. If the auziliary data (f,g) is further restricted by the requirement

f € H*(R") and the compatibility conditions

£(0) = g(0) and  ¢'(0) + P'(£(0))f'(0) + f"(0) =0
are satisfied, the solution u lies in C(0,T; H4(RT)).

Remark. The appellation solution of (1.1) means a distributional solution of
(1.1a) for which the auxiliary conditions (1.1b) and (1.1c) can be given a well-
defined sense.
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3. The Regularized Problem

In this section attention will be given to the following regularized initial- and
boundary-value problem:

ug + P(w)g + Uggpg — EUgzt = 0, for z,t > 0, (3.1a)
u(z,0) = f(z), forz >0, (3.1b)
u(0,t) = g(2), for t > 0, (3.1¢)

with the compatibility condition u(0,0) = f(0) = g(0). The positive parameter €
will be treated as fixed in this section. Following the development in [17], let

v(z,t) = e%u(e%(a: —1),€%1),

where p is a positive number to be specified later. If P(u) = cu™!, then p = r.
The function u is a smooth solution of (3.1) if and only if v is a smooth solution of
the problem

vy + evw+eﬂ1=;_lP(e_%v)m — Vggr = 0, in €, (3.2a)
v(z,0) = F(z), for z > 0, (3.2b)
v(t, t) = G(t), for ¢ > 0. (3.2¢)

Here Q = {(z,t): t > 0and z > t}, F(z) = e%f(e%a:), and G(t) = e%g(e%t). The
dependence of F and G on ¢ is suppressed, since ¢ is viewed as fixed for the nonce.
The compatibility of f and g at the origin implies and is implied by the relation
F(0) = G(0).

By converting the differential equation (3.2a) with initial condition (3.2b) and
boundary condition (3.2c) into an integral equation and applying the contraction-
mapping theorem to this new equation, a small-time existence theory can be es-
tablished. The argument closely parallels that worked out in detail in [9, 17],
and we therefore content ourselves with a sketch. First regard equation (3.2a) as
an ordinary differential equation for the independent variable vy by considering
€vg + v P(e%v)w as a given external force. Solving this second-order equation,
performing a formal integration by parts, and following that by an integration from
0 to t leads to the equation

v(z,t) = F(z) + (G@t) — Ft)e™ ™8 + B(v)(z, t), (3.3)

where

+oo

B(v)(z,t) = t K(w—t,{—t)/o [E%P(e_%v(ﬁ,'r))+ev(f,'r)]d‘rdé (3.4)

and
K, = 3 [exp(~(o + ) +sga(e — Oexp(-lo = )]  (85)
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For v € Br, define the function Av by
(Av)(z,t) = F(z) + (G(t) — F(t))e~ =% 4+ Bv)(z, t). (3.6)

Assuming that F' and G are bounded and continuous, it follows that A is an operator
mapping v € Br into itself since K is integrable. Define the quantity R(T") by

1
S B(T) = ||A%)lsy < 2{[Flloy@+) + IGlloe,m), (3.7)
where J(z,t) = 0, and let
Br = {w € Br: [[w||s, < R(T)},

and

AMT) =T(e+v(R)), (3.8
where v(R) = y([—R, R]) is the Lipschitz constant for P on the set [—R, R]. Then
for u, v € Br, it transpires that

|Au — Av||p, =sup sup |Au — Av|
0<z 0<t<T

< T(e+v(R))u—vlis,
S AD)lu = vllge,
and
|Avllgr = ||Av — Ad||5, + ||AF]| 5,
1 1
= AT)lollse + 5 R(T) < (NT) + 5)R(D).
If T is chosen small enough so M(T') < 3, then it follows from the last two inequalities

that A is a contractive mapping of Br into itself. These remarks together with the
contraction-mapping theorem suffice to establish the following result.

Proposition 3.1. LetT > 0, F € Cy(RT) and G € C(0,T) be given. Suppose
that P is locally Lipschitz continuous. Then there is a positive constant T' depending
only on ||F||c,r+), |IGllc,r) and the Lipschitz constant vy such that if To =
min(T",T), then there is a unique solution of (3.6) in Br,.

Remark: Uniqueness follows readily from the sort of inequalities displayed above.
A detailed view of the uniqueness may be found in [17]. Notice that the size of the
time interval 7" depends only upon the maximum value of F’ and G.

It will be important in subsequent sections to have smooth solutions, up to
the boundaries, of the regularized problem (3.1) at our disposal. This amounts
to the program of relating solutions of the integral equation (3.3) to solutions of
the regularized initial-boundary-value problem (3.2). The following result will be
sufficient for later developments.
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Proposition 3.2. Suppose that F € CF(R") and G € C™(0,T), where k > 2,
m > 1, and k > m, and that F(0) = G(0). Further suppose P € C**™ 1(R). Let
v be a solution in Br, of the integral equation (3.3), where Ty lies in the interval
(0,T). Then it follows that

8:0lv C Br,, for0<j<mand0<i<k+j. (3.9)

Conversely, if v is a classical solution of the transformed problem (3.2) in Qr, then
v is a solution of the integral equation (3.8) over Qr, and so v satisfies (3.9).

The proof follows from the integral equation (3.3) as in [4, 16, 17] and so is
omitted here. The partial derivatives in (3.9) may be defined at the boundary of Qr
via the obvious one-sided difference quotients. In case j > 0 in (3.9), the condition
818v € Br connotes that this partial derivative exists classically in Q7\{(0,0)}, is
bounded and continuous there, and that it may be extended continuously to Qr.

Suppose a classical solution v of (3.2), defined on Qr for some T' > 0, is in hand,
and suppose the boundary data G is defined at least on [0, T1], where Ty > T'. As
soon as an a priori bound on the Loo-norm of a solution defined on Q7, is provided,
it follows from the Remark below Proposition 3.1 that the solution can be extended
to Qr, by a finite number of iterations of the local existence result propounded in
Proposition 3.1. Moreover, if F and G possess the regularity assumed in Proposition
3.2, it follows that the extended solution does as well.

Provision of the relevant a priori bound is now considered. Additional condi-
tions on F and G seem to be needed at this stage, namely that the initial data be
suitably evanescent at infinity. This condition is quite reasonable from the point of
view of the physical situations for which (1.1) serves as a model.

Lemma 3.3. Let F € CF(RY) and G € C™(0,T) with F(0) = G(0), where
k>2 m>1andk>m. Letv be a solution of (3.2) in Br,. Letr lie in the range
0 <7 < k and suppose that

dIF(z) -0 as & — =400,
for 0 < j <r. Then it follows that
o3 div(z,t) = 0 as & — +00,
uniformly for 0 <t < Ty, fori, j such that 0 <i<m and0<j <7+

The proof of this technical result follows from the representation (3.3) just as
in [3, 4] and we may safely skip the details.

Attention is now given to the derivation of the a priori bounds needed to
guarantee the local solutions provided in Proposition 3.1 admit global extensions
to solutions of the initial-boundary-value problem (3.2). According to the remarks
above, it suffices to show the following. Suppose to be given suitably restricted
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initial data F' defined on Rt and boundary data G defined on [0, T'] for some positive
T Suppose also that u is a correspondingly smooth solution of (3.2) defined on {r,
for some 0 < Ty < T. If it is demonstrated in these circumstances that there is a
constant C dependent only on F, G and T such that

llullc,@qr) < C, (3.10)

then it follows that u can be extended to a solution of (1.1) defined on Qr. In
particular, if G is given for all ¢ > 0 and lies in the function class that allows
the derivation of (3.10) on any bounded time interval, it will follow that u can be
extended as a solution of (3.2) defined on the entire quarter plane Rt x R*.

A bound on solutions of (3.2) that implies (3.10) is the subject of the next
proposition. The proof can be found in [9].

Proposition 3.4. Let A be defined by A(0) = 0 and A’ = P. Suppose F' €
C}(RY) N HY(R*), G € C*(0,T) with F(0) = G(0), and that A is at least a Cr=
function satisfying the one-sided growth condition

limsup |s| *A(s) < 0. (H2)
|8]—o00
Then for any T > 0, the system (3.2) with initial and boundary data F' and G has
a unique solution v € B3 N C(0,T; H'). Moreover, if F € C§(R*) N H*(R") and
G € C1(0,T) with F(0) = G(0), and
limsup |s|"%|P"(s)] < ¢*, (H3)
|8]—o0
for some finite constant c*, then the initial-boundary-value problem (3.2) has a
unique solution v € B;’Jl NC(0,T; H?) for arbitrary T > 0.

In any case, the solution depends continuously on the initial- and boundary
data in the sense that the mapping (F,@) — v is continuous from C§(RT) N
HY(RY)xCH0,T) to B2 nC(0,T; HY), or from C}(R*) N H2(RT)xC*(0,T) to
B3 nC(0,T; H?).

Corollary 3.5. Let f € C}(RY)n H*(R*) and g € C*(0,T), where f(0) =
g(0). Let u be a classical solution of (8.1), up to the boundary, on Rt x [0, To).
Suppose P satisfies the conditions in Proposition 3.4. Then there exists a constant
C dependent on ||f||2 and on |gh, such that any classical solution u of (3.1) defined
on Qqy, for Ty < T, satisfies

|[ulley gr,) < C-

Proof: Let u be a classical solution of (3.1) on Qr, for some To < T. Then
since

v(z,t) = e%u(e%(x — 1), €3t), (3.11)



10 JERRY BONA AND LAIHAN LUO

v is a classical solution of (3.2a) on R* x [0, Tj], where Ty = €2 Ty, which satisfies
the auxiliary conditions (3.8) where

F(m) = C%f(e%z), and G(t) = C%Q(E%t).

Here € is fixed, and so F and G satisfy the hypotheses of Proposition 3.4. Hence
the H2(R*)-norm of v is bounded on [0, 7] by a constant that depends on ||F||2,
and on |G|1,r, say, where T' = ¢2T. By an elementary inequality, one has

0(s B)lley @+ < V2(oC, 1)l vs (5 1)) 7

It follows that v is bounded on R* x [0,7] by a constant C' dependent only on
|F||z and |G]1,7v. In particular, C does not depend on T for Tj in the range [0,7"].
Since u is defined from v by

u(z,t) =e_%v(e—%m+e_%t, e 2t), (3.12)
the desired result follows.

Here is one more result about the transformed problem (3.2). The proof follows
easily from the integral equation (3.3).

Proposition 3.6. Let F € C}HR*)n H*R"),G € C™(0,T), where F(0) =
G(0) and k > 3,m > 1 and k > m. Let v be the solution of (3.2) in Br,(Q),
up to the boundary, where Q = {(z,t) : t > 0 and = > t}. Suppose P satisfies
(H3) in the Proposition 3.4 and is in C¥+™~1(R). Then there exists a constant C,
dependent on ||F||s and |G|1,r such that, for each t € [0, To],

10207 v (-, )l La((tio0)) < C
provided that 0 < j <m and 0 <i < k+j.

It is worth summarizing the accomplishments of the present section. As the
transformed problem (3.2) is only of transient interest, the theory is recapitulated
in terms of the regularized problem (3.1). Thus the results stated now are con-
sequences of the propositions established above together with the transformation
(3.12) taking (3.2) to (3.1).

Theorem 3.7. Let f € C}(R") and g € C™(0,T), with f(0) = g(0), where
k>3 m>1andk >m. Let e >0 and suppose P to lie in C¥*™1(R). Then
there ezists Ty > 0 and a unique function u in Cy(RY %[0, To]) which is a classical
solution of the regularized problem (3.1). Additionally,

8Ld]u € C, (R x [0, Ty)),

fori and j such that 0 < j <m, 0<i<k andi+j < k. Suppose f € H™(RY),
where P satisfies hypothesis (H2) if r > 1 or hypothesis (H3) if r > 2 in Proposition
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8.4. Then u may be extended to a solution of (3.1) on R*x[0,T]. In this case, there
is a constant C which depends on € such that, for 0 <t < T,

|18L87u(- 8|l < C,
for i and j such that 0 < j <min{r,m}, 0<i<randi+j<r.

Corollary 3.8. Let f € H®(R') and g € C®(RY), with f(0) = g(0). Suppose
P satisfies the growth condition (H3) in the Proposition 8.4 and is a C*°-function.
Then there exists a unique solution u of (8.1) on the entire quarter-plane Rt x Rt
corresponding to the data f and g. Moreover the solution u is bounded on any finite
time interval, lies in C®°(RT x RT) and for each k > 0,

0i8iu € C(RF; H*(RT)),
foralli,7 >0

Proof: The existence of global solutions follows immediately from Theorem 3.7
together with the uniqueness result. Also, for any 4,5 > 0, k > 0,and T' > 0, 8;8{ U
is uniformly bounded in H*(R*), for 0 < t < T. Since u € Lo (0, T; H*(R")) and
ut € Loo (0, T; H¥(RT)), it follows immediately (cf. [85]) that u € C(0, T; H*(R*)).
O

4. A priori Bounds in H® for the Regularized Problem

In Section 3, the bounds obtained in H! or H? for solutions of (3.2) do not
appear to yield e-independent bounds on solutions of (3.1) because the transforma-
tion (3.12) that takes solutions of (3.2) to solutions of (3.1) is singular at € = 0. In
this and the next section, e-independent a priori bounds are derived for solutions
of the regularized initial- and boundary-value problem (3.1) which, for any fixed
T > 0, are independent of ¢ € [0, T.

Throughout this section it will be assumed that f € H*(R"), g € C*(0,T),
and f(0) = g(0). From Corollary 3.8 it is inferred that there is a classical solution
u = u, of (3.1) corresponding to the auxiliary data f and g which is such that

u € C(R* x[0,T)),
and, for integers j,k > 0,
&u e C(0,T; H*(R)).

Some preliminary relations, established via energy-type arguments, will be derived
in a sequence of technical lemmas. These prefatory results will be combined to
obtain e-independent bounds for « within the function class C(0, T; H*(Rt)) under
the assumption

lim sup |s|_%A(s) <0 (x%)

|8|—00
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on P, where as before, A’ = P and A(0) = 0. Besides the condition (#x), it is also
assumed that P € C®(R"), though it will be clear that weaker differentiability
suffices for most of the results below. Because of () and the fact that P(0) =0,
it follows that for any & > 0, there is a constant C = C; such that

A(s) < Cs* + 653

for all s > 0. Note that, because (**) is a one-sided condition, high growth rates
at infinity are not excluded. For example, if P(s) = —(2k + 2)s?**1, then A(s) =
—52k+2 gatisfies (#*) no matter how large the positive integer k.

At various times, constants will arise in our considerations that depend only
on the data f and g. Many of these will be denoted simply by C, and this symbol’s
occurence in different formulae is not taken to connote the same constant.

Lemma 4.1. Let f € H®(R"), g € C®°(R"), with f(0) = g(0). Suppose P
satisfies the growth condition (xx) and suppose 0 < € < 1. There exists a positive
constant

a1 = a1 (||, lgl1,1), (4.1)
such that the solution u of (3.1) corresponding to the data f and g satisfies

t
()2 + /0 [ui(O,s) + (ug2(0,8) — euxt(O,s))2]ds <ay, (4.2)

for 0 < t < T, and uniformly for € € (0,1].

Proof: Multiply (3.1a) by 2u and integrate the resulting relation over Rt x
(0,t). After integrations by parts, in which the fact that u and various of its
derivatives vanish at 400 is used repeatedly, it is verified that

t
wwwW+m%uMPﬁAﬁmmw

=/ [29(5) (%02 (0, 8) — euat(0,5)) +2Q(g(s))]ds + || || + el £'I1?
0 1 (4.3)

Scmmhwhﬂ+0@h(A(%AQ@—MHQ$V@>,

where Q'()) = A P'()) and Q(0) = 0. In particular, we have

t

lu(, )1 < CUIAlL lglur) + C(I.(JIT)/0 (tz2(0, 5) — €ugs (0, 5)) ds.

Next multiply the regularized equation (3.1a) by the combination 2euzt —2Ugs —
2P(u) and integrate the result over Rt x(0,t). After several integrations by parts,
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it is seen that

t
0

lua(8)12 + / (220, 8) — etgy(0, 8) + P(g(s))]*ds

+00 +o0
— 1 +2 [ A, )dz -2 / A (2))de
0 0
+/ (eg7(s) — 294(s)us (0, 5))ds
0

t 1
L2 1 1
< Ol ol ) (1+ [ 20,5)ds)” + P Bl el 12,
where

A\ =PQ), AN =XE()), and E(r)= ISI|1p E().
AlLr

By using (*#), the elementary inequality

112 @+ < 2FNF (4.4)

and Young’s inequality, the last inequality may be put in the form
g 2
e O + [ [uza(0,8) = euse(0,5) + Pla(e))]"ds
0
1 8 2 t 4,
< CQ1 s lohr, 1)+ IO use O1F + [ w20, e)as], ()
for any choice of § > 0. By a further use of Young’s inequality, it is adduced that

t
%Hu,,c(-,t)u2 + /0 [us2(0, 8) — euzt(O,s)]zds

(4.6)
1
< OISl lolar, ) + DI
Substitute (4.3) into (4.6) to obtain
t 2
o, 01 + Hua o+ [ 020,505 )
0 (4.7)

t
1
+ [ [usa(0,8) = eue(0, )]s < G lohr, 5,
0

for a suitable § > 0. Inequality (4.2) now follows, and the proposition is proved.
|

Remarks: Note that if the boundary data is small in the sense of the norm |g|T,
then the condition (**) can be improved. In particular, if the boundary data is
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zero, then the Lo-bound depends only on the initial data. Hence, following the
steps above, if

limsup |s| °A(s) < 0, €3]

|8|]—o00

then one derives e-independent H'-bounds. The restriction (x+') is the same re-
striction imposed on P when pure initial-value problems for equation (1.1a) are
considered [28, 29]. Note also that if the initial data f and the boundary data g
are small enough in H'(Rt) and H'(0,T), respectively, A is unrestricted in sign.
In fact, from (4.3) and the estimate of ||us(-,?)||?>, one shows that

lluC, )11 (1 = 6E(][ull)) < CQUIf Il lgh,r),

where 6 = || f||3+|g|3 p. If § is small enough relative to || f||; and |gl1,r, one obtains
a global H'-bound from the above estimate. Furthermore, the bound obtained in
this way depends only on the auxiliary data and not explicitly on T". In this situation,
[lu(-,t)|l1 grows at most linearly with the energy supplied by the wavemaker.

From (4.4) it follows that

ull%, % <2 su ue (4 O||||u(-, D)} < ar, 4.8
ol gy < 2 8 {llua (DO} < o (4.8)

for all ¢ in [0, 7). Using the differential equation (3.1a) and the fact fot u2(0, s)ds <
ay, it follows that

/ ['Uf:z:a:z(oa s) - 5ummt(0a s)]2d3 = / [gt(S) + a(g(s))uw(ou S)]2ds
0 0
< C(|I£ll1s1gl1,7),

where a()\) = P’()\). These conclusions are formalized in the following corollary.

Corollary 4.2. Let f, g and P satisfy the conditions in Lemma 4.1. Then
there is a constant a; depending only on ||f||1 and |g|1,T such that

12, @+ xjo,27) < @1(l1f111; 1g1a,7)
and
; 2
/ (Us22(0,8) — €Uest(0,5)) ds < a1,
0

for 0 <t < T, and uniformly for € € (0,1].

Next we obtain an H3(R*)-bound on solutions of (3.1). It will be shown that
|lu(-,2)||s is bounded on [0, T], independently of e small enough. First define A(t)
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and B(t) by
A40) = sup (a5} + ([ deul0,5)ds)

+ (/Ot uiﬂc(O,s)ds)2 + (/Ot eugt(O,s)ds)2

(4.9a)

and
t
ww=wmmumm+mewW+/mwumws
0<s<t 0
it

t t
+ / Uzgas (0, 5)ds + / usy(0,8)ds + € / u2,,(0,5)ds.  (49P)
0 0 0

In fact, it will be demonstrated below that A(t) and B(t) are bounded on [0, T,
independently of € small enough. The next lemma gives an H2(R')-estimate not
directly effective in bounding ||u(:,t)||2, independently of €, but which will prove
useful later.

Remark: It seems that for the boundary-value problems (1.1), the H2-bound is
difficult to obtain alone, in the same way that the Ly(R*)-bound was not derived on
its own. A similar problem occurs when a two-point, nonhomogeneous boundary-
value problem for the KdV equation is considered (see {10]).

Lemma 4.3. Let T > 0, f € H®(Rt), g € H®(0,T), with f(0) = g(0).
There exist constants ay, €1, C1 and Cs, where

az = as(||fllz + €2 ||fllss l9l1,7), & = e (I £l lgla7),
C1 = C1(||fllslgl,7), and Ca = Ca(||f|l1,|gl1,7, T),

such that the solution of (3.1) corresponding to the data f and g satisfies
4 1 ;
A440) < aa(l 7l + A1 flls, glar) + C [ (0, 5)ds
0
t
+@/m%wmm+MMMwW+mwwmmw,(“m
0

provided that t € [0,T] and € € (0,€1].

Proof: Multiply (3.1a) by 10(uzt — a(u)ugs) where a(u) = P'(u) as before,
differentiate (3.1a) once with respect to z and multiply the result by 2ugzez, add
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the equations thus obtained, and integrate their sum over R+ x (0,%). Several inte-
grations by parts and using the relation

+oo
/ / wottipa(u)dods = /0 2 (2, alu(z, £)) — (' () *a(f(z))] de

¢
+ / g'(8)a(g(s))uz(0,s ds+/ / Uggura(u)drds,
0

yield

t
6lltiaa (- D|[2 + elltsea( )1 + / w2, (0, 5)ds

-0
= 6|1f"II* + el S + fn [10u2 (z, t)a(u(z, t)) + Beul, (=, t)a(u(z, t))
— 10(f'(2))a(f (2)) = 5¢(f" (2))*a(f(2))] dz
t 2 1 "
+ /0 [5eu2(0, 8) — 12uqt(0, 8)Uez (0, ) + §u;‘;(0, 8)a"(g(s)) (4.11)

— 24’ (g(s))uZ (0, 8)uzz (0, 8) + 4a(g(s))ul,(0, s)
+10g'(8)a(g(s))uc (0, 5) + 5a*(g(s))u2 (0, s) — 5(g'())*]ds

+o0
+ /0 /0 [%a”'(u)ug + 10a(u)a’ (w)ul — bea’ (u)usul,] dzds.
Take ¢; < 1 small enough that

5ella(u(z, 1)l oy @+x[0,17) < 3

say, for any € < €;. Then the first six terms on the right-hand side of (4.11) can be
controlled by the terms on the left-hand side, the constant a; in Lemma 4.1 and a
constant depending on ||f||2 + €%||f||s and |g|1,7- By using (4.2) and choosing €
small, say, there obtains

t t
u2_(0,s) + e2u2,(0,8)]ds < ay +2€ | ugpz(0,8)uqgt(0,s)ds
A T zt .

3

t
so(llf||1,|g|1,T)+ea/ u2,(0,5)ds. (412
0

The last three boundary terms in the second integral on the right-hand side of
(4.11) may be bounded by a suitable multiple C* of the left-hand side of (4.12).
Use of Lemma 4.1 allows the estimation of the first two boundary terms in the
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second integral on the right-hand side of (4.11) as follows:

t
/ [56u2,(0, 8) — 12652(0, 8)tas (0, )] ds
0

t

:/ [12u$t(0,s)(euzt(0,s)—um(O,s))]ds—/ Teu?,(0, 5)ds
0 0 (4.13)

t 1 i
< OISl o) (| w2e0,5)as)” - [ 7en(0, )

El
2

Thus, if it is supposed that €; is small enough that 6e; > C*(|g|1,7)€ef, then (4.12)
can be controlled in the form shown on the right-hand side of (4.13), so one has

/0 [uim (Oa s) + E'U/it(o, S)] ds

t 1 (4.14)
2
< Gl lob2) + OOl ol o) ( [ 2400,0)ds)
For any § > 0, apply (4.4) to ug(z,t) to adduce
||“¢||?Jb(@+x[0,t]) N zoggt{”“w("S)“”Um('as)”}
(4.15)

< Cé67' 46 sup {llum(,S)|I2}
0<s<t
One shows straightforwardly that for any é > 0,
= 1 2
| [ 3540,9)a" (g()ds| < Ol g r)d ™ +8 sup {lfues (9|
0 0<s<t
Similarly, one shows that
t
| [ 2600, 9)uss (0, 5)ds
A ‘

< lanal)( [ w0,00d5)* [ u2.(0,9a0)

1
)

i
0

< G011l loh x5~ +6( sup Uluaal, 9P} + [ 12.0,9)ds).
0<s<t

Thus in summary, the boundary terms in the second integral on the right-hand side
of (4.11) are bounded above by

i 1
C1fllslols,r57 +5 sup {lhuaa (P} + OISl lohr) ([ w2400, 5)ds)
0<s<t 0
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for any § > 0. By using (4.15) and Lemma 4.1, the first two terms of the third
integral in (4.11) can be estimated as follows:

I / / [50”'(“)“2 + 10a(u)a’ (u)ul] da:ds‘
o Jo

‘ /
<Ol lola) ([ ueele olFds)

Multiplying (3.1a) by u; and integrating the resulting expression over R, there
appears

s (-, 117 + el luze (-, B)I°
400
= —eg' (t)us (0, 1) — / [tUacs + s P(u)s]dz.
0

Hence it is deduced that
[lwe (s )1 + 2€l gt (-, )]
< C(li£ll1, lgla,r) + 2leg’ (#)uze (0, 8)] + ||uzaa (- t)I[*.

Applying (4.4) to u¢ and using (4.16) shows that the last term in the last integral
on the right-hand side of (4.11) is bounded above in the following way:

t ptoo
./ / 56a'(u)utuimdwds~
0 Jo

) 1 1
< C(Ilflll,lgll,T)e/0 [luas (- )P Hue (-, o)1= |luse(-, 5)]|7] ds

(4.16)

1 t i
< OISl lolyr) [ lusCyolds + e [l o)Pds +e [ et 9)lds)
t
< Ol lohr, )+ X O llar) [ lusaC, )]s

t 1 t
+ @00l lahr)( [ 02:0,6)ds)" +e [ fueaal, )P

If § and ¢; are chosen small enough, the above estimates show that (4.11) is reduced
to

2 3
22(6) < C(1la + el flls o) + CA1 Al o) ([ 42400, 9)ds)

t
+ C(lifls lgh,7) /0 [laa (s I + € |luaa (-, )| + elluaos (-, 8)|*1ds.

The desired inequality now follows. O

The estimate of the H2(R*)-norm for the solution u of (3.1) given in Lemma
4.3 will be used in determining the following bound for A*(t) + B%(t). When in
hand, this bound implies one on H3(R*).
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Lemma 4.4. Let T > 0, f € H®(R"), g € H®(0,T), with f(0) = g(0).

There exist az and e; where

as = az(||f]ls + €2 |lF ], lgl2,7, T)

and
ez = (|| flls + €21 F D, 1gl2,7)

such that the solution of (3.1), corresponding to the data f and g, satisfies
AX(t) + B*(t) < as,

provided that t € [0,T] and € € (0, €2].

Proof: First multiply (3.1a) by 2uszat + 2uzzztiza’ (u)+a' (w)ul, +udugza” (u),
differentiate (3.1a) twice with respect to = and multiply this by u2a’(u), then inte-
grate their sum over Rt x (0,t). Many integrations by parts leads to

t 1
2 2 2 s
gz l? + / w2,(0, 5)ds + / euZ,,(0, 5)d
+o00
=P+ [ 2@ @alf(@)) - 2asa(z, s @, alu(z, D)
0

+ (" (@))%a(f (@) — ule(z, )alu(z, 1)) + euZ,(w, t)a' (u(a, 1))
— e(f"(2))°a' (f(2)) oo (@, D)2& (&, t)a (u(e, 1)) + ' (2) (' (2))*a'(f (=)
— 3e(f'(@))* (" (2))%a" (f (2)) + Beug (z, Yuz, (z, t)a" (u(z, 1))

+ e (2, )t (2, 10" (u(a, 1)) — e(f (@))* " (@)a" (F(z))|d
¢
+ / [2umt(0, $)g'(8) —2u (0, 8)tzz (0, 8)a' (9(8)) [tsza (0, ) — €Uszt(0, 5)]
0
+ud (0, s)a' (g(s)) +u2(0, s)a' (9(5)) [tiazzs (0, 8) — €Ussat(0, )]

~ 2t (0, 5)u(0, 9)a(9(5)) ~ w30, 80" (9(5)) [tz (0, 5) =t (0, )] ds

(4.17)

t ptoo
+ / / [4euzwumtuza'(u) —du2_ uyd (u) — Suggruia(u)a’(u)
0 Jo
— udugza(u)a” (u) + ugud a" (u) — ugul a(u)a’ (u)
— Uttggaa” (u) — Sudug, (a'(u))2 —uda'(u)a" (u)

— BUgzolizoula (u) — Beugul ugzea’ (u) — 3eulu?

z :ca:uta’”/(u)

— eud _usa" (u) — deudugpugia (u) — culugpusal® (u)] dxds.
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Note that the following integration by parts has been used in deriving (4.17):

— /ot/o+oo UgzoUzta(u)dzds = /Ot Uz (0, 8)uzt(0, s)a(g(s))

i ptoo
+ / / [umumtuma'(u) + umumta(u)] dzds.
o Jo

Then multiply (3.1a) by 4duggzzt+4uzzougsa’ (u), differentiate (3.1a) once with respect
to = and multiply this by 4uss-a(u), then integrate their sum over R* x (0,). After

integrations by parts, one obtains

t t
luzaell? + / 2u2,(0, 5)ds + / 2eul,(0, 8)ds
0 0

+o0
=21+ [ e alue,) - 267" (@) ol (@)
+ 41" (2) f' (@)a(f(x)) — Mges(x, t)ug (2, t)a(u(z, t)] dz

t
+ / [4502(0, 5)g' (8) + 2u245(0, 8)a(g(s))]ds
0

t p+4oo
+/ / [4euzrousa (U)usss — Sugzzuia’ (u)a(u)
0 Jo
— 22 uza (U) — Mpartinga® (v) — 26ul  a' (u)u] dzds.
Note also that the relation

_utuwzmumal(u) = uzzzumal(u) (af(u)uw + Ugzz — eummt))

(4.18)

which is obtained by using (1.2a), has been used in deriving (4.18). Finally differ-
entiate (3.1a) twice with respect to z and multiply this by 2usss, then integrate

the result over R* x (0,t). After integrations by parts, there appears
t
tazall + clltszsal + [ 12,0.0,)ds
t
= Hfm||2 + 6||f(4)||2 - / [ﬁuz(O, 8)uz2(0, 8)uzzz(0, 8)a’(9(s))
0

+ 2'U':z:a:t(07 s)umzz (07 S) + inm(o, S)a(g(s))

+ 2030, 8)hzas (0, 5)0" (9(5)) — 2uS (0, 5)a (9(s))| ds

t ptoo
—/ /0 [7u§wuma'(u) + 12ugzzUzruza’ (u)
0

+ 2utugga (u) — 2u2wuma”(u)] dzds.

(4.19)

Subtract (4.17) from (4.18), multiply the result by % and then add the result to

(4.19). One ends up with
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9 tr7 7
5”“%2”2 + EH'U'mmw”z + /0 [iuit(oa s) + EEUZM(O, s) + ugmzz(oa 3)] ds

9 S
= P +elf O+ [ (7£7()f ()o@~ Tuzas @, s @, Dalu(a 1)
0
+ Teul ., (2, t)au(z, 1)) — Te(f" ()’ a(f(z)) — g(f”(w))za(f(m))
7 7 ' 7 '
+ Euwm(ma t)a(u(m,t)) - §€uix($’t)a (u(:v, t)) il '2_6(f (27))30, (f(l‘))
¥ g, 002, 0 (e, 1) — 5 7" (@)( (@) (£ )
+ -Z—E(f'(m))z(f”(w))za"(f(w)) - 2—2IEU3(<E,t)U§m(w,t)a”(U(w,t))
Tt (o, e (a, D) (1)) + el (@) £ (@) (F ()] do
/0 [2umt(0 s)[ 9'(8) — Uzea(0,8)] + 6u2,,(0, s)a(g(s))
-+ 7“%(0, s)umt(O, s)a(g(s)) + g“g(oa s)umm(oa 3)0'”(9(3)) (4.20)
B %EU’i (07 S)U:I:zt(ov s)a” (g(s)) + Ug (0’ s)ufb‘m (0) S)’U,mz;,,-(o, S)a‘l (g(s))

— Teug (0, 8)ttas (0, 8)uazt (0, s)a'(9(s)) — §u 2(0,)a'(9(s))

— ;ug (0, S)a’ (g(s)) [U:r,a:mm(oa 3) - Euzzmt(oa S)] ds

t ptoo 2 35 2 p 7 3 "
+/0 A [—14Umma:uzza (’U:) - ?umzuza(u)a (U) + Euzuma(u)a (u)

3
— —ugud_a" (u) + 7umuiwa( Ya' (1) + Ngootzzuia’ (u)

2 2
b S taa” (1) + e (0'(w)” + Tudd (w)a' (u)

L 21
+ Eeuimuta//(u) + 216umuiwuztaﬂ (u) ?euxumuta”'(u)

+ ldeuduzzuqzia’ (u) + ;euiumuta(")( ) — 7eummuta'(u)] dzds.

We recall again the convention that constants dependent only on the data f
and g will generally be denoted simply by C, and that this symbol’s occurrence in
different formulae is not taken to connote the same constant.
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First, an argument analogous to that leading to (4.15) shows that

l[aallZ, g xpo < CO7° + 50§g§t{llum(-,s)llz}- (4.21)

By (4.12), (4.15) and (4.21), the terms in (4.20) that feature integration with respect
to z only are bounded in the terms of a suitable small multiple of ||ugsz(-,1)||* +
||uzs (-, t)||* provided € is small. Note that equation (3.1a) implies

t ¢
—/ Ugzz(0, 8)Uzzt (0, 8)ds =/ [umt(O,s)[g'(s)+a(g(3))u$(0,s)—euwt(O,s)]]ds.
0 0
Integration by parts with respect to ¢ yields
¢ s=t
| taat(0,5)al(s))us(0, )] ds = 2o (0, )alg(a)ua(0,5)[:
0
t
- [ [ues (0, 8)[a' (9())g’ (8)us (0, s) + a(g(s))uet (0, 5)]]ds.
Jo
Similarly, one shows that
t —t t
/ uz5:(0, 8)g' (8)ds = ugs (0, s)g’(s)|s;0 - / Uz2(0,8)g" (s)ds.
0 0
Then due to (4.15) and (4.21), the first boundary term can be estimated as
¢ 7
/ 2uz2¢(0, 8) [Eg’(s) — Uzge(0,8)]ds
0
K i
= [ 2usns0,9)[39/(9) + 4(6) + ala(O)u=(0,5) = euea(0, )]s
0
t t
<Cst - 25/ u2_,(0, 8)ds + 5/ u2,(0, s)ds
0 0
t 2
+8( [ 2o(0,5)ds) +0llussa )P + B, DI
0

for any 6 > 0, where C depends on ||f||1 and |g|2,7. Elementary inequalities show
that there is a positive constant C' depending on || f||1 and |g|2,r such that for any
§ >0,

/0 [Guiu(O, 8)a(g(s)) + Tuzc(0, $)ug: (0, s)a(g(s))] ds

t 2 t t 2
<C6 3+ 5(/ u2, (0, s)ds) + 6/ u2,(0, s)ds + 5(/ u (0, s)ds) .
0 0 0
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By using (4.14), there is another constant C depending on ||f||; and |g|1,7 such
that for any é > 0,

[ 13200, 9u22(0,91"6(5) = Feu2 (0,812, 9" 0
10,5t 0, taae (0, )0 (0)) — Teua(0, )z 0, Sz, ) () d
< Gl oy [ 920,139 [( [ 020200,9089" +e( [ 0,105
Oltualcngenory( [ 920,169 [( [ 20,9109+ [ 0, 000) ]
<0672 45 [ a0+ [ 2200,905)"+ sup (lueslc 1Y)

+6(/0t uZ,.(0, s)ds) .

Similarly, one shows that

t 3 t
—/0 50 (0; 8)a'(9(s))ds SC”U'M”C:,(R"'X[O,T])/O u3,(0, 8)ds
1ot
sc( aup {||um(-,s)||||um<-,s)||}) [ 0.9
0<s<t 0
t 2
<0675 +5( [ 12,(0,5)ds)" +8 sup (s, + luses( o).
0 0<s<t

By using (3.1a), the last boundary term in (4.20) is seen to satisfy the inequality

7

_ §/0 u2(0, 8)a' (9(5)) [Uszzs (0, 8) — €Uzzzt(0,5)]ds

t
= 5 [ 200,500 (0(6)) ust(0,5) + =0, )ala(s) + w3 0, ) (o))
t 2 i
<0570+ 6( [ 2 0,0)ds) +5 [ a0, 5)ds +5 sup (huae( )

The use of (4.15), (4.16) and (4.21) shows that the entire set of double integrals in
(4.20) except the last one can be controlled by the quantity

/Ot (A%(s) + B%(s) + eA(s) + eB*(s))ds
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Using (4.4) to bound ||tqzs(:,t)||c,r+) and applying (4.16) shows that the last
double integral in (4.20) is bounded above by

t p+o0
~—7// eu?  ua' (u)dzds
0 JO
t

< [ Celluzss o o)loymnlusseC )l ol

¢ 3 1
< C [ lluces( o) Ellussest, )1 e o)l

t 4 t
<C [ dltsale NPl )13 +C [ ellusaas( )1

0 0

t t i
< 05—%+56% (5/ Uit(O,S)ds)2+C/ Ellumm('7s)||4d3+0/ 5|Iuwzzm(':s)”2ds'
0 0 0

From the preceding estimates, it is deduced that there exist positive constants as
and C3, where

as = ag(||flls + e 3|If DI, lgloir) and  Cs = Cs(liflln, lgls,),
such that the solution of (3.1) corresponding to f and g satisfies

t
||“www('at)”2 + f||uwmmm('at)”2 + /0 [uit(O,s) + Guizt(0a3) + uimmm(o’s)]ds

t
Sa3+(5A4(t)+03/ (A(s)4+”uza:m("s)”2+6”umxwm('73)||2 (4_22)
0

+ €f||uzaz (- s)||2 + €||uzzes (- s)||2]2)ds

for any 6 > 0. By adding an appropriate multiple of (4.22) to (4.10), it is adduced
that the functionals A(t) and B(t) associated with the solution u are restricted by
the inequality

AYt)+B*(t) <a+p /Ot [A%(s) + B%(s) + €(A®(s) + B*(s))] ds,

where o and f are positive constants that depend only on initial data f and bound-
ary data g. Define A to be the maximal solution of the system

Aty =a+p /0 [A(s) + e A2(s))ds.

Then, A(t) > A(t) + B2(t) for all ¢ for which A(t) is finite. Moreover, A(t) may
be determined explicitly as

3 aeP?
A = -

+ e — eaelt
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so long as eaePt < 1, say. The desired result thus follows by choosing e small
enough. In fact, if €2 is chosen so that

1+ ega — e0€”T > 2,

DO =

then the desired result is established. O

Corollary 4.5. Let T > 0, f € H®(Rt), g € H*(0,T), with f(0) = g(0).
There exists a constant aq with

ag = as(||flls + €211 £ @1}, lglar)
such that the solution of (3.1) corresponding to the data f and g satisfies

e DIl + € lusan ()| < a4
provided that t € [0,T] and € € (0,1].
Proof: Using equation (3.1a), one shows that
e (- 8) = €usae (- )II* < C(lful t)lls)
< C(I1flls + €272l lglay)-
Integrating by parts, one derives from the above inequality that
llus (5 1)I12 + 2el ot (-, )P + € llusar (-, )]
< O(Iflls + 117D, lgl2,r) + 2¢|g' (B (0,1)]
< O(IIf1ls + (17911, 1gla,) + delgla,rlluat( Ol 2 aze (- 1)1

1 1
< C(Iflls + €217 D11, lglo.) + elluat(, DI + 5l (I,

or, by elementary means, that
1
e DI + el ot DI + € fusoe (DI

< C(Iflls + €2 11F DL lgla.r)-
The corollary is established. O

The bounds established in this section would be sufficient to conclude an exis-
tence theory set in the space Lo, (Rt ; H3(R")) for the quarter-plane problem (3.1).
If the further compatibility condition

9'(0) +a(£(0))f'(0) + £(0) =0

is posited, where f € H*(R*) and g € H?(R"), then it will follow from the next
two lemmas that the quarter-plane problem has a solution u € Loo(0,T; H*(R))
with ug € Leo(0,T; HY(R")). These preliminary results will be improved in Section
7 when the issue of continuous dependence is considered.
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Lemma 4.6. Let T > 0, f € H®(R'), g € H®(0,T), with f(0) = ¢(0).
There exists a constant as with

as = as(|[us(, 0)l|1, || {l4s lgl2,7)

such that the solution of (8.1) corresponding to the data f and g satisfies

t
2
e GO + / [t05:(0, 8) — euges] ds < as,
0

provided that t € [0,T) and € € (0,1].
Proof: Let v(z,t) = u(z,t) so that v satisfies the partial-differential equation
v; + (a(u)v) | + Vogo — €Uzt =0, for (z,1) € Rt x [0,T). (4.23)

An Ls-bound for u:(-,t) has been established in Corollary 4.5. Now we derive an
H!'-bound for u;(-,t). Multiplying (4.23) by 2(evgt — a(u)v — vy, ), integrating the
results over RT x (0,t) and then using some elementary inequalities including

400
| / o (@, )da| < o )Pl Dlloya

< V2 )1 |lva (-, 1)l
< Cll()IF + |lva ()P,

one comes to
llva (B + € /0 (g"(s))2ds + /0 (22 (0, 5) — €vas (0, 5)]?ds
+oo
= ||va (-, 0)][? +/0 la(u(z, t)v?(z,t) — a(f(x))v*(x,0)]dz
- [ atena"(s)2as - | 2006 60 0,5) = eou0,5)ds
1 t pt+oo
— (s S o (Wvddzds (4.24)
/Ozg()mm, ) // (u)o®dad
< C(Jfue(-, 0|1, lgl2,7) + Cllv(, )|} +C/0 v2(0, s)ds
1 1t ¢ , "
+3 [ [020(0,6) = coue@,)Pds +C [ s I + oG, 11 ¥1ds

The use of Lemma, 4.4, Corollary 4.5 and Gronwall’s lemma in (4.24) shows that
there is a constant as depending on ||u;(-,0)||1 and |g|2,z such that

t
(Ol + /0 [vas (0, 8) — vgr (0, 8)ds < a5
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forallt € [0,7). O

The constant as in Lemma 4.6 depends on ||u(+,0)||1, a quantity about which
there is currently no information. In order to estimate usefully solutions of (3.1),
some control of ||us(+,0)||1 must be obtained in terms of the data f and g. An
appropriate bound is forthcoming if the data satisfies an additional compatibility
condition.

Lemma 4.7. Let T >0, f € H®(R"), g € H*(0,T), with f(0) = g(0) and
g'(0) = ~[a(£(0))£'(0) + £ (0)]. (4.25)
There exists a constant ag where
as = as(||flls, |gl2,7),
such that the solution of (3.1) corresponding to the data f and g satisfies
[t (-, 0)I[ < as,
fort €[0,T] and € € (0, ¢3).

Proof: First note that by Corollary 4.5, ||u¢(-,0)||? is controlled by a constant
of the form a4(||f||s + €% ||f|l4, lgl2,)- Let

¢(z) = —[a(f(2))f (=) + £ ()].
Then us(-,0) is a solution of the boundary-value problem
ut(+,0) — €uget(+,0) = ¢, (4.26)
w(0,0)=¢'(0),  lim w(z,0)=0.

Differentiate (4.26) with respect to =, multiply the result by ug:(-,0) and integrate
the result over Rt . After integrations by parts, there appears the equation

400
[tz (-, O)||? + el [uaat (-, 0)|* :/ Uzt (7, 0)podi,
0

from which one obtains

[lttat (- O)II* + elluaa (-, 0)I* < Cligell* < CIIfIIE,

where C is a constant independent of e. Note that we have used ug4:(0,0) = 0
which is obtained by using the compatibility condition (4.25) and equation (4.26).
The proof of the lemma, is then finished. O

The following lemmas will be helpful in Section 5 when higher-order estimates
are considered.
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Lemma 4.8. Let T > 0, f € H®(Rt), g € H*®(0,T), with f(0) = ¢(0).
There exists a constant ay = az(||ut(-,0)|s, |gls,T), such that the solution of (3.1)
corresponding to the data f and g satisfies

”Ut(',t)Hg + /0 {[umzt(oa 3)]2 + [uz (0, 3)]2 + €[uastt (0, 3)]2}ds < ar,

provided that t € [0,T] and € € (0, €3).

Proof: Let v = uy, where u is the solution of the regularized initial- and
boundary-value problem (3.1) corresponding to the given smooth and compatible
data f and g. For t in [0,71], define

t
A0 = 06O + [ {200(0,8) + 02(0,5) + vy 0,5) .
0
The Lemma 4.4 and Lemma, 4.6 imply that
[16l] £ oo (0,7 3 (R +)) 5 10| Lo 0,152 R ) < Cs
[l L0, w2e @)y ||[L@xpo,m)) < C, (4.27)
t i
/ v2(0,8)ds and / (V55(0, 8) — €v54(0, 8))2ds < C,
0 0

where here, and in the remainder of this proof, C will denote various constants
which all depend on the same variables as the constant a7 in the statement of the
lemma, but which will always be independent of e. Note that v satisfies equation
(4.23). Differentiate (4.23) once with respect to z, multiply by —2vzs, and integrate
the resulting expression over Rt x (0,t). There appears the equation

t
vea (5 II* + €llvzaz (-, 1)]|* + /0 V34(0,8)ds
i
- ”’Uzz(,O)Hz i €||vzzm(',0)||2 - 2/ vmt(O,s)vm(O,s)ds (428)
0

t p+too
+2 / / (a(u)v) , Voszdeds.
0 Jo

Inequalities (4.27) imply that

/ot/om (a()v), g voasdrds < 0(1 + /0 t ||v(-,s)||§ds).

Note that

t
—2/ Vgt(0, 8)vz2(0, 8)ds
0

¢ ¢
= —2/ v2£(0, 8)[Vz2(0, 8) — €vge(0, 8)]ds — 26/ v2,(0, s)ds.
0 0
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Then by inequalities (4.27), one shows that for any § > 0, (4.28) can be estimated
in the form

t t
[0 (o DI + el[ves (- ) |[% + / 02,0, 8)ds + 2¢ / 02,(0, 5)ds
0 0

t t
<Cs+ 6/ v2,(0,5)ds + C/ A%(s)ds. (4.29)
0 0

Next, multiply (4.23) by 2vz4.: and integrate the results over Rt x (0,¢). After
integrations by parts, we obtain the equation

[v2a (- DI + / [12,(0, 5) + €v24,(0, 8)]ds
13
= ||vmm(-,0)||2 +/0 2044¢(0, 8)v:(0, 8)ds
00
_/0 P%mm(x,t)(a(’U;(JJ,t)U(w,t))z—2’uzmz(m,O)(a(f(m)v(m’o))m] dz (430)

+ /Ot /0‘*'0021)3310 [(a(u)vmt + a'(u)uzvt) + (al(u)vz)m] K,

Because
9)| oo (0,620 RH) < Cs + 68(-, )3, (4.31)

and because of the relations v4(0,s) = g"'(s) and v:(0,s) = ¢"(s), it is adduced
that corresponding to any 6 > 0 there is a constant Cs for which

t t
/ 02t(0, 8)2(0, 5)dds = 20g (0, 8)ur (0, 8)|"=" - / 203 (0, 8)ure 0, 8)ds
0 0

t
< s +8lIvC, )+ C [ IioC, ).
One can easily obtain the inequality
+ o0
| [ vmea(at) (alute, )0(e, ) 5] < Co + ol I,
0

valid for any § > 0. Differentiating equation (4.23) with respect to z yields

—vgt = (a(u)v) __ + Vzcez — €Voaat-
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Using the above equation leads to the inequality

t ptoo
/ / a{1)VgtVgzpdrds
0 Jo

t p+too
- —/ / a(u)Vges [(a(u)v) oz - Vazze — evmzt)] dzds
o Jo
< C + €lla(®)|l oy @+ x o, |[Vezs (- D)2

t t
+C [ 020,9)ds +C [ (Iozaa I +llvea(- )
0 0
t t
gc+c/ vgm(o,s)ds+ce|1vm(-,t)||2+c/ A%(s)ds.
0 0

By using equation (4.23) and (4.27) again, one shows that
10, 2) = €vaat (5 )11 < Nlvzaa (5 DI + Cllv(, )13

Expanding the norm on the left-hand side of this inequality and integrating by
parts the mixed term gives

lloe (-, B)1? + 2ellvae (-, )17 + €lvsat (-, )1
< Cllv(:, )11 + 2¢[ve (0, t)vee (0, 1)

< Ollo(, £)]12 + el g® D @) llvee ()1 ¥ [[vase (-, )| 2
1
< Cllo(, 013 + Cer g+t ()2 + ellvae(, ) + §e2llvmt(-,t)llz,
from which there obtains
1 1
ve (-, DI + €l lvae (-, )17 + §€2|Ivm(-,t)ll2 < Cllo( )13 + Cez|g® ) ) 2.
Using this last information yields
t ptoo i
| / / a'(u)umvtvmmda:ds‘ < C/ [Jve (-, )| ||vzez (- 8)|ds
o Jo 0

¢
< C+C’/ A(s)%ds.
0

Taking recourse to (4.27) again, we see that
t ptoo t
/ / Vaes (a (u)?), duds < / Cllvass (- 8)lll1ve (- lds
0 Jo 0

t
< C/ A?(s)ds.
0
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If € is chosen small enough, (4.30) can be estimated as

t
|[Vasa ()1 + / [02,(0, 8) + €v2,4(0, 5)]ds
t 0 t (4.32)
<C+C [ 00)ds+0 [ #(s)ds.
0 0

Multiply (4.29) by a suitable constant and add the result to (4.32). Then applying
Gronwall’s lemma shows that A(t) is bounded by a constant a7, as advertised. [

Lemma 4.9. Let T > 0, f € H®(R"), g € H*(0,T), with f(0) = g(0) and
assume (4.25) also holds. Then there exist constants ag and ag where

as = as(||flls, |gl2,7) and  ag = ag(|[flle,|9ls,7),
such that the solution of (8.1) corresponding to the data f and g satisfies
s (-, 0)I13 + €*|[uazast(, 0)I1* < as(l|flle, lgl2,T),
and in consequence,
[t (- 0117 + €| [uaee (-, O)|I* < as (|| £lle Igls,7),
fort € [0,T] and € € (0, €2].

Proof: Differentiate (4.26) with respect to z, multiply by ¢z¢4¢(+,0) and inte-
grate the result over RT. Since uz4+(0,0) = 0, there appears

+o00
||zt (-s 0)”2 + 5||uwmt(',0)||2 - /0 Uzat(Z, 0)Pos (x)dz. (4.33)

Differentiate (4.26) with respect to z twice, multiply the result by uzeeq:(,0) and
integrate the result over Rt to obtain the equation

+oo
”“mmt("o)”2 + 6||“-’Bmzt(',0)”2 = / Usost(Z, 0)boes (T)dr, (4.34)
0

by again using the fact uz.:(0,0) = 0. Applying some elementary inequalities to
(4.33) and (4.34), one immediately obtains the first result in the statement of the
lemma.

From equation (3.1a), one shows that uy; is the solution of the boundary-value
problem

utt(')o) - G’U;mwtt(',o) En 'l,b(’U:t(',O), f(m),umt(‘,o)aumzzt('a 0))7 (435)
us(0,0) = ¢" (0) and Jim ug(z,0) = 0,
where

1/)(ut(-,0), f(m)auwt(',o)vU‘fmzt("o))
= —a'(f(z)) f(@)us (-, 0) — a(f(z))tst (" 0) — Uzaat(:, 0)-
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The use of equation (4.35) shows that
|luge (-, 0) = ettzare (-, 0)||* = [19][*.

Applying elementary inequalities, the results in Lemma 4.7 and the first part of
this lemma, one concludes
[letgs (-, I + 2e]luate (-, O[> + €2[[tsamte (-, O)||?
= 2eus(0, 0)uz¢:(0,0) + |||

1
< ao(||flle, lgla,) + 5 (el uans(, O)I* + €luaate (-, 0)[[7)-

(4.36)

The result now follows. O

The main results of this section are collected in the following umbrella theorem.

Theorem 4.10. Let T >0, f € H*(R"), g € H*(0,T), with
£(0) = g(0).

Let u be the solution of the regularized initial- and boundary-value problem (3.1)

corresponding to the given data f and g. Then there is a constant ajo, depending
1

on || flls + €2||f|ls and |gl2,r, such that

1
[lu(, s + [|usC, )| + €2 ||u(, B)ll4 < aro,

for allt in [0,T] and € in (0,€2]. Here €3 is the positive constant arising in Lemma
4.4. Moreover if

g'(0) +a(£(0))f'(0) + f"(0) = 0
holds, then

[lu(, Olla + w5 D) < a1r and  ||we(,?)[|s < asa,

where a1 = a1 (|| f|l4, 19l2,7) and a1z = a12(||fll, lgls,z) for all ¢ in [0,T] and € in
(0, 62]. O

5. Higher-Order Estimates for the Regularized Problem

The derivation of e-independent bounds for solutions of the regularized initial-
and boundary-value problem (3.1) is continued in this section. Smoother solutions
would be expected to obtain provided the initial and boundary data are smooth
enough. A proof of such further regularity, presented in the next section, is based
on the additional estimates to be obtained in the present section.

The assumption that f € H®(Rt), g € H*®(0,T), and f(0) = g(0) will con-
tinue to be enforced throughout this section. This hypothesis will be recalled in-
formally by the stipulation that the data f and g are smooth and compatible. For
simplicity, denote

u? = dlu.

The next lemma generalizes Lemma 4.6 and Lemma 4.8.



A GENERALIZED KORTEWEG-DE VRIES EQUATION IN A QUARTER PLANE 33

Lemama 5.1. Let T > 0, f € H®(R"), g € H*®(0,T), with f(0) = ¢(0).
There exists a constant by where

by = bl(nléi‘?gk{lm(")(',0)||1}, |9lk+1,7),

such that the solution of (8.1) corresponding to the date f and g satisfies
OGOl + [ 0200,9) - 0,7 ds <y,

provided that t € [0,T] and € € (0, €2]. Moreover there exists a constant bs where

ba = ba( Jax, {I1u@ ¢, 0I5}, lglk+2,1),

such that
[u® (-, 1)2 + / ([0, (0, &) + Wl (0, 8)]? + efus+D (0, 5) }ds < by.

Proof: First note that for k = 1, the desired result is implied by Lemma 4.6
and Lemma 4.8. The proof proceeds by induction on k. Let k¥ > 1, and suppose
that the stated estimates hold for all nonnegative integers less than or equal to
k — 1. The induction hypothesis implies that

[w)r o msm@eys 1P| p, @40,

t (5.1a)
/ t (u9)3(0, 5)ds + / (ul)(0,5) — eul* (0, 5))*ds < by,

0

and
1w 9| £y 0,715 R+ 11911 (0, 52000 (R4

/ { [, (0,8)] + [u{F1 (0, 8)]? + e[ulfF(0, 5)]* }ds < bs, (5.1b)

for 0 € j < k — 1. In the remainder of this proof, C' will denote various constants
which all depend on the same variables as the constant b, or by given in the state-
ment of the lemma, but which will always be independent of e. For any integer
4 > 1 the function u(¥) satisfies the equation

ugj) + (a(u)u(j) + h; (u)) +uld) — eugﬁt =0, for (z,t) € R" x[0,7], (5.2)

x

where
j—1

hi(w) =3 (j - 1) a(w)Pul=)  and  hy(u) = 0.

i=1
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The induction hypothesis implies that
17k ()] L oo 0,75 200 )y < €llhk(W)]| Loy (0,753 ®H) < C- (5.3)

Let v = u(®), where u is the solution of the regularized initial- and boundary-
value problem (3.1) corresponding to the given smooth and compatible data f and
g- Then v satisfies the equation

vy + (a(u)v + hi(u)) | + Vooz — €Vgzt = 0. (5.4)
For ¢ in [0, T, define

A2(8) = [lo(- )2 + /0 20 (0, 5) — €vas (0, 5)]2ds.

The function A(t) will be estimated via an energy inequality derived from equation
(5.4). Multiply this equation by 2v and integrate the result over R* x (0,t) to
obtain

o( DI + elles (DI + / v2(0, 8)ds
i 2
= 1o, O)I12 + ellea (-, O)| 2 + / a(g(5)) (0 (5)) ds

+ /Ot 29'8) (5)[v22 (0, 8) — €vg¢(0, 5)]ds + /Ot/0+°° [a'(u)v2 - 2v(hk)z] dzds.

The induction hypothesis implies that for any § > 0, there is a constant Cj such
that

[o( DI + elloa (-, DI + / 22(0, 5)ds
(5.5)

< Cs (1+/0t ||U(.,s)||§ds) +6/0t[v”(0,s) — €0y (0, 8)]2ds.

Multiply (5.4) by 2(evss — a(u)v — vg;) and integrate the results over Rt x (0,t).
After simplifying, one obtains

{
llva (- B)]1% + /0 (v22(0, 8) — €vz1(0, 8) + a(g(s))g® () *ds

“+oo

+o0
=||v.(- 2 alulz ,02 T  — N i ’U2 . .
“los O+ [ alu@ )t~ [T (st @0
- /t (E(g(k+1) (5))? — 29+ (s), 0,5))ds (5.6)
0

+ /Ot/0+°° [Q(hk (u)), (Vae + a(u)v — evgt) — a'(“)“tvz] o
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Integrations by parts show

/ot /O+oo[hk (u)]oVzodads

= [ (ha(at0,90), 020,535 - / t / " (), vedods,

0

and

[ 7wt et = [ (ratuto, ) 0n(a el
_ /0 t /0 "% (hew), padods.

35

Note that the leading term of the expression (hy(u))_, is (H(u)v),, where H(u)

is a function depending on u, us, - - ,u*~1. By the induction hypothesis (5.2) and

(5.3), it transpires that for all ¢ € [0,T],
t p4oo
I / / [hi(u)]e[Vee + a(u)v — evmt]dmdsi
0 Jo

t t
< e20||vw<-,t>u2+c(1+ [ ibcoiias + [ v:<o,s>ds).
0 0

From (5.5) and (5.6), it follows that

t t
oo + [ (vea(0,5) = evse(0,5))%ds < O+ C [ o, o).
0 0

Gronwall’s lemma implies that there is a constant b; with

b = by gmax (1?00l ) lolera),

such that
t
A%(t) = (- D) + / (0220, 5) — €vy (0, 8))%ds < b,
0

for all t € [0,TY).
To finish the lemma we need to control

t
llv()llF  and /{vim(O,S)+vit(0,3)+€vim(0,8)}ds’
0

Define the quantity B(t) to be the sum of these two quantities,

t
B0) = G OIE + [ {1222(0,8) + 02,(0,9) + eouu(0,5) s
0

(5.7)
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Differentiate (5.4) once with respect to z, multiply by —2v;., and integrate the
resulting expression over Rt x (0,t) to reach the equation

t
”vww("t)“2 o €||’Um,-z(-,t)||2 + /0 Uimm(oa s)ds
i
= IIme(',O)IIZ + GHUMG:("O)HZ - 2/ Vz¢(0, 8) g2 (0, 8)ds (5.8)
0

t p4oo0
+ 2/ / (a(u)v + hy (u))mvmzdmds.
0Jo

Inequalities (5.1) and (5.3) imply that
t ptoo t
/ / (a(u)v + he(u)) , Vozedads < C’(l +/ v, s)||§ds).
0 Jo . 0
Note that
t
—2/ 02¢(0, 8)Vz4 (0, s)ds
0

— / V2(0, 8)[aa (0, 8) — vzt (0, 8)lds — 2¢ /0 02,(0, 8)ds.

0

Then using the induction hypothesis (5.1), one shows that for any é§ > 0, (5.8) can
be estimated in the form

t t
||Um(',t)||2 + 6”'02-’22(" t)”2 + / ngm(oa S)ds + 26/ v:zct(()’ S)ds
0 0
t t (5 9)
<Cs+ 5/ v2,(0,8)ds + C/ B%(s)ds. ¥
0 ()}

Next, multiply (5.4) by 2v4:+ and integrate the results over Rt x (0,t) to come to
the equation

t
[vaze (- )II? + / [02,(0, 8) + v, (0, 8))ds
t
= ||vzm(-,0)||2+/ 2022¢(0, 8)v:(0, s)ds
0

+o0
. /0 [2Umwz(mat) (a(u(w,t)v(m,t) + hg(u(z, t)))m (5.10)

+ 20202 (2,0) (alF (2)0(2,0) + ha(u(3,0))) | de

- /Ot/0+°°2%m [(G(U)Uzﬁa'(u)umvt) + (GI(U)UtU+hk+1(u)) m] dads.
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Because
0] L.y (0,5; w200 R Hy) < Cs + 8l lv (-, 813, (5.11)

and because of the relations vy(0,s) = g**2)(s) and v;(0,5) = g+ (s), it is
adduced that corresponding to any § > 0 there is a constant Cj for which

t t
/ 2055¢(0, 8)v4(0, 8)ds = 2v54(0, s)ve (0, 3)|:::) - / 2044 (0, s)vi(0, 8)ds
0 0

t
s%+ﬂwmm@+céuwwm@a

One also easily obtains the inequality

| [ vass(art)(aluta, )00 ) + huu(a,1)) da] < G + Bl 01

Differentiating equation (5.4) with respect to z yields
—vgt = (a(u)v + he(u)) , + Voozz — €Vsoat-

Using the above equation leads to the inequality

t p+oo
/ / a{u)VgtVgezdrds
0 Jo

t pr+oo
=— / / a(U)Vgggp [(a(u)v + hi(w)) ,, + Yozzs — evmmt)] dzds
0 Jo
< C + €lla(w)l|g, @+ x (o, 1Vaza (- DI

t t
+0 [ 220,65+ O [ (Ioans P + loseC )P
0 0
t 13
<c+C / o2, (0, 8)ds + Cel|vsea (- )| + C / B2(s)ds.
0 0

By again using equation (5.4), and the induction hypothesis, one sees that
llve(-£) — €vazs (- DN < [lvsaa (DI + Cllv(, B)I13-

Expanding the norm on the left-hand side of this inequality and integrating by
parts the mixed term gives

e (5 D)1 + 2el[vae (-, )11 + € Jgan (-, 1)
< Clo(:, Ol + 2¢[ve (0, )var (0, 1)

1 1
< Olfu(-, )1 + 4elg® D Ollfvat (-, O | [veee (- 1)1

1 1
< Cllo(, B)liE + Ce2 |g* I @) + el fge (-, 1) + 562||vm(-,t)||2,
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from which one obtains
1 1
v (-, 1% + €l[vas (- DII* + §€2||vm(-,t)||2 < Cllw(- B)II3 + Cex gt (@)%,

Using this last information yields

| / /+oo (u)tta0uvassdads| < C / lweC ) [lvaaa (-, 8)l|ds
50+0/0 B(s)ds.

Note also that |hgt1(u)| < |Hg(u)v|, where Hy(u) is a function containing terms in
hg. Using this information and the induction hypothesis shows that

t ptoo t
/ / Vpaa (a' (w)wgv + hpt1 (u))zdmds < / Cl|vzez (-, $)||[ve () 8)||ds
0 Jo 0

¢
< C’/ B?(s)ds.
0

If € is chosen small enough, (5.10) can be estimated as

IoaaaCo P + [ [02400,8) + ever(0,5)lds
° (5.12)

¢ ¢
<C+ C/ v2,.(0,8)ds + C/ B?(s)ds.
0 0

Multiply (5.9) by a suitable constant and add the result to (5.12). Then applying
Gronwall’s lemma shows that B(t) is bounded by a constant by, as advertised. This
completes the induction argument and hence the proof of Lemma 5.1. O

The bounds established in the last lemma, are just what will be needed in Section
6, except that, so far as is known now, not all the arguments of the constant b; and
by are independent of €. To attain the goal for this section, it will suffice to give
conditions on the data f and g which imply that ||u?(-,0)||s and ||u?**(-,0)|]s are
bounded independently of € for 0 < j < k.

Let ¢ (z) = f(x), and for each integer j > 1 define functions ¢\) inductively
by the recurrence

#0 ——ol2, + (Z( ) e @e09) |. (5.13)

i=0

Here is the result to which allusion was just made.
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Lemma 5.2. Let f € H®(R"), g € H®(0,T) be given, with f(0) = g(0). Let
k > 1 be a given integer and suppose additionally that
¢ D(0) = g9 (0), forj=1,2,-- k. (5.14)
Then there erists a constant bz, depending continuously on ||f||sk+1 and |g|ps1,7
such that
6@ (-, 0|1 + €2 |[uld) (-, 0)]|2 < bs,
and there exists a constant by, depending continuously on ||f||s(x4+1) and |g|k+2,T
such that
1uD (-, 0)|[3 + €¥|[uld) (-, 0)[|4 < ba,
for0<j <k and all € € (0,1].

Proof: Note that when k = 1, the desired result is implied by Lemma 4.7 and
Lemma 4.9. The proof proceeds by induction on k. Let k > 1, and suppose that
the stated estimates hold for all non-negative integers less than or equal to k — 1.
Let u(®)(z,0) = v(z,0). From equation (5.2), v(z,0) satisfies the boundary-value
problem

v — evgp = ¢, (6.15)
with
v(0,0) = g**+V(0), and mEr_lr_loo v(z,0) = 0.

By the compatibility conditions (5.14), one has v44(0,0) = 0. Following the line of
argument introduced in proving Lemma, 4.7, but using (5.15), one shows that there
is a constant b3 = b3 (]| f||sk+1, |g|k+1,7) such that

[P, 0l + €2 [[ul (-, 0)|]> < bs
for 0 < j < k and all € € (0,1]. As worked out in Lemma 4.9, one then shows that
there is a constant by = bs(||f||3(k-+1)s |9]k+2,7), such that
@, 0)lls + €2 {[uP(, 0)|la < ba,
for0<j<kandallee(0,1]. O
It is worth summarizing the accomplishments of this section in the following

theorem. This is a higher-order analogue of Theorem 4.10. In the statement of the
theorem, €s is the same positive constant that already appeared in Theorem 4.10.

Theorem 5.3. Let T > 0 and a positive integer k be given. Let f € H*®(R')
and g € H®(0,T) be given with f(0) = g(0). Furthermore, suppose f and g satisfy

9P(0) = ¢ (0), for1<j<k,

where the functions ¢\ are related to f as in (5.13). Then there ezists a constant
bs = bs(|| fllsk+1, |glk+1,7), such that

9, )]l < b,
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holds for 1 < j <k and all € € (0, 3).
Moreover there exists a constant bg = bs(||f|[s(k+1)s [9lk+2,1), depending con-
tinuously on its arguments, such that
1@ (-, 8)]|s + €2185ul9) (-, )] < b,
holds for 1 < j <k and all € € (0, €3).

6. Existence and Uniqueness of Solutions

Using the theory developed in Sections 3, 4 and 5, it is comparatively simple to
prove existence of smooth solutions of the quarter-plane problem for the equation

ut + P(u)g + Ugzg = 0, for z, t > 0, (6.1a)

subject to the auxiliary conditions,

u(x,0) = f(z) for z > 0,

(6.1b)
u(0,1) = g(t) for t > 0,

where f and g are given functions.
It is useful to first settle uniqueness of solutions of this initial- and boundary-
value problem.

Theorem 6.1. Let T > 0 and s > % Then, corresponding to given auxil-
iary data f and g, there is at most one solution of (6.1) in the function class
Loo(0,T; H*(RV)).

Proof: This result is proved as in Theorem 6.1 of [17] for the KdV equation
(1.2). O

Theorem 6.2. Let k be a positive integer. Suppose f € H3*+1(RY) and g €
HEFY(RY), or f € H*3(RT) and g € HEP2(RT), and the k + 1 compatibility
conditions

g(j) (0) = ¢(J‘)(0) for0<j <k,
hold, where ¢\) is defined in (5.18). Then, corresponding to the given ausil-
iary data f and g, there ezists a unique solution u of (6.1) in the function class
Loo0,T; H*(R")), where s = 3k + 1, or 3k + 3, respectively. Furthermore there
exist a constant C3ry1 depending on ||f||sk+1 and |g|k+1,7, and a constant Csxys
depending on ||fl|sk+s and |g|k+2,7 such that for 0 < j < k,

T
/0 [(@)2(0,5) + (ul))(0, 8)}ds < Cayax (6.2)
and

1
/ ()20, 5)ds < Capa- (6.3)
0
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If k > 1 in the first case, or k > 1 in the second case, u defines a classical
solution, up to the boundary, of (6.1) in the quarter-plane Rt x R,

The proof is made in two steps. First, existence of a smooth solution of (6.1)
corresponding to smooth initial data and smooth boundary data is established.
Then a limit is taken through smooth solutions of (6.1) to infer existence of solutions
corresponding to initial data in H3*+1(Rt), or H3(*+1)(R*), and boundary data
in H l’f;'c'l (R*), or H, z’f;t2(R+)’ respectively. In pursuing this program, the following
technical lemma (see [16], Lemma 7) is useful.

Lemma 6.3. Suppose u, — u weak-star in L (0,T; H*(R")) where s > %
and dyun, — Oyu weak-star in Ly (0,T; H™(R)) for some real . Then there exists a
subsequence {u;} of {un} such that w; — u pointwise almost everywhere in [0,T] X
Rt and a(w)0zu — a(u)u, in D'([0,T] x RT) in the usual sense of distributions
(a(u)ug is interpreted as O, P(u) in case s < 1 and similarly for a(u;)0zu;).

First, it is established that solutions of (6.1) exist in case f and g happen to
be infinitely smooth.

Proposition 6.4. Let T > 0 and k a positive integer. Let f € H®(RT) and
g € H®(0,T) satisfy the k + 1 compatibility conditions,

g9(0) =¢9(0), for0<j<k.

Then there ezists a solution u of (6.1) in Ly (0,T; H¥*+3(R*)) corresponding to
the data f and g. Moreover, there exist constants

bak+1 = bap41(||flsk+1, |9lk+1,7)  and  bspts = bsk+s (|| f]l3k+3, |9k+2,7)

such that
NuD ()]s < bapgr, for 0<i<k, [[u®( 0|1 < bartr, (6.4)

and
(-, 1)|ls < bskss, (6.5)

for 0 < j < k. The constants by for the various values of s can be chosen to depend
continuously on their arguments.

Proof: The argument very closely parallels others appearing in many standard
works, so it is presented in outline only. Throughout, T' > 0 will be fixed, but
arbitrary.

According to Corollary 3.8, for any € > 0 there is a smooth solution u, of the
regularized initial- and boundary-value problem (3.1) corresponding to the data f
and g. And by Theorem 5.3, there is a constant b = b(|| f||3(x+1), |9|#+2,7) depending
continuously on its arguments, but independent of € in (0, €3], such that

[, D)lls < b,
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for 0 < j < k. Moreover, for all nonnegative integers 7 and m,
diu. € C(0,T; H™(R')), (6.6)

by Corollary 4.2 and in particular for 0 < j < k, ~{(’3tj'u€}0<e§e2 is bounded in
Ly 0, T; HYR")), independently of e.

These bounds together with standard compactness results due to Aubin and
Lions (cf. [34], Lemma 6.3), and diagonalization procedures imply that there is a
sequence {e, }52; tending to zero as n tends to infinity such that if up = ue,, n =
1,2,---, then

Hun — 8lu, weak-star in Leo(0,T; H*(RY)) (6.7)
for 0 < j <k and
a(tn)Bztn = a(u)8u in D'(RT x [0,T7), (6.8)
as n — 400. Moreover, the function u satisfies the generalized KdV-equation (6.1a)
on R* x [0, T]; if k = 0, u satisfies the equation in the Ly(R")-sense, while if £ > 1,
the solution is classical. The initial and boundary conditions are easily inferred to
be taken on in appropriate senses. In particular, by standard interpolation results
(cf. [35]) it is inferred that
8lu € C(0,T; H¥*k-D+3(R*)) (6.9)
for0<j<k. O

With a little change in the details, one shows that the argument of Proposition
6.4 also applies to the case when s = 3.

Corollary 6.5. Let f € H®(R") and g € HZX(RT) with f(0) = g(0). Then
there ezists a unique solution u of (6.1) in Lo (0,T; H3(RY)) and

[lu(, B)lls < b(||flls, |gl2,T)-

Proof: By following the line of argument adopted in proving Proposition 6.4,
and using Lemma 4.4, one shows that u lies in L (0, T; H3(R")) and a(u)u. lies in
Loo(0, T; H2(RY)). Hence, from the differential equation (6.1), us € L0, T; La®R™)).
Moreover, according to Lemma, 4.4, If u, is the approximating solution of the regu-
larized problem corresponding to the value of the perturbation parameter /epsilon,
there is a constant a depending continuously on ||f||s + €*||7®|| and |g|2,r such
that

llue(, D)lls < a,
at least for e sufficiently small. Since the solution u of (6.1) pertains to the weak
limit as € tends to zero, it follows that

[lu(-,¥)}|s < limsupa = b,
e—0

say, where b = b(||f||s, |g)2,7), as advertised. O
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Now we pass to the second stage of the proof of Theorem 6.2, where it is
supposed that the initial condition f is constrained only to lie in H3*(R*) or
H3*1(R*), and the boundary condition g to be a member of H\t!(R*), for some
integer k > 1. The following result from [17] will prove to be useful in the present

context.

Lemma 6.6. Let f and g satisfy the conditions in Theorem 6.2. Then there
exist sequences {fn}-; C H®(R") and {gn}F=; C C®(R") such that

g9 ©0) =% (0) foro<j<k

and for which, as N — oo,

G) fn—=f i H®*LRY), gv—g in HIF'RY) or

loc

(&) fv—f in H*P®Y), gvog in HEP(RY)

loc

where qﬁ%) is as defined in (5.13) with fn replacing f, and g%) = a{gN.

Proof of Theorem 6.2: Suppose that f € H3*+3(R*) and g € HT2(RY) are
fixed, and that f and g satisfy the first k + 1 compatibility conditions as in the
statement of the theorem. For fixed T' > 0, Lemma 6.6 implies there exist sequences

{fN}R_; C H®(R') and {gn}%_; C H®(R") such that
fv—=f in H¥*RY) and gy =g in H*2(0,7) (6.10)

as N — +oo. For each N > 0, fy and gy satisfy the same k + 1 compatibility
conditions satisfied by f and g. From Proposition 6.4, corresponding to the auxiliary
data fi and gy there is a solution uy of (6.1) defined on R* X [0,T] such that
dun € Leo(0,T; H*R+AD=3D)(R+)) for 0 < j < k, N = 1,2,--- . Moreover, there
exist constants
b3ers = bak+a(||fnllartas [9n|kt2,r)

such that

||3g.’u,N||L°°(0,T;H3(]R+)) < bf’;{c+3, for0<j<k. (6.11)
Because of (6.10) and the fact that bsg3 is uniformly bounded when its arguments
vary over a bounded set, there is a constant Bjsgy3, independent of N, such that

||3ZUN||L°°(0,T;H3(R+)) < Bskts, (6.12)
for 0 < j < k. Similarly, one shows that if f lies in H3*" (Rt) and g lies in H**! (R1),

loc
there exists a solution uy of (6.1) on RT x [0, 7] with initial- and boundary-data fx
and gy, respectively, for which &Juy € Loo(0,T; HG*+1-3)(R*)) for 0 < j < k,
and a constant Bjzg41 such that

||8'tiUN|ILD°(O,T;H3(]R+)) < Bsgy1, for0<j<k,and (6.13)
10F un || Lo, 0,152 ®+)) < Bskt1-
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In consequence of the bounds expressed in (6.12) and (6.13), the arguments of
Proposition 6.4 may be repeated without essential change (the extra smoothness
available during the proof of the proposition was not used, nor was the regularizing
term —eugq:). It is concluded therefore that {un}§® converges to a function ur,
say, in the various ways already detailed in the proof of Proposition 6.4. As in the
proposition, ur provides a solution of (6.1) corresponding to the data f and g, in
H3+1(Rt) and HEYL(RT), or in H3*+D(RY), and HfE*(RT).

The above argument applies for any fixed T > 0. Define a function U on
Rt x R by,

U(z,t) = ur(z,t),
provided that t < T. This is well defined because of the uniqueness result. It is clear
that U provides the solution whose existence was contemplated in the statement
of Theorem 6.2. The fact that U is a classical solution of the problem (6.1), if
f € H3%L(R*) for k > 1, or f € H3*+3(R") for k > 1, follows exactly as in the
proof of the Proposition 6.4. This finishes the proof of Theorem 6.2. 0

The above arguments also apply to the case s = 3 because of Corollary 6.5.

Corollary 6.7. Let f € H3(Rt), and g € HE (R"), with f(0) = g(0). Then,
corresponding to given auziliary data f and g, there exists a unique solution u of
(6.1) in the function class Lo (0,T; H>(RV)). Moreover, for any T > 0, there is a
constant C depending on ||f||s and |g|2,T, such that fOT u2,(0,s)ds < C.

If f € HY(R") and g € H}, ,(R"), then Theorem 6.2 also holds because of the
e-independent H!(R*)-bound established in Lemma 4.1. In this case, the equation
will be satisfied in the sense of distributions. However, the uniqueness result does
not apply. The proof of existence of these weaker solutions fits more or less directly
into the framework exposed in the proof of Proposition 6.4. The outcome is stated
here.

Theorem 6.8. Let f € H'(R"), and g € H} (R"), with f(0) = g(0). Then for
any T > 0, there exists a solution of (6.1) in the function class Loo(0,T; H'(R"))
corresponding to the initial data f and boundaery data g.

7. Solutions in More Restricted Spaces
& Continuous-Dependence Results

In Section 6, we obtained a unique solution of the generalized KdV equation
posed in a quarter-plane. Thus if f € H?(R") where s = 3k, or 3k + 1, and
g € Hl’f,tl(llv) satisfy the appropriate compatibility conditions at (z,t) = (0,0),
then the quarter-plane problem has a solution in L2, (R*; H?(R't)). In this section
it will be shown that the solutions lie in C'(R*; H*(R")), and a result of continuous
dependence of solutions on the data in spaces that are as restrictive as the solutions

allow will be established.
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To prove such a result, we follow the line worked out for the KdV equation
(1.2) in [18]. Since we deal with a more general nonlinearity and our theory implies
that solutions exist corresponding to weaker assumptions on the auxiliary data,
details of the proof are provided. We first show that the solution u, corresponding
to smooth initial data f, and boundary data g, which approximate f in H3*(RY)
and g in Ht'(R*) appropriately are Cauchy in C(0,T; H3*(Rt)) for any fixed
T > 0. It follows that for any T' > 0, u, — u strongly in C(0,T; H3*(R*)) for some
u. This is accomplished by deriving bounds for the difference between two solutions,
say u; and ug, of the initial- and boundary-value problem (6.1). These bounds may
be expressed in terms of corresponding differences in the initial and the boundary
data for the two solutions. After such bounds are obtained, the result that {u,}52 ;
is Cauchy in C(0,T; H3*(R*+)) follows by choosing appropriate approximations to
the initial and boundary data.

Throughout this section X3 will be the set

Xar,={(f, 9) € H3*RT) x HP*Y(RT): 0)(0)=g)(0) for 0<j<k—1}, (7.1)
and Xsp41 will be the set
Xawn ={(f, 9) € BBFHI(RY) x HEY(RT): 619)0)=¢9)(0) for 0<j <k}, (7.2)

where ¢ is expressed in terms of the initial data f as in (5.13) and k is a positive
integer. Assume that (fi,91) and (f2,g2) are two sets of data for the problem
(6.1) which lie in X3g, or X3+1. By Corollary 6.7 and Theorem 6.2, the corre-
sponding solutions u; and ug of (6.1) will be elements of L2, (Rt; H3*(RY)), or

2 (Rt ; H3*+1(R")), respectively. Moreover, there exist constants Cyy which

depend only on T, ||fm||sk, Or ||fm||3k+1, and |glg+1,7, which bound above
1wl Lo 0,1; 2% (RH)) OF  ||[Uml| Lo (0,720 +1 (R4)) (7.3)
for m = 1, 2. As a corollary of Theorem 6.2, one also has that
|05+ 04, (0, 8)[o,7 ot |02 T2 (0, 8)|o,7 (7.4)

is bounded above by C,Q?T, for m = 1, 2. The constants C’,Q’"T will be shown to depend
continuously on T, ||fm||sk, or ||fm]|sk+1, and |g|k+1,7, m = 1,2. For convenience
in writing the difference between datum, denote

f=h-f 9=g1— g2 and w=u —us.
Then from (6.1), the function w satisfies the initial- and boundary-value problem
wy + a(ug)wg+[a(ur) — a(ug)](Us)s + Weee =0 for z, t € R x RT, (7.5a)

w(z,0) = f(z) for z > 0, (7.5b)
w(0,t) = g(t) for t > 0. (7.5¢)
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As before, for non-negative integers j, denote by w9 the temporal derivative 6{ w.
Then w(*) satisfies the partial differential equation

w® + (au1))Pwg + a(ur)wl® + [a(wr) — alu)]™® (ug), B
+ la(w) - o)), +ul®, + Fe=0,

where Fy =0 and F}, is defined by

k-1

R = Y (§) @ ® 09 + ) ~ (@)

=1

Lemma 7.1. Let (fm,gm) € X3 for m = 1,2. Then for any T > 0, there is a
constant Cr depending continuously on T, ||fml|ls and |gml2,7, m = 1,2, such that

t
lw(-, H)I* + /0 w2(0,s)ds < Cr{l|fII* + 9l%,r} (7.7)
and
t
llwe (-, 8)[|* + /0 w2, (0, 8)ds < Cr{||f|I} + l9l2 7} (7.8)

for 0 < t < T. If (fm,gm) € X4 for m = 1,2, then there is a constant Cll'T
depending continuously on T, ||fm|ls and |gm|2,7, m = 1,2, such that

t
oG + [ 2iaa(0,5)ds
0 (7.9)

< CLp{IIf113 + 19137 + Wl . m+x o,y 102l 0, Ham49) 3

Proof: Let (fm,gm) € X3 for m = 1,2. It follows from Corollary 6.7 that um
lies in Lo (0, T; H3(RT)) and there is a constant Cr such that

Heml| Lo (0,133 (R ) < CT (7.10)

for m = 1,2. Here, and below, Cr will denote different constants possessing the

same properties as the constant Cr specified in the statement of the lemma.
First, it is shown that ||w(-,t)|| is bounded by Cr{||f||*+ 9|3 7} Let U(z,t) =

g(t)e~® and y = w — U. Then y satisfies the initial- and boundary-value problem

vt + [a(yr + Ur) — a(ya2 + U2))(y2 + Us)e
+a(yy + U1)ys + Yooo = h, forz,t € RY x R,
y(z,0) = f(z) — g(0)e™7, for z > 0, (7.11)
y(0,t) =0, for t > 0,

where ym = Um—gm (t)e™* = U —Upm, m =1,2,and h = Uy +Uzss+a(y1 +U1)Us.
Note that y = y1 — 2. To establish the advertised bound for ||lw(-,t)||, one need
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only establish a similar estimate for y. Multiply (7.11) by 2y and then integrate the
results over Rt x (0,t). After integrations by parts, there appears

t
ly( &)1 + / y2(0, )ds

=17 - UG OIP+ [ [ (b - atn + Ve (7.1)

— [a(y1 + U1) — a(ys + Ua))(ys2 + Uz),)dxds.

By a further integration by parts, one sees that

o0 o0
/ 2a(y1 + Uy)yyads = — / la(ys + Un)lay?d.
0 0

From (7.10) and the definition of U, it therefore follows that
lla(yr + U1)lallL@®+x0,) S Crs  |Blla®ex(0,m) < COrlgl,r

and  ||U||p.. ®+x(0,1)) < Crlgl1,T-
Because of the Lipschitz-condition satisfied by P, one infers that

l(a(ys + Ut) — a(y2 + U2))||pa@+x(0,1)) < CrYB)||y + UllL,m+x(0,1)), (7-13)

where B = [0, Cr]. Note that this follows since both arguments y; + Uy = w1 and
Yo + U = uy lie in the set {u: [|u||z_ ®+x(0,1)) < Cr}. With the above estimates
in hand, it follows from (7.11) and Gronwall’s lemma that for 0 <¢ < T,

i
lly(, )11 +/0 y2(0,5)ds < Cr{lIfII* + gl r}-

To control ||wg(-,t)||, multiply equation (7.5a) by —2wy, and integrate the
result over Rt x (0,%) to obtain

i t
z\* i 3:2:07 ds = [|f'||* - ' z(0,8)d
e (B +/0w (0,5)ds = ||| /Ozg<s>w (0, 5)ds

e Wgg | (UL )W aluy) —alu e (7.14)
+AA 2 a::l:[ ( 1) z+( ( 1) (2))(u2)z]dd.

By integrations by parts and using (7.7) and (7.10), one shows that

t poo
// 2wy ga(ur ) wededs
o Jo
¢

= /0 a(u1(0, 5))w? (0, s)ds — /0 t /Ow[a(ul)]mwidmds (7.15)

t
< Cr{IfIB + o2z + /0 e, 8)[Pds}.
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Also note that
/O t /0 ” 2wzz[a(ur) — a(uz)](usz)sdzds
= /0 t 2w,;(0, 8)[a(u1(0, 8)) — a(u2(0, 8))](u2)< (0, s)ds (7.16)
< Cr( /0 t w2 (0, 5)ds) 2(B)( /0 t g*(s)ds)* + Cry(B) /0 ‘ (- 8)|12ds,

where B = [0, Ct] again, by using (7.7), (7.10) and (7.13). Hence using (7.15) and
(7.16), (7.14) is reduced to

t
0

t
a1 + [ w2a(0,5)ds < Or{lfIR +lolte + [ It 9)lfds) (77

for 0 < t < T. Applying the first result and Gronwall’s lemma to the above inequal-
ity gives the second result.

To obtain the last result, let (fm,gm) € X4, m = 1,2. Differentiate equation
(7.5a) once and multiply the result by 2w, ... Differentiate equation (7.5a) twice and
multiply the result by 2wggq,. Add the above results together and then integrate
over Rt x [0,¢]. After integrations by parts, there appears

12 O + [asa DI+ [ a0, + ean(0, )]s
= lhusa () + lfwase (O
=2 [ 1200, 02s(0,) + 20,8}, 0,9
+ 2220, ) (a(un)ws + (a(ur) — a(w))(wa):)  (0,5)]ds

TT

+ 2/(: /0+°° [[a(ul)wz + (a(wy) — a(uz))(u2)s], (7.18)

-2 (5) et etuna 2w
o+ 03 (a(ur) — a(u2)) 087 ((ua)s)|

. a(ul)wmzmm - (a('ufl) - a(u2))(u2)mwzz] Wygpdrds.
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By using (7.7), (7.8) and equation (7.5a), the first boundary term in (7.18) is
estimated from above as follows:

¢ 1 rt ¢
|2/ wm(O,s)wm(O,s)ds‘ < 5/ wim((),s)ds+6/ w2, (0, s)ds
0 0 0

t
< Cr (Il lglr) +6 / w2 (0,5)ds, (719)
]

for any § > 0. Similarly, one sees that for any J > 0,

—/ Weez (0, 8)Wezs(0, 8)ds
0
= /0 (d'(5)+a(g1(s))wz (0, 8) +[a(g1(s)) —a(g2(s)))(u2)z (0, 5) ) weas (0, s)ds
= (9) + alor () (0,5) + [aar(5)) ~ alga(&](wz)a (0,) we 0, 5)|
= [ [5) + (a1 60 (0,6) + alan (6)wes 0,9
0 : (7.20)

+ ((a(e1(5)) - alga())(u2)s (0, 5)), | wsa(0, 5)ds

i
< CLr(l1fllss lgle,r) + 5/0 w2 (0, s)ds

t
< CLr(11flls, lglar) + 6 / W2, (0, 8)ds.

Note that the inequality

t
[ (n)ex(0,9)?ds < 1l lgmbir)

has been used in (7.20) for m = 1,2. This fact is obtained via Corollary 6.7. Again
by using (7.7) and (7.8), the last boundary integral in (7.18) is bounded above by
a constant Cr = Cr(||f||1,19l1,7)-

There is a constant C] 7 = C1 (|| f||s, |gl2,r) such that all the terms featuring
double integrals in (7.18) except the last two terms can be bounded above by

t
CLo(lIflls, lgla,r) /0 l[w(-, 8)|[2ds.
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By integrations by parts and using once more the hypothesis on P, one shows that
i +o0
\ / / 2[a(ul)wxmmz + (a(u1) — a(u2))(u2)wmmm]wzmzd$ds’
o Jo

t t
< / a(g1(8)) w3, (0, 8)ds + Cr / [lwzzs (-, 8)l|*ds (7.21)
+ Cr(|[fll1, |9|1,T)'Y(B)||w||2L°°(R+><(0,T))||“2||2LQ(O,T;H4(R+))a

where B is as before. Using the preceding information in (7.18) and choosing §
small enough, one obtains

t
()12 < CLr{IIflls + gl + / (- 5)] 2ds

+ ||w||2L°°(IR+x(0,T))||U2||2L2(0,T;H4(R+))}-
Applying Gronwall’s lemma to the above inequality shows that

llw(, )1 < CLr{IIflls + lgla,r + llwllZ_ m+x 0, U211 0,718 1) }-

The proof is complete. O

Bounds on higher-order Sobolev norms are needed for proving continuous-
dependence results in higher-order Sobolev spaces. The next step is to derive such
bounds. In the preliminary results stated and proved next, as with the results in
Lemma 7.1, bounds on the H*-norm of solutions are couched in the terms of H**!-
norms of the initial data f if s = 3k or s = 3k + 1. This apparent defect in the
theory in which smoothness is lost is remedied at a later stage.

Lemma 7.2. Let (fm,9m) € Xsg+1 for m = 1,2, Then for any T > 0, there
exists a constant Cy 1 depending continuously on T, ||fm||sk and |gm|e+1,7, such
that

t
[ (- B2 + / (@ (0, 5))2ds
0

k 7.22
< C%,Tﬂ|f||§k+|g|%+1,T+”w“%w(R'Fx(O,T))”ug )||2Lz(0,T;H1(R+))}- (7.22)

If (fm,9m) € Xskts, then there exists a constant C,E,T depending continuously on
T, || fmllsk+1 and |gm|k+1,7 such that for 0 <t <T,

t
W 1P + [ @l 0,9)7ds
0

k 7.23
< G2 Q1 By Hlo o H 012 _ ooyl o 20
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Furthermore if (fm,gm) € Xsk+4, then

t
WNWMM+AW%NMW%

< Cli+1,T{Hf”§(k+1)+|g|i+2,T+Hw“%m(R+x(0,T))Hugk)||%2(0,T;H4(R+))}'(7.24)

Proof: The lemma is proved by induction on k. The estimates (7.22), (7.23)
and (7.24) are true when k = 0 by virtue of Lemma 7.1, and the constants C(},T,
C3 and C} 1 depend continuously on T, ||fm||s and |gm|2,7. Assume that the
estimates (7.22), (7.23) and (7.24) regarding w(¥) hold for 0 < j < k. To obtain
(7.22) for j = k, let (fm,9gm) € Xsg+41 for m = 1,2. Then Theorem 6.2 implies that
Um € Loo(0, T; H3*+1(RT)). Hence the following calculations make sense.

First, make a transformation such that the solution vanishes on the boundary.
This can be achieved by setting

Then y satisfies the initial- and boundary-value problem

y: +a(yr + Ur)yz + [a(yr + U1) —alys + U2)|®) (y2 + Us)s

+[ays + U1) — a(ye + U)@F + UM)e + Yooz = ha, (7.25a)
for ¢, t € R" x R,

y(z,0) = ¢ (z) — U®), for > 0, (7.25b)

y(0,t) =0, for t > 0, (7.25¢)

where y,,, = uﬁ,’f) - gﬁ,’f) (e * = us,’f) - UT(,{“) form=1,2,
hie = —F + [UP + U, - (a1 + U1)Pw; + (alys + U01)UP),

and ¢(® (z) takes the form presented in (5.13) with ¢(©)(z) = f(z). After multiply-
ing (7.25a) by 2y and integrating over R* x (0,t), there appears

I AIE + [ 20,8)ds = IOl + [ [ [2hay + (atys + D)o

— 2yla(ys + U1) — a(yz + U2)] (y2 + Ua)a (7.26)

—2y[a(yr + U1) —a(ys + Uz)](ygk) + Uz(k))z] dzds.

Taking account of the definition of U*) and y(-,0), one sees immediately that

lly(,0)ll < Cir{llfllsk + lglesr,r}-

By the induction hypothesis, there obtains

Bkl Lo+ xo,1)) < Chr{llfllse + |9le+1,7}-
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Hence the first term in the double integral on the right-hand side of (7.26) is
bounded above as follows:

t poo t
/0 /0 2yhpdads SCi,T{|If|I§k+Ig|i+1,T+/O Iy (-, 8)||*ds}-

The assumption about the nonlinearity P implies

i
la(u1) — a(u2)) DL, 0122w+ < YB)Chz D Mw™|Ly0,1mam@y,  (7:27)

n=0
where 0 < 7 < k and B = [0, Cr] as before. Note that

[(a(yr + Ur))ell Lo ®+x(0,1)) < Chi1-

With this information in hand, it is readily deduced that the second and third terms
in the double integral in (7.26) are bounded above; viz.

/ / vt +U0)av? — 2lalys + Us) = alga + U)|® (v + Ua)e | dads
< CL {11 + gl Bz + / lly(-,)||ds}-
Finally, note that
‘2/ / yla(yr + U1) — alyz + Uz)](y(k) ék))zdxds‘
s k k
< / / [v? + lay: + U1) — alys + U2)P[657 + U )al?] dads
0J0
t
< CLrvB) 1wl _ exiomyl1uS” 10,1 )y + / lly(-, 8)|2ds.
Combining the above estimates, (7.26) is reduced to
t
ly (B + / y2(0,5)ds < CLr {11 + 19sr.z

t
k
+ [lwl1? et x o, 1887 11 o, ety + / lly(:, )|*ds}

for 0 < t < T. If Gronwall’s lemma is applied to this last inequality, one obtains
the result (7.22).

To obtain (7.23), let (fm,gm) € Xsk+s for m = 1,2. Theorem 6.2 implies that
Um € Loo(0, T; H3%+3(RT)). Multiply (7.6) by — — 2% ) and integrate the result over
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Rt x (0,t). After integrations by parts, there appears

w0l + [ 00,0 ds

t
= [l (-, 0)]? - / 290+ (s)wl® (0, s)ds
0

/ / 2w(k) G(Ul)’w,(ck) + [au1) — a(ug)](’“) Gt (7.28)

+ [a(u) — a(u2)](u)s + (a(u1)) P w, + F | dads.

First note that

| " 2w P da = —a(us (0, P PO,0) - [ " afur)afwlPda.
0

0

Therefore by using (7.3) and (7.22) one obtains

// 2a(uy YwiH Wl deds
(7.29)

t
< CL o {1 fIBe + loPys o + / [P (., 5)|[2ds},

for 0 < t < T. By another integration by parts, one also shows that

/ ” 2w {(a(ur))®wg + Felda
0
= —2uw{® (0, 5)[a(u1(0, 8)) B w, (0, 5) + Fi(0, 5)]

B /oo z’wa(vk) [((a(ul))(k))zwm + (a(ul))(k)wm L (Fk)m] dz.

0
Note that (7.3), (7.22) and the induction hypothesis entail the inequality
1w Lo, @) < CirdllFllak + glk1,}
for 0 < j < k — 1. This in turn implies that
1182 (Fi)llLo@+x (0,1 < Crr{ll sk + 1glk+1,7}-
By the induction hypothesis and the first result of the lemma, one obtains

|F (0, 8)|7 < Crr{I|fllsk + |gle+1,7}-
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The preceding facts show that

/t /oo 2w;’;)[(a(u1))(’“)wz + Fyldzds
&2 (7.30)

i
< [ 1, 9P ds + G {1 s + loes.r)-
The inequality (7.27) implies
i o]
/ / 2w® [a(uy) — a(ug)]® (us), dods
0 J0
t poo
== [ 20 e (otun) ~a(u) ™ . +latus) =)} ua), ] dads
0 JO
(7.31)

~ [ oulau) - el (wa), )0, 5)ds
0

i
< CLr 1B + lofbira} [ I, 9)lds+ 7).

Finally, integration by parts gives
t o0 (k)
| [ 20lau) - aua?), des
t
=~ [ o law) - o)), }0,2)ds

[ 200 () ~ a(un)) ), + o) - alua))edP),, | dads.
0 JO

Note that
| / /oo{2w§,k) (a(u1) — a(uz))z(ugk))m}(a:,s)dwds‘
D (7.32)
< [ 1)l ds + O {1 uss + loan.rd
and that
| / t / " 20 fa(ur) - ()} () , dds|
< i wgk)z a(u1) — a(ug)]? ugk) 2\ dzds
< [ [ + ) - atwPlf?),ar] -

t
k
< / 11wl (-, 8)|1ds + Y|wll2, @e+x o, 148 12000 5219
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The definition of w(*) together with equation (7.6) entail that
W (01 < CF Il fllsk+1 + gle+r,7}- (7.34)
Using the preceding relations (7.29), (7.30), (7.31), (7.32), (7.33) and (7.34) in
(7.28) and applying Gronwall’s lemma, it is confirmed that (7.19) holds.

To finish the induction, let (fim,gm) € Xsk+a. Differentiate (7.6) once and

multiply the result by 2wi®),. Differentiate (7.6) twice and multiply the result by

2w,s. Add the results together and then integrate over Rt x [0, ¢]. After integra-

tions by parts, we have

821+ I P + [ [@a(0,0)° + (e 0,917
0
= B GOl + s (, )

—2 [ [ud80, )08 0,5) + 02 0,5)0,0,)
+ wf®, (0,) (a(w)wl® + (aur) — alus))® (us)s
+ (o) D + (alw) - a(w) @) + 1) (0,)]ds

t ptoo

w2 [ 7] (atwn)uf? + (otw) ) ) )
+ (a(u)) Py + (o) — a(wa) 5, + Fy)
- ((a(ul) — a(u2))® (ug)q + (a(ul))(k)wm + Fk)mmm

-2 (3> (0] (a(u2)) 089 () + 6] (alwr) — a(uz)) 8~ ((w§)a) )

j=1 J

(U’l)wmzmz (a(ul) - a(u2))(ugk))mmmz] ;I;;)zdwds

Using the first two results of the lemma and equation (7.6) shows that the first
boundary term in (7.35) is bounded above, viz.

¢ t
\2/ wi® (0, s)wl®) (O,s)ds' < %/ (w®) (0, 5))%ds +6/ (w® (0, 5))2ds
0 0

7.36
< G 2 (| fllsksrs lglerar) +6 / (@, 0,8)%ds  (7+36)
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for any & > 0. Note that by Theorem 6.2, there is a constant C' depending on
|| frml|3k+3 and |gmlk+2,7 such that for m = 1,2,

t
/0 (DY, (0, 8))%ds < Ol fmllskss, [gmlisar).

These inequalities, when combined with equation (7.6) show that for any § > 0,

t
- / w®), (0, 5)w®, (0, 5)ds

t
= [ [0 + (aloa(e)) P 0,5) + [a(ar(6)) - alga(@)]® (w2)e(0,9)

0

+a(g1(5)wf) (0, 5)+[a(91(5)) — (92NN (0, 8)+ B 0, 8) w0, s)ds
= [0+ (5) + (a(91())®) w5 (0, 8) + [a(61(5)) — alga(s)]® (u2)a(0, 5)

+a(gs () (0, ) + [a(01(5)) ~alga(s)I )2 0,) + Fil0,)] a2 0,8)]
7.37)

= [ [6*+66)+ (alas (59) 102 0, 8)+ [a(as () ~alga(s)] P (0a)e 0,9)

0

+a(0()uf (0, 9)+la(a (5)) ~ (@ (6] 5 (0, )+ (0, 9)] ee 0, 5)ds
< Chpr,r (I fll3k+3; |9lh+2,7) +6/ (wi® (0, s)) ds

2
< Ciyr,7(|fllsk+3s |9lkta,r) + 5/ (wik),.(0,5)) ds

Again using (7.22) and (7.23), the last temporal integral is bounded above by a
constant Ci 3 7 = Ciyy r(|fllsk+3,1glk-+2,7)- There is a constant depending only
on C} 41,7 such that all terms in the double integral in (7.35), except the last two,
can be bounded above by

t
C%+1,T(||fl|3k+s,|9|k+2,T)/0 [lw® (-, 9)l[3ds.

By integrations by parts and the hypothesis on P, one shows that
[ 2wy, + (a(us) = aua)) 0 enec o]
< [ alo) @09+ On [ [, oPds 739
0 .

+ Cr(| £l |9|1.T)’Y(3)||w||2L°°(R+><(o,T))||U2k)||%2(0,T;H4(R+))-



A GENERALIZED KORTEWEG-DE VRIES EQUATION IN A QUARTER PLANE 57

Using this information in (7.35) and choosing § small enough, one obtains

t
lw® (-, 8)]15 < Chia,r{ll fllskrs + 19lks2,r +/0 llw® (-, 5)|[3ds

k
g ||w||2Lw(R+x(o,T))||Ug )“%2(0,T;H4(]R+))}'
Applying Gronwall’s lemma, to the above inequality shows that
k
lw® (,0)113 < Chya eIl fllsers +|glksa,r + ”w”%w(m+x(0,T))”ug )H%Q(O,T;H‘*(Rﬂ)}'
The proof is complete. O

An inductive use of (7.5a) and (7.6), combined with the estimates derived in
Lemma 7.2, gives immediately the following estimates for |w(:, t)|sx and |w(:,t)|srsn -

Lemma 7.3. Let k be a positive integer. If (fm,9m) € Xsp+1 for m = 1,2,
then for any T > 0, there are constants C’,ﬁ’T depending continuously on T, ||fml|sk
and |gm|k+1,7, Such that

i
llw( O, + /0 (0%+10p(0, 5))2ds

7.39
< GLrAIlF 1B, + 19,0 + 0l oy 12 By o, mymroms gy} (759
If (fin, Gm) € Xsk13, there are constants Cg,T depending continuously on T, | fmlsk+1
ond |gmlk+1,7, such that

t
() Bogs + / (8%++2(0, 5))2ds
0

4
< CI%,T{”f”gk+1+|g|?c+1,T+||w”%°¢,(R+x(O,T))|‘u2||%2(0,T;H3k+2(]R+))}, (7.40)
for0<t<T.

Since Lemma 7.3 requires that the corresponding initial- and boundary-data lie
in the space X3g+1, or X3g+3, we can not directly obtain that the map (f,g) — u is
continuous from X, into C(R*; H*(R")) where s = 3k, or s = 3k+ 1. But by choos-
ing smooth and compatible approximations of the data, this goal can be achieved.
Such approximations of the auxiliary data were constructed in [18, Proposition 4.1]
and used in the study of the initial-boundary-value problem for the KdV-equation.
For the reader’s convenience, these results are restated in the next Proposition.

Proposition 7.4. Let (f,g9) € X, where s = 3k, or s = 3k + 1. Then for any
integer n > 0 and € € (0, 1], there exist functions

(fer 9e) € Xo(my N (HP(RT) x Hig, (RT)),
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where s(n) = 3(k + n), or s(n) = 3(k + n) + 1 depending on whether s = 3k or
s = 3k + 1, such that for any T > 0,

(4) er - f”s—SJ'v lge — g|k+1—j,T = O(Gj) fork>j >0, and
(&) | fellotsis |9elnsir, 7 Sce™? forj>0

as € } 0, where the constant ¢ depends only on ||f||s, |g|k+1,7+1, §, n and T. Fur-
thermore, the convergence in (i) depends upon j, n and T, but is uniform on com-
pact subsets of H*(RY) x H**1(0,T + 1). Finally, for any fized € € (0,1}, the map
(f, 9) = (fes ge) is continuous from X, into Xymy N (H®(RY) x HX (RY)).

loc

Lemma 7.5. Assume that (f, g) € X, where s = 3k or 3k + 1, k a positive
integer, and let (fe, g.) € X,() for € € (0,1] be approzimations to (f, g) whose
eristence is guaranteed by Proposition 7.4 with n = 1. If u. denotes the solution of
(6.1) with data (fe, ge), then for any T > 0,

_1 _1
el oo o, mrsm+1 @+ < Chre™ s and  uell o, o,7;o0+2r+)) < Chre 7,

where the constants C 1, i = 1,2, depend only on T, ||f|ls and |gle+1,7+1-

Proof: Suppose (f,g) € Xa so that (fe, ge) € Xsk+3. Note that from (7.3),
(7.4) and Proposition 7.4, it follows that

t
“uE”Lw(O,T; H3* (R+)) +/ (3£3k+1)ue(0,3))2d3 < Cl%,T' (7.41)
0

The constants C,’;,T will have the same dependence on parameters and data as those
specified in the statement of the lemma.

For the moment, denote u. by simply u. Then for ¥ > 1 the function ulk)
satisfies the equation

u® + a(u)ul® +u®) = hy(u), (7.42)

where hy = —(a(u))zut and for k > 1,
L Y _
hi(u) = —(a(u))oul®) — 8, ( : )(a(u))(i)u(k—z)_
i=1 \

Multiply (7.42) by —2ul® and integrate the results over Rt x (0,t). After suitable
integrations by parts, there appears

t t
[l (-, 1)][? +2 / 9+ ()ul (0, 8)ds + / (u$(0, 5))*ds
0 0

t poo
= |[ul(, OI* +2 /0 /0 ul[(a(u))ul®) — hy(w)]dads. (7.43)



A GENERALIZED KORTEWEG-DE VRIES EQUATION IN A QUARTER PLANE

Note that

| s = ~aw, N0 - [ alwfuf .
0 0

Therefore by (7.41), it follows that

t poo . t
| [ 2etwn@u®asds < Girir+ [ 1, 9)ds)
0 JO 0

for 0 <t < T. Note also that (7.41) entails as before the inequality

|1 oo 0,73 HY) < Chp

for 0 < j <€ k — 1. This in turn implies that

t 1
100 (e )lzaeexiory < Chr ([ 19, 9)lPas)”

Then since

0

B (u(0,8))r < Cir and  |[Ak(u(, )] Il < Cor(+ [l (-, 9)I)),

one obtains

t poo t
l/ / 2u§;’i)hkdmdsl < / [ul®) (-, 8)||*ds + Ci.r-
0 Jo 0
Taking recourse again to (7.41) together with Proposition 7.4 gives
¢
| [ o+ 9u 0, 5)ds] < Gy
0

Finally, from the equation (7.42) and Proposition 7.4, one shows that

[ul® (-, 0)]| < Ck pllul-, 0)lsk+1 < Ok ollfllser1 < Cppe 3.

o0 o0
/ 2l by (w)dz = — 2k (u(0, 8))u™) (0, ) — / 2u® (hy ) d,
0
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(7.44)

(7.45)

(7.46)

(7.47)

The above estimates and Gronwall’s lemma, imply the first-stated inequality in the

lemma.
The second inequality will follow if

el £y (0,7; EH3b+3 @)y < Chope™ "

(7.48)

Let (f,9) € X3g+1, sothat (fe, ge) € Xag+4. Then from (7.3), (7.4) and Proposition

7.4, one has

t
”ue”Loo(O.T; H3k+1(RT)) +/ (6§:3k+2)ue(013))2ds < CI%,T'
0

(7.49)
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Replace k by k+ 1 in (7.42) and let
y = ult+D) — kD) (1)e® = kD) _ (k1)
Then y satisfies the equation
Yt + a(W)ys + Yooo = h (7.50)
with initial- and boundary-values given by
y(0,8) =0, y(z,0) = u(z,0) - VE(z,0),

where
h=- (Vt(kﬂ) + a(u)VFHD L v hk+1(U)).

Multiply (7.50) by 2y and integrate the results over Rt x (0, ). Suitable integrations
by parts lead to

t t o0
mumﬁaéﬁwm@+2£0 (a(u)yev} (@, 8)dads

! (7.51)
= ||ly(-, 0)|]* + 2/ / hyduwds.
o Jo

By using (7.49), one has

t poo t poo
2‘/0 /0 a(u)ywydmdsl = ‘ —/0 /o a’(u)uzyzdzdsl
t
< Chir [ ot o)Pds

for 0 < t < T. The properties of the net (f., g¢) mentioned in Proposition 7.4 imply
_2
lly(-, 0| < G pre®
and
[Pl Lo®+x(0y) < Crre "
Hence (7.51) and Gronwall’s lemma yield
191l ea 0,7 ZaR¥) < Chre ™
By the definition of y and referring again to Proposition 7.4, it is adduced that
_1
[tell oo 0,73 EBH+2 R H)) < Chrre 2.
This completes the proof. O

The information derived from Lemmas 7.1 to 7.5 allows us to prove the following
proposition.



A GENERALIZED KORTEWEG-DE VRIES EQUATION IN A QUARTER PLANE 61

Proposition 7.6. Let (f, g) € X, where s = 3k, or s = 3k + 1 for some
integer k > 1. Then there exists a unique solution u of (6.1) in C(RY; H*(R"))
corresponding to the given data f and g.

Proof: Denote by s; the quantity 3k +¢ — 1 for ¢ = 1, 2. Fix a positive value of
T, let a net {(fe, 9e)}ee(0,] C Xs:+3 of approximations (fe, gc) to the data (f, g)
be constructed for which the properties delineated in Proposition 7.4 hold and let
{te}ee(o,) denote the corresponding family of solutions of (6.1). From Theorem
6.2, we have

te € Loo(0,T; H¥P3(RY)) and  dyu, € Loo(0,T; H* (R)).

Hence for all € € (0,1], u, certainly lies in C(0,T; H* (R")). It will now be shown
that {u.} is Cauchy in C(0,T; H® (R")). Suppose that 0 < § < € < 1. From Lemma,
7.3 and Proposition 7.4, there follows the existence of constants C’};’T depending
continuously on ||f||s;, |gle+1,7+1 and T such that for 0 <t < T,

”ue("t) - ué("t)”Si < Cli,T{er . f5”-9i + |g€ = 96|k+1,T

(7.52)
+ |[te — us!| L oo (40,1 | [thel | Lo 0,75 135+ 1)) }-

From Lemma 7.1 and Proposition 7.4 follows the inequality

e — vsl|Lo ®+x(0,1)) < lltte — Usl|Lo (0,731 ®H)) < Chre",
and from Lemma, 7.5 it is seen that
_1
2 .

1
|[vell£oy 0,7 5011 m+)) < Chre™3 and  |Juellp,, o,mmo+2®+y) < Chre

Moreover, the construction of the regularized data (fe,g.) (see again Proposition
7.4) entails

| fe — fslls; = 0 and |ge — gslkt1,7 = 0 ase— 0.

The last three inequalities imply that {uc}ec(o,] is Cauchy in C(0,T; H*(RY)).
Hence, as € — 0, {uc}ec(o,1] converges to a function @ € C(0,T; H*(R')). By
continuity, it certainly follows that u satisfies the differential equation (6.1) in the
sense of distributions on Rt x (0,T). Furthermore,

H'EL(-,O) = f||-9i < ||17,(,0) . uf("o)“-?i + “fe - fHS.' —+0
as € ] 0, and
|%(0, ) = glr+1,7 < 18(0, ) — (0, )e+1,7 + 19¢ — glot1,7 = 0

as € | 0. Hence @ is a solution of (6.1) with initial and boundary data f and g,
respectively. From the uniqueness result of Theorem 6.2 it is therefore implied that
w=1a € C(0,T; H%(R)). O



62 JERRY BONA AND LAIHAN LUO

Theorem 7.7. Let (f, g) € X,, where s = 3k, or s = 3k + 1 for some integer
k > 1. Then the map (f, g) = u is continuous from X, into C(Rt; H*(R'")).

Proof: Let {(fn, gn)}22; be a sequence in X, that converges to (f, g) € X,.
Thus for any T > 0,

”fn —f”s + |gn —g|k+1,T -0 as n— oo.

Let u,, and u be the solutions of (6.1) corresponding to the data (fn, g») and (£, g),
respectively, n = 1,2,.-- , and let T > 0 be fixed but arbitrary. By Proposition 7.6
it is known that u, and u liein C(0,T; H*(R")) foralln > 1. Foranyn > land e €
(0,1] define approximations (fn,e, gn,e) € Xs+3 of (fn, gn) for which the properties
in Proposition 7.4 hold. Let also (f.,ge) be similar approximations of (f,g) and
let up,e and u, be the solutions of (6.1) corresponding to the data (fn,c, gn,c) and
(fe, ge), respectively, n = 1,2, --- . From the proof of Proposition 7.6, one has

[lue —ullco,r; Hom+) 0 as e€— 0. (7.53)
Next consider the difference u,  — u,. Again from Proposition 7.6, one also has
[tn,e — tnllco,7; He@@e)) =0, a8 €0, (7.54)
for each fixed n > 1. Furthermore, by Proposition 7.4, we know that
|[fre— fells =0 and  |gn,e = gelbs1,7 =0 (7.55)

as € — 0, uniformly in n. From Lemma 7.1, Lemma 7.3, Lemma 7.5 and Proposition
7.4, one shows that when s = 3k,

—1
fn,e = Unl| Low ®+x (0,79 1tnel| Lo (0,7 E2R1 RH)) < Chr€” 3,

and when s = 3k + 1,

_1
e — Un|[Loo (R+x(0,T)) [Un,el| Lo (0,T; H3%+2(RH)) = Vi, T ’
llun,e — uall |[nel] < Crpe2

where C’,’;,T is independent of n for i = 1, 2. Because of these inequalities and the
relations (7.55) and (7.52), it is seen that the convergence in (7.54) is uniform in
n. Let v > 0 be arbitrary. Because of the convergence in (7.53) and the uniform
convergence in (7.54), there exists an €; € (0, 1] such that

l|tn,e = unllco,1; 2o @+) + lue — ullc(o,r; Hs®+) <7, (7.56)

for all € € (0,¢€] and all n > 1. Fix a value of € in the interval (0,¢;). From Lemma
7.3, one has, when s = 3k, that

|[un,e — “e”O(o,T; H3h(R+)) S CI%,T{an,e — fellsk + |gn,e = gelk+1,T

+ [[tn,e = el L oo ®+x(0,7)) 1%l | Low (0,13 H34+1 (R 4)) }
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(see (7.39)), and when s = 3k + 1,

[Jtn,e = UEHC(O,T; H3k+1(R+)) S CI%,T{”fn,e = fellsk+1 + |gn,e — gelo+1,7

+ Htin,e — Uel|Loo R+ (0,1 [|%el| oo (0,73 HIM+2R4Y) }

(see (7.40)), where the constants C,"C,T are independent of n for 1 = 1, 2. The conti-

nuity of the map (f, g) = (f,gc) in H*(Rt) x Ht1(Rt), implies that

loc
[|Fre — Fells + |9n.e — Gel+1,7 = 0,

as n — 0o. Also by Lemma 7.1 and Proposition 7.4, one has

[|tin,e — el| Lo ®+x(0,1)) = 0,

as n — oo. It follows that, for fixed e,
Jim ||un,e = uelloo,r;me @) =0 (7.57)

if (f,g) € X,, for s = 3k or s = 3k + 1. Thus if we write
Up — U = Up — Un,e + Up,e — Ue T U — U,
then since € € (0,¢;), (7.56) and (7.57) imply that

limsup ||un — ullc(o,T;m @ +) <Y
n—o0

if (f,9) € X,. Since v > 0 and T' > 0 were arbitrary, the result follows and the
proof is complete. O

Remark. A careful perusal of the preceding arguments indicates that the solu-
tion map (f,g) — u for the initial-boundary-value problem (6.1) is in fact Lipschitz
continuous.

8. Conclusion

The well-posedness of the initial- and boundary-value problem (1.1) for the
generalized KdV equation has been studied here. Well-posedness locally in time
requires only suitable smoothness of the nonlinearity P, while our theory of global
well-posedness uses more restrictive assumptions. Precisely stated, if the initial
value f € H3*(RV) or f € H3+!(R*) and the boundary value g € H P (R')
satisfy the appropriate compatibility conditions at (z,t) = (0,0) (see Lemma 4.7
and Formula (5.14)) and the growth of the nonlinearity P satisfies the one-sided
condition (%) put forward in the beginning of §4, then there corresponds a unique
global solution u of the initial-boundary-value problem (1.1) which, for each T' > 0,
lies in C(0,T; H3*(R*)) or C(0,T; H3*+1(R")), respectively. Moreover, u depends
continuously in the relevant function classes on the pair (£, g). It is worth particular
note that the H!(R*)-bound obtained in our theory grows roughly linearly with
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the energy |g|1,r supplied by the wavemaker (see Lemma 4.1). This is a satisfactory
aspect of the theory as it corresponds well with what is observed in experiments
(see [11]). It is also worth note that if |g|;,r is sufficiently small, then the well-
posedness theory can proceed under weaker growth conditions on the nonlinearity,
namely that limsup,_, ., A(s)/s° < 0. Thus for small boundary forcing, the theory
comes in line to some extent with that available for the pure initial-value problem
(see Kato [29], Schechter [40] and more recent work of Kenig et al. {30, 31]).

Despite the complexity of the developments presented here, there are many
obvious issues left open. Perhaps the foremost is that to which allusion was just
made, namely whether or not problem (1.1) is globally well posed for nonlinearities
P whose growth at infinity is less than quintic. There is also the slightly unsat-
isfactory aspect that certain regularity classes for initial data are missing in the
results (e.g. H3*+2(Rt), k=0,1,---). This is a technical point with little impact
on the assessment of (1.1) as a model of real phenomena. However, it presents an
interesting analytical challenge.

Other mathematical aspects deserve further attention. The question of smooth-
ing and an associated well-posedness theory set in weak function classes is an inter-
esting and topical issue. As mentioned briefly above, the smoothing established by
Kato {29] (see also Faminskii [21]) holds in the situation envisaged here. However,
the more subtal results of Ginibre & Velo [25], Kenig et al. [30, 31] and Bourgain
[19] have not been considered in the context of initial-boundary-values problems
other than with periodic boundary conditions. The issue mentioned parenthetically
at the end of Section 7 of smoothness of the mapping that associates the solution
to initial- and boundary-data also deserves further study. For the pure initial-value
problem, this map is known to be analytic and we expect the same is true for the
present, initial-boundary-value problem provided the nonlinearity P is entire, say,
or analytic in an appropriate neighborhood of the origin in any case.

Finally, since the initial-boundary-value problem is well posed, say for the KdV
equation, it would be worthwhile to develop a numerical scheme for this problem
along the lines of that put forward for the quarter-plane problem for the regularized
long-wave equation in [11] and test the model (1.1) quantitatively against exper-
imental data. As in [11], damping will need to be incorporated into the model.
This in itself presents an interesting challenge, both as regards modelling and from
the view of analysis since dissipation may well be a non-local effect at the level of
approximation corresponding to that already in effect for nonlinearity and disper-
sion.
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