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Presented herein is a new method for analysing the long-time behaviour of solutions
of nonlinear, dispersive, dissipative wave equations. The method is applied to the
generalized Korteweg—de Vries equation posed on the entire real axis, with a
homogeneous dissipative mechanism included. Solutions of such equations that
commence with finite energy decay to zero as time becomes unboundedly large. In
circumstances to be spelled out presently, we establish the existence of a universal
asymptotic structure that governs the final stages of decay of solutions. The method
entails a splitting of Fourier modes into long and short wavelengths which permits
the exploitation of the Hamiltonian structure of the equation obtained by ignoring
dissipation. We also develop a helpful enhancement of Schwartz’s inequality. This
approach applies particularly well to cases where the damping increases in strength
sublinearly with wavenumber. Thus the present theory complements earlier work
using centre-manifold and group-renormalization ideas to tackle the situation wherein
the nonlinearity is quasilinear with regard to the dissipative mechanism.

1. Introduction

This paper is concerned with the long-time behaviour of solutions of the class of
one-dimensional model wave equations having the form

ug + g + g(u)y — Lugz + Mu =0, (1.1)

where subscripts connote partial differentiation, g : R & R is a smooth, usually
polynomial function with g(0) = 0, and L and M are Fourier multiplier operators
given by

Lu(€) = n(€)8(6) and  Mu(§) = a(§)D(£). (1.2)

A circumflex adorning a function defined on R denotes that function’s Fourier
transform. The dependent variable u = u(z,t) is a real-valued function of the two
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real variables £ € R and t > 0. The symbols  and o of the operators L and M,
respectively, are typically real-valued, even, non-negative, functions that increase at
+o00. Consequently, the terms Lu; and Mu model dispersive and dissipative effects,
respectively.

When equations in the class (1.1) arise as models of physical phenomena, u often
represents a velocity or a displacement, z is typically proportional to distance in the
direction of primary propagation and ¢t is proportional to elapsed time. When o =
0,7(€) = £ and g(y) = 3y?, the equation recovers the classical Korteweg—de Vries
equation first derived as a model for unidirectional propagation of small-amplitude,
long water waves on the surface of a canal. Equations of the form depicted in
(1.1) with M = 0 have arisen in a variety of physical contexts where the effects of
nonlinearity and dispersion comprise weak, but non-negligible perturbations to a
basic unidirectional propagation represented by the simple equation u; + u; = 0.
If the equation without the dissipative operator M is an adequate approximation,
the the evolution of disturbances is governed by a Hamiltonian system that often
features solitary waves as an important aspect of the resolution of disturbances
(see [2,4,12-15]).

In many practical situations, however, the effect of dissipation comes in at the
same general level as nonlinearity and dispersion. For example, waves propagating in
a channel or in near-shore zones of large bodies of water suffer significant dissipation
(see [9,19]). This has led to the development of models of the form displayed in
(1.1) when quantitatively accurate predictions are needed. Interestingly, both the
dispersion operator L and the dissipation operator M may have non-polynomial
symbols in modelling situations that arise in practice. Hence they need not be local
operators and the level of generality encompassed in the class (1.1) is thus seen not
to be excessive. For example, when considering the propagation of surface water
waves in a horizontal channel [16] (see also [21]), the authors derived an approximate
description of damping based on ignoring dissipation at the surface layer and at
the moving contact line at the channel wall while analysing the viscous boundary
layers on the sides and bottom. The symbol associated with this approximation
has real part p|€|!/2 with p > 0, corresponding to dissipative effects (the imaginary
part of the symbol corresponds t6 & real operator that makes a small, non-local
contribution to dispersion).

The class (1.1) of model equations has been discussed in several recent works
(1,3,7,8,11,25], and the survey monograph of [20]. Note that the works cited above
focus on the case that the nonlinearity is at most quasilinear with respect to the
dissipation. By the latter terminology the following is meant. Let L?(R) denote the
usual Hilbert space of real-valued, Lebesgue measurable functions which are square
integrable over R and let D(M) = {v € L?(R)|Mv € L?(R)}. A nonlinearity F is
quasilinear with respect to M if F(v) € L?(R) whenever v € D(M). In the present
context, this is implied if, for example, g is smooth and the symbol o of M has the

property
lim inf o(€)
lelsoo [€]#

for some p > 1. When the nonlinearity is quasilinear with respect to M, a natural
approach to understanding solutions of (1.1) is to write it as an equivalent integral

>0 (1.3)
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equation, namely,

u(z,t) = exp[(M + Lg)tjuo(z) + /o exp((M + L;)(t — s)]g(u(z, s))z ds
= (Tu)(z,1), (1.4)

where ug is the initial value, and attempt to apply a contraction-mapping argument
in a suitable function space to the operator T' whose action is defined by the right-
hand side of (1.4). When successful, one conclusion of such an analysis is existence
of global solutions of the initial-value problem for (1.1), but more subtle information
about the long-time asymptotics can be won by this approach. This idea is at the
heart of the centre-manifold analysis carried out by Wayne [26] in determining
the long-time behaviour of nonlinear heat equations in higher space dimensions.
The renormalization-group methods introduced by Bricmont et al. [10] and applied
in [7,8] to equations like (1.1) have as an essential ingredient the analysis of the
nonlinear portion of the operator 7' in (1.4). When the symbol & grows at least
linearly at infinity as in (1.3) with > 1, the theory for the large-time asymptotics of
solutions of (1.1) can proceed by essentially ignoring dispersive effects as embodied
in the operator L. Indeed, if n(¢) = 0, a(f) = |¢* with v > 1 and g(z) =
2P*+1 /p + 1 are homogeneous, then the conviction that damping dominates the long-
time behaviour indicates considering the problem in the frame of reference moving
to the right with speed one and then making the change of variables

u(z,t) =t >y, 1), (1.5)

where y = z/t1/? and T = log(t). The evolution equation for v is
1
vy + My — E;(yv)y +e TPy, =0, (1.6)

where v = p + 1/2v—1 is taken to be positive. The latter restriction appears already
in Dix’s [11] pioneering work; he refers to this situation as the case of asymptotically
weak nonlinearity. In appropriate function classes (cf. [7]), the operator -M +
(1/2v)d,y has a simple eigenvalue at 0 whose eigenfunction, denoted by f*, is
given by f*(k) = exp[—|k|?]. The remainder of the spectrum is sufficiently buried
in the left-half complex plane that there follows the exponential convergence of v to
an invariant manifold that is tangent to the subspace spanned by f*. In the original
variables, this implies algebraic temporal convergence of u to the self-similar form
¢/tL/2 f*(-/t1/2¥) as t — oo, for a constant ¢ determined by the mass 15 (0) of the
initial data.

In the case v 2 %, where the analysis just sketched is effective, the conclusion
can even be strengthened to include higher-order asymptotics (see [8]). However,
the crucial estimates on which this theory depends are currently unavailable in case
v < %, even when account is taken of dispersive effects. Since the case v = % arises
in an important application of models in the class (1.1), it is natural to attempt
to extend the range of dissipative symbols a for which the general conclusions
about long-time asymptotics are valid. We introduce here a new technical aspect
which avoids the restriction that the nonlinearity be quasilinear with respect to
the dissipation. The analysis to be presented is similar in its overall aspect to that
just outlined. The details are decidedly different. Employing a family of orthogonal
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projections, the solution u of (1.1) is decomposed into a long-wavelength part y and
a short-wavelength component z. To compensate for the relatively weak dissipation,
the dispersion and the conservative form of the nonlinearity are exploited. The
evolution of y, which can be thought of as the centre portion of the solution, is
shown to be governed by the linear, parabolic equation y; + My = 0, up to an
asymptotically negligible contribution from the nonlinearity and dispersion. On the
other hand, the L2-norm of the short-wave component |z]p2 can be written as a
sum of a term of order quadratic in [y|.2 plus a term that decays exponentially with
time (see equation (3.10)). Thus z is eventually negligible, and the results follow.

It is worth emphasizing that the theory developed in the manner just indicated
does not rely upon assumptions about the size of the initial data. If the initial state
is large, however, then the proof proceeds by deriving suboptimal decay which
results in a time 7, say, when the solution u(-,7) is small in a suitable sense. For
t > 7, we are faced with an initial value problem with small data, and in this regime
the analysis may be applied in its full extent to obtain the ultimate convergence to
a universal asymptotic structure and associated optimal decay rates. It is possible
that this waiting time 7 is not just an artifact of the proof in the case of large
initial data. Indeed, in the absence of dissipation, large initial data may decompose
into a train of solitary waves followed by a dispersive disturbance. In the presence
of small, but non-zero dissipation, the solitary waves may still emerge (cf. the
numerical simulation in [5]), but will then decay, though because of their strong
stability, perhaps not so rapidly as genuinely small-amplitude disturbances. Thus
the waiting period that arises in our proof may reflect a real aspect of the solution
in which the ghosts of solitary waves must move sufficiently close to the centre-
manifold before the long-term asymptotic structure becomes visible.

The paper is organized as follows. In §2 the generalized KdV equations which
are the focus of discussion are set forth, notation is introduced, and global well-
posedness of the initial-value problem for these evolutionary systems is demon-
strated. These results are contained in theorem 2.2. Section 3 contains the main
technical work required to establish the sharp temporal decay estimates, includ-
ing the enhancement of Schwartz’s inequality. Finally, in § 4 the form f* introduced

i 1 3 il 3 3vna A
above is shown to provide a universal, self-similar asymptotic for the long-time fow.

2. Generalized KdV
In the sequel, attention will be focused on the class of initial value problems

Ut + Ugpg + vPur; + Mu =0, z€R, t=0, 1)
u(z,0) = up(z), =z € R, '
with p is positive integer and M the dissipative operator defined by

Mu(g) = [¢*a(€), (2.2)

where, in the present discussion, 0 < v < 1. Here and below, the Fourier transform
of a function f will be denoted variously as

F(f)k) = f(k) = / - explikz] f(x) dz.

—00

Denote by D* the operators of the form (2.2) with k = 2v.
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The norm of a function f in the standard class L? = LP(R) is denoted |f|L», for
1 < p < o0o. Weighted spaces with weight function ¢ > 0 are denoted by LP(g) with
norm | f|Lr(q). The classes H* k =1,2,..., comprise the functions f, which, along
with their first k derivatives, lie in L2. The Hilbert space H* is given its usual norm

% 2 1/2
llek=(/R e+ |2 dx) |

dzF

The space comprising functions u of a spatial variable z € R and temporal variable
+ € Rt whose H*-norm in & lies temporally in L? will be denoted LP(R*; H*(R)).

A note about the use of constants is merited. An unadorned constant c¢ will
denote any continuous function of the parameters v and p and of the initial data ug
in various norms. In particular, if a spatial norm of the solution ||u(-,¢)|| is known
to be uniformly bounded in terms of the initial data, then it may be absorbed into
such a constant ¢ without comment.

2.1. Linearized equations

Our objective is to describe the decay of solutions of (2.1) as t grows unboundedly.
It is instructive to examine the behaviour of the solutions of the linearized initial-
value problem

Uzze + Mu =0, teR, t20,
Ut + Uz = } (23)

u(z, 0) = uo(x), z€R.

The large-time asymptotic behaviour of solutions of (2.3) is easily obtained, and is
summarized in the result below.

THEOREM 2.1. If ug € L? N LY, then the solution u of (2.3) satisfies

DFu|?, < ir 2EGE ug |21 (2t)~ (Bk+1)/2v 2.4
. v 2v L

for any k > 0, where I denotes the gamma function.

Proof. Taking the Fourier transform of (2.3) and solving the resulting ordinary
differential equation yields the explicit formula,

a(€,t) = expl—(|€* +i€*)tlua (€).
Thus, by Plancherel’s theorem, it follows that

Dkufte = [l expl-2ig GO dE

Changing the variable of integration to z = 2t£?¥ and bounding g by its sup norm
results in the inequality

[o 0]
IDku|2Lz < |65|L°°_11;(2t)—(2k+1)/2u/ z(2k+1—2u)/2ue—z dz. (2‘5)
0

The inequality |Go|r~ < |uo|r: and the observation that the integral on the right-
hand side of (2.5) is the gamma. function I'((2k + 1)/2v) yield theorem 2.1. O
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2.2, A priori estimates

Local existence theory for large classes of conservation laws with general dis-
persive and dissipative effects has been established, for example in theorem 2 of
ch. 4 of [20]. Equations of the form depicted in (2.1) fall into the category covered
by these results. As a first step towards resolving the long-time behaviour of solu-
tions of (2.1), we now obtain uniform temporal bounds on the spatial norms of the
solutions. These results are collected in the following theorem.

THEOREM 2.2. Let 0 < v < 1 and p = 1,2, or 3 be given. If the initial data
uy € H¥(R) for some k > 2, then the solution u of (2.1) satisfies u € L=®(R*; HF)
and D¥u € L%(Rt*; HY).

Proof. To see that u lies in L>°(R*; L?), take the L?-scalar product of (2.1) with
u and integrate by parts to reach the equation
1d
2dt
Integrating (2.6) over the interval (0,t) yields

lulZ2 + [D*ulZ. = 0. (2.6)

t
() a +2 / ID¥u(s) s ds < [uo[2s,
0

and one readily deduces that u € L°(R*; L?) and D¥u € L?(Rt; L?). For a similar
H'-estimate, take the L2-inner product of equation (2.1) with the quantity u—ugz—
uP*1/(p + 1) and integrate by parts to obtain

d Liu, )2 — _}__/ uwPt2(z,t)dz p + |D"ul% < |{ D*u il
de 12"V o+ )(p+2) Jr ¥ il s p+1))
(2.7)

To proceed, a Liebnitz rule for fractional derivatives is helpful.

LEMMA 2.3. Let 0 < v < 1 and conjugate exponents p;, q;, i = 1,2 satisfying

I, 1_3

i @ 2
be given. Then there ezists a constant ¢ > 0 _such that for all functions f and g
satisfying DVf € LPt, f € LP2, j € L%, and DVg € L9, the estimate

|D¥(£9)|12 < c|D¥f|re1d]res + | Flie2 | D¥glLas, (2.8)

is valid. In particular, for p a positive integer, there exists a constant ¢ depending
only upon p such that

|D"uP*Y 12 < o] DV 1 |68 M ul 2. (2.9)

Proof. With the aim of applying Plancherel’s theorem, consider the quantity DY fg)
in Fourier transformed variables, namely,

F(D*(£9))(k) = |k|” /R Flk = ka)a(kr) dby. (2.10)
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Using the sublinearity of |k|” for 0 < v < 1, there appears the inequality

|F(D*(f9)) (k)| < /R (Ik = kx| + |1 )1 f (& = k)l[3(k1)| dy
= |DVf| * |31(k) + || * | D gl (k). (2.11)

To finish the demonstration of (2.8), take the L?-norm of both sides of the above
inequality, use Plancheral on the left-hand side and on the right-hand side apply
the convolution inequality

|f1 % folor < clfilerlfalrs,

where

1 1 1

—+—=1+-,

™ T2 T
with the choice rq = p1, T2 = q1, and r = 2 for the first term of the right-hand side
above and with 71 = p2, T2 = o, and 7 = 2 for the second term. The inequality
(2.9) follows from applying (2.8) p times. O

To complete the estimation begun in (2.7), the following inequalities play a key
role.

LEMMA 2.4. Let0 < v < 1 be given. For each €1 and €; satisfying 0 < e; < 1/v and
0 < ey < 1, there exist positive constants c1, c2, and c3 such that (2.12a)-(2.12¢)
below are valid:

filp < ealul G FH /AN Dy e 20H) (2.12a)
|,5V\U|L1 < Cz|u|([i|.2—€2)/2(l/+1) |Duu|(1§111+1+62)/2(l/+1), (212 b)
ID%ulz2 < cslul 4| DYl ). (2.12¢)

Proof. We prove (a); the proof of (b) is similar to that of (a) and (c) is a standard
interpolation inequality. First it appears that

ol = [ 10kl
R
= / (a1 (1 + (k1) /)7 (K (1 + [K[?)/2) ™" dk,
R
for 0 < r < 1. Holder’s inequality with exponents 2/(1 —r), 2/r, 2 applied to the

functions within the three parentheses comprising the integrand in the last integral
and Plancherel’s relation yields

1/2
olss < 0%l ([ 16 1) " ak)
R

The last integral above is the desired constant ¢; and is finite if 1/(2(v +1)) <r <
1/2v. Taking r = (1 +€1)/2(v + 1) gives (2.12a).
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Armed with these two lemmas, attention is returned to (2.7). Observe that D2
is a positive operator with self-adjoint square root D¥. This fact, together with
Schwartz’s inequality leads to the bound

(D*u, uP™)| = |(D¥u, DYuP)| < |D¥u|p2| DY uPtY| L.

For arbitrary § satisfying 0 < 6 < 1, split the term |[D"u|z2 into |D”u|%2|D"u|};0
and apply the Liebnitz rule of lemma 2.3 to the last term in the inequality above
to obtain

|(D*u, uP )| < | DYul2 | D ul 3| DVl s [l [ul -

Applying (2.12a)—(2.12 ¢), respectively, to the fourth, third, and second terms on
the right-hand side above yields

|(D%u,u? )| < el D"ulfa| D ulf, fuf%, (2.13)
where
f= Ww(1l—-60)+2v+14+e+(1+e)p—1)
B 2(1+v)
and
w_1+2(1—())+1—€2+(p—1)(2u+1—61)

2(v+1)

If for some choice of 6, €1, and €3 satisfying0 < § < 1,0 < ¢ < 1/v,and 0 < €3 < 1,
it transpires that 8 4 6 = 2, then Young’s inequality may be applied to (2.13) to
conclude

|(D?u, wP™)| < L[D¥uf? + c| D ul2a [ul247°. (2.14)

But, the constraint 8 + 6 = 2 is equivalent to
20 +ea+e(p—1)=4—p, (2.15)

and for p = 1, this obtains by choosing § = €3 = 1, while for p = 2, 3 it is clear that
the right-hand side of (2.15) is contained in the interior of the range of the left-hand
side (namely (0,34 (p — 1)/v)). In conjunction with (2.7), inequality (2.14) implies,
for w and @ as above, that

d \ 9
a{lu(', e — CERNEY)]

Since u € L>®(R*,L?) and D“u € L2(R*, L?), the right-hand side of this differen-
tial inequality is bounded in L'(R*) in terms of the L?-norm of the initial data uo.
Integration over (0,t) then shows that

/ uPt?(z, ) dzv} +|D¥ul%, < cluli“;/0|D"ulig.
R

s=t
+ec, (2.16)

¢

u(-, )% + D u(-,8)|%1ds < | wPt%(z,s)dz
H H

0 R s=0

for some constant ¢ depending on the H!'-norm of the initial data ug. It remains to
bound the integral term on the right-hand side of (2.16). We commence with the
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inequality

< ful:, 8)[Gee [u(, 8)[a

l/ uPt%(z,s)dz
R

< o (e, 8) 22 u(-, o) 22772
< Jul, )P ul, 8) B2

From the uniform temporal bounds on |u(-,t)|rz, it is thus adduced that

/ u”+2(a;, s) dx|:§f)
R

and since p/2 < 2 for the values of p under consideration, Young’s inequality leads
to

< el + u(- BB,

/ u”+2(ac, s)dz =
R

Substituting the estimate above into (2.16) yields

e+ %lu('at)ﬁ-[l'

i
Hut, Ol + [ 1D )i ds < (2.17)

where the constant c is a polynomial function of |ug|g:. Since t > 0 is arbitrary, it
is thereby concluded that u € L®(R*; H') and D"u € L*(R*; H").

Attention is now turned to the case k = 2. To establish a priori bounds in H -
we generalize a relation of Kato {17] and Schechter [22]. For notational simplicity,
the convention is adopted that u™ = 0 if n < 0. Take the inner product of (2.1)
with the quantity {2u + 2ugzze — 5(puP~'u2 — 2(uPuz),)} and integrate by parts
to arrive at the equation

d 5 y
E(luli{z o /Ru”ui dx) + 2| D% %

5 —-1)(p—2
= —%(Dz"u,pu”_lui + 2uPug,) + ?p(uz”_l, ud) + plp—1)p—2) 1)'2(p )(ui, uP~?).
(2.18)

Using the self-adjointness of D” and the Schwartz inequality, the first term on the
right-hand side of (2.18) may be bounded from above as follows:

(D% u, pu?~ 2 + 2uPtizg)| < o D¥ulL2(|D” (WP~ ul) 2 + | DY (4P Uas)|L2)-
(2.19)

Applying Liebnitz’s rule (2.9) shows that
|D* (P~ u2)| 2 < o D¥ul a5 2 T3 + clalfy [a] ot | D" us| 2. (2.20)
In light of the embeddings
|G| + |DYulr2 < clulg
and

D¥ug|za < |DYul 2D ulY2,
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and the estimate arising from (2.12a) applied to u, with €1 = v < 1/v, namely,

Tl < clual (221D  ual 2 < clul}Z| D ullf2,

the inequality (2.20) may be reduced to
|D¥ (uP~ u2) 2 < clufb, | D ulge. (2.21)
Similarly, the Liebnitz rule followed by (2.12b) with e = 1 and the simple embed-
ding |uze|p2 < |DYu|g2 leads to the inequalities
|D¥ (uPtss)| 12 < @57 [D¥ul 1 |tns| L2 + |82 | D" ugs| 2
< c(|ulBt (DY ul g + [ulfn)| DYl g (2.22)

Combining (2.21) and (2.22) with (2.19), judiciously bounding |D¥u|r> by either
|u| g1 or |D¥u| g1, using the previously established result |u(-,t)|g:1 € L>°(Rt), and
applying Young’s inequality leads to the desired majorization of the first term on
the right-hand side of (2.18), namely

|(D*u, puP~'u2 + 2uPuqs)| < | DYul3n + 3DV ul%e, (2.23)

where the constant ¢ in (2.23) depends upon the H!-norm of the initial data ug. A
simpler series of inequalities leads to the bound

[(w? 1, ud)| < | DYul? + DY ul%e, (2.24)

on the second term of the right-hand side of (2.18), where again ¢ depends on the
H'-norm of ug.

Finally, we bound the last term on the right-hand side of (2.18). This term is
zero except in the case p = 3, when it reduces to ¢ [ B ud dz. The inequalities

fua3s < cluolzlualio < clue| T |umel 357,

an application of Young’s inequality, the uniform temporal bounds on |uz|r2, and
the inequality |ugz|r2 < ¢|D¥u|gz, yield

|uslzs < clD¥ulf + 1D ulfe.
The latter inequality together with (2.23), (2.24), and (2.18) leads to the differential

inequality

. |2 — §/ wPu2 dz ) + |D¥ul%2 < | DY ul?. (2.25)
at 3 /s
As D¥u € L*°(R*; H'), integrating (2.25) over the interval (0,t) yields
¢
e+ [ 107t )i ds < | [ (2) (0200 a0l +1)
0 R

<c(ul, s)[521EZh + 1) < ¢, (2.26)

where the constants ¢ above depend only upon the H2-norm of ug. It is concluded
that u € L°(R*; H?) and DYu € L%(R*, H?), and the case k = 2 is complete.
The remainder of the proof of theorem 2.2 is accomplished by an inductive ar-
gument. Assume that k£ > 2 and that w € L®°(R*; H*) and DYu € L?(R*; HF).
It will then be shown that u € L>®°(R*; H**!) and Du € L?(R*t; H*t1) provided
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that ug € H*+!. Take the L?-inner product of (2.1) with u + (~1)**'92"+?u and
integrate by parts to find that

1d

EEWI%-H; + | DY ul%esn < c|(6:’v°+2up+l,a;:c+1u)|

< ¢|D* |3z |ug| Lo + lower-order terms.
From the bound,
|D* |2 < el DFulshY D ul

and Young’s inequality, there obtains,

1d

e 2v/v+1 DY 2/v+1
2dt D%l

w1 + |D¥ i < c|D*ul}s rear |Uz|Leo + lower-order terms

< 2D ulfe + | D*ul2, |uz|g:l')/"+ lower-order terms.
But the inductive assumption implies that |D*u(-,t)|z2 and |ug(-,t)|r, as well as
the lower-order terms, are in L°(RT)NL2(R*). Integration over (0,¢) for arbitrary
¢ > 0 implies u € L®(R*, H**1) and D¥u € L*(R*; H**) provided |uo|ps+1 is
finite. Theorem 2.2 is established. O

3. Temporal decay rates

The primary subject of this section is the derivation of temporal decay rates for
various norms of solutions u of (2.1). The theory subsists on assuming that the initial
value g satisfies the hypothesis of theorem 2.2, thereby assuring that the solution
u lies in L°(R*; H¥) for some k > 2. Because |u(-,t)|g2 is uniformly bounded,
the arguments needed to settle the case where the nonlinearity uPu, has p > 1 are
quite similar to those that come to the fore for the case p = 1. In consequence,
the detailed proofs are presented for this latter case, though the theorems will be
stated for the range of p for which they apply.

The central tool used here to extract the decay estimates is a pair of complemen-
tary orthogonal projections Ps and Qs defined for each 6 > 0 by the relation

Psu(k) = x(-s,6(k)(k), }
Qsu(k) = (1 ~ x1-s,5)(k))0(k),

where X[_s, denotes the characteristic function of the interval [—4d,d]. For nota-
tional convenience, we write y = Psu and z = Qsu. Thus u = y+2 where y contains
the large wavelength components which are weakly dissipated and z contains the
small wavelengths which are more strongly dissipated. The components y and z
satisfy the equations

(3.1)

y(x,0) = Psuo(z),
2+ Mz + 2552 + Q&(upum) =0, (3 2b)
2(z,0) = Qsuo(z). ’

In the sequel yg and 2o will denote Psuo and Qsug-
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The approach taken to studying the coupled system (3.2) is to obtain pointwise
bounds on |(k,t)| which depend upon u(-,t) only through the temporal decay
of |u(-,t)|L2 and to estimate the Sobolev norms |D7z(-,t)|.2 in terms of § and ¢.
For fixed values of 4, it is found that there is a waiting time 7;(d,u0) such that
|D72(-,t)|2 decays slowly for 0 < t < 7;, but that for ¢ > 75, the dissipative
terms dominate nonlinearity in an appropriate sense and optimal decay estimates
are obtained. The time 7; can be interpreted as that required for the nonlinear self-
interaction of the short-wavelength terms to be small with respect to dissipation.
For times ¢ > 7;, the evolution of |D72(-,t)|L2 is dominated by the linearization of
(3.2b) about y. Exploiting an enhancement of Schwartz’s inequality, optimal decay
rates on z are obtained. Piecing together the different estimates on y and z yields
temporal decay of the Sobolev-norms of u in terms of ¢ and 6; choosing an optimal
curve in the t-4-plane leads to sharp decay rates for u. These results are summarized
in theorem 3.7.

The analysis of the high-frequency term z depends sensitively on the value of
the dissipation parameter v. Only the case 0 < v < % is treated here, the range
% < v £ 1 having been considered elsewhere (8,11].

The following lemma collects together elementary properties of the orthogonal
projections Ps and Qs which will be used frequently in the sequel.

LEMMA 3.1. For any s,6 > 0, we have PsQs = QsP5 = 0,PsD® = D°Ps, Qs D’ =
D4Qs, and

|D*Ps flr2 < 6°|Psf|12,
|Qsflrz < 67%|D*Qsf] Lo, (3.3)
|Ps flpe < 82| Psf|pa.

Proof. The first two inequalities are simple applications of Plancherel’s theorem,
while the third follows from the first and the relation

|Fl3e < |flz2|Dfpe.
This completes the proof. M

We now derive pointwise estimates on the Fourier transform of y = Psu. In
Fourier transformed variables, (3.2) reads

De(k, t) + [K[*§(k, t) + K>k, t) + 3 F (Ps(u?)s) (k, t) = 0.

Denote complex conjugation by an overbar, multiply the equation above by 7, take
the real part, write the nonlinear term as a convolution and bound it by its complex
magnitude, thereby obtaining
10 . N L ~
2 5210k OF + K150k, O < BIklIG@ » ) (k, )7k, 1)
< glkll(@ * a) (-, t) | oo |G (K, 1)
< clkl|u(-, 8)[2: [Tk, t)]. (3.4)
In the last inequality we made use of the convolution estimate | f*g|r < c|f|z2|gp2
and Plancherel’s theorem. Noting that if 7(k,t) = 0 at some time ¢, then it is zero
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for all subsequent times, we may divide (3.4) by |y(k, t)| and integrate the resulting
inequality over the interval (0,t), to obtain

|5k, t)| < exp[~|k[**t][go(k)| + clk| /0 exp|—|k|* (t — &)llu(-,8)[F2 ds.  (3.5)

We now endeavour to show temporal decay of |2(+,t)|r2, which in conjunction
with (3.5) will yield sharp explicit bounds on [J(k,t)|. These results set the stage
for the more technical estimates on the higher derivatives of z. Take the L2-inner
product of (2.1) with z, use the orthogonality of y and z, and integrate by parts to
obtain

1d
2dt
The contribution (22, z), which describes the self-interaction of the high-frequency

modes within the nonlinearity, is in fact zero via integration by parts. The deriva-
tives in the mixed term may all be moved onto the variable y, namely,

222 4 [D" 2|22 < |(utg, 2)| = |(yyz + (¥2)z + 222, 2)|. (3.6)

((Y2)2) 2) = =54z, 2°),

and with this simplification in hand the integrals on the right-hand side of (3.6) are
bounded in obvious ways to obtain
1d
2dt
In view of the estimates in lemma 3.1, the right-hand side of (3.7) may be bounded
as follows:
1d
2dt
Since |y|z2 < |u|g2 < |uolLz, there exists a number dg = do(|uo|e) > O such that
for all § satisfying 0 < & < 8o, the last term on the right-hand side of (3.8) may be
bounded by |D"z|%., and hence absorbed into the second term on the left-hand
side. Employing lemma. 3.1 to bound |D¥2[%, from below by 62*|z|2, and dividing
by |2|2 (supposing this to be positive), one arrives at the informative inequality

|23z + D213 < clyslpalylzeo |2l + lyzlr=|2lZ2)- (3.7)

|z|22 + |D2[32 < e83?|y|22 2|2 + 6%/ |y| 12| DV 2|30 (3.8)

d 2v
S1ele + 3% lelze < eyt (3.9)

If the continuous function |z(t)|y> vanishes on an interval, then manifestly (3.9)
holds for ¢ in that interval. Thus (3.9) holds for almost every ¢ in the interval
of existence of the solution. Integration of (3.9) on the interval (0,t) yields the
following estimate on the L?-norm of z in terms of y and §, showing exponential
convergence to within §3/2=2¥ of zero, namely

t
2(-,t)| L2 < cexp[—16%t +¢63/2 | exp[—L8%(t — 9)]|y(-, 8)|2: ds. (3.10)
2 A 2 L

The coupled bounds (3.5) and (3.10) are self-improving in that, if for some constant
o 2 0 the quantity

sup((1 + )7 [u(-, 1) 22) (3.11)
>0
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is finite, then (3.5) and (3.10) imply the same result with o replaced by &, where

1 3
F=min{ —,— —2—e+2 .
G m{ 55 05 €+ a} (3.12)

and € > 0 can be chosen to be arbitrarily small. For v satisfying 0 < v < %, it is
readily seen that starting with o¢ = 0, then

3 1
> i kf 2 _o_ .
Okt1 2 m1n{2 (21/ 2 e>, 2’/}

and hence after a finite number n = n(v) of iterations, it transpires that o, = 1/2v.
These results are contained in the following proposition.

PROPOSITION 3.2. If0 < v < 2 is given, then for initial data ug € L*(R)NL'(R),
the solution u of (2.1) satisfies

sup((1 +1)/%[u(-, t)[72) < oo, (3.13)
20
and, moreover, for any € > 0 there exists a constant c. > 0 such that the Fourier
transform 4 of u satisfies,
[a(k, t)| < exp[—|k|*t][uo(k)| + ce|kl”  for k| < §, (3.14)

where p = p(v) = min{l,2 — 2v — €} and € > 0 is chosen small enough that p > %
If p =2 or 3, then p may be replaced throughout by 1.

Proof. From theorem 2.2 it is known that u € L™ (R*; L?), which is equivalent to
(3.11) with ¢ = g¢ = 0. Assuming (3.11) holds with ¢ = o, satisfying 0 < 0, <
1/2v, it remains to verify the recursion relation (3.12). Using Hélder’s inequality
on the integral term in (3.5) with conjugate exponents (r(on),q(on)) given by

(1,00) if o, =0,

(r,q) = ( : . ) if0 <o, <1,

l—op+¢€ op—¢
(00, 1) if 1 < op,

where ¢ = €¢/(0,,) need only satisfy 0 < € < oy, there obtains

t
/0 exp[—[k[* (¢ — 8)]lu(:, 8)[32 ds < | exp[=[k{*(t = )]lzrpllullz ()L

< ek~ (3.15)

The induction assumption (3.11) was used to bound ||u|32(-)|La(0,¢) independently
of ¢t > 0. Substituting this bound back into (3.5) yields the pointwise bounds

[k, )] < expl—[k[> t][To (k)| + celkl* =2/ (3.16)

Integrating (3.16) with respect to k, and estimating in obvious ways gives the
uniform bound

')
Wiz < / (expl P (8)| + el 277

< c5|u0|L1 + 0663_4”/r. (317)
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Alternately, we may bound |y|2. in the t-d-plane, for ¢ > 1 via the estimate

o0
[y|2: < e 834/ + c/ || L exp[—2(k|*“t] dk < e8I £ (14 )7 VP,

(3.18)
Using the uniform bounds (3.17) in the inequality (3.10) yields
¢
|2(-,t)|2 < cexp[—16%t] + 83?5 + 63_4"/T)/ exp[—26%(t — s)] ds,
0
< cexp[—162t] + ¢332 (5 4 6°~4/T), (3.19)

The relation |u|2, = |y|22 + |22, together with (3.18) and (3.19) implies that for
all § with 0 < § < 8y (keeping only leading-order terms in &)

lu(,t)[22 < c(exp[—8%“¢] + (1 + )~V 4 e 3T (3.20)
Observe that on the curve
§=0(t) =1+ t)—1/2u(1n((1 + t)—(3/2u—2/'r)))1/2u
there obtains the particular bound
(-, )22 < e(1+ )% 4+ e (1 +1) " In(l +1))¥/2 2T, (3.21)

In light of the definition of r = r(oy,) above, (3.21) verifies the recurrence relation
(3.12) and (3.13) is thereby established. The formula (3.14) comes from (3.16)
evaluated with r = r(o, = 1/2v). O

REMARK. We observe for future reference that (3.14) implies

ly( t)lre < e6Y/2, (3.22)
while the optimal version of (3.19) for ¢ satisfying 0 < § < o is
|2(-,t)| L2 < cexp[—362t] + c8%/272%, (3.23)

A referee kindly pointed out that if we were willing to restrict attention to 0 <
v < %, a more transparent proof of proposition 3.2 is available. We have preferred to
keep the argument presented above because, as the referee is aware, it contributes to
our knowledge in the well-studied quasilinear case v > % by removing the hypothesis
of small initial data.

The following result demonstrates that the H'-norm of u decays at the same
temporal rate as the L2-norm of u. The proof relies on an exploitation of the balance
between the conservation law structure in (2.1) and the orthogonal decomposition
u = y+z. It will be shown in theorem 3.7 that |ug(-,t)|.2 decays more quickly than
|u(-,t)| 2, but the intermediate result below represents a crucial step towards this
goal.

PROPOSITION 3.3. For v given in the range 0 < v < % and for initial data up €
HY(R) N LY(R), the solution u of (2.1) satisfies

sup((1 + £)Y2 |u(-, t)[}1) < o0. (3.24)
t20
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Proof. Consider the term |z|g1, which in view of (3.22) controls the temporal decay
of |u|g1. Take the L2-inner product of (2.1) with the quantity z — 2y, ~ Qsu®/2 and
observe that the obstreperous nonlinear term (uug, Qs(u?)) = 1((Qsu?)s, Qsu?)
vanishes and that there is also a cancellation associated to the balance between
dispersion and nonlinearity. There remains the inequality

1d 1
§a|z|%{1 = /Rz,:u2 dz + |D*2[3: < 3|(D*2,u?)|. (3.25)

The interesting term above is the second one on the left-hand side. Since we view §
as independent of ¢ for the present, the decomposition u; = y; + 2; holds, and this
term may be rewritten as

1d

2 3 2
zu‘de = - udx—/yu dz.
/Rt 3dt Jp R

Moreover, applying the L?-norm to the first equation in (3.2) and subsequently
using the triangle inequality, lemma 3.1, and (3.22) leads to the inequality

lyel2 < |D*Ylr2 + |yszclrz + 3|1 Ps(u?)s|Le
< (6% 4 6%)|y|z2 + 8| Psu?|2 < c6Y/2. (3.26)

The term on the right-hand side of (3.25) is bounded using lemma 2.3, (2.12b) of
lemma 2.4 with e = 1, and Young’s inequality in the following way:

(D2 2,4%)| < |D*212|D*2|1a < el D¥ 2] 2| D*ul s fulza < 31D 2[5 + cluf3a.
(3.27)

In light of these observations, (3.25) can be extended to the inequality

d 1 :
&{gzﬁp - -6/ ud dx} + DY 2|3 < o1+ |yi|poe)|ul?e, (3.28)
R

and employing the estimates afforded by (3.26), proposition 3.2 and lemma 3.1,
there obtains

d _1/9, . 1 d
el + 6 leldn <1+ 4 2 L T (3.29)
Integration from 0 to ¢ yields

|z|%: < exp[—02“t]}20]%:

+ /Ot cexp[—62“(t — s)]{(l + )7V 4 é% /Ru3 dw} ds. (3.30)

There has arisen the need for the following elementary lemma.
LEMMA 3.4. For any a,b > 0 there exists a constant ¢ > 0 such that for all § and
t positive satisfying
o 1/2a
(2{: 10551 + t)) <6,

we have the relation

/t exp[—62%(t — 8)](1 + 8) P ds < 6722 (1 4 t) 7. (3.31)
0
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Proof. For f8 satisfying 0 < 8 < 1, divide the integral above into two parts and
bound the term (1 + s)~? by its sup-norm over each subinterval, thereby obtaining

t exp[—62a(t — )] S N ¢ exp[—622(t — 3)]
/0 —-————~—(1 T ds g/() exp[—6°%(t — )] ds+/t(l_ﬁ)———————(1 =) ds
< 672 exp[—62°6t] 4 (1 + (1 — B)t) 2622,

If
g = blog(1 +t)
- 1§52a )

then the conditions on ¢ and § above guarantee that 0 < § < % and hence
t
/ exp[—62%(t — 8)](L + 8) "> ds < (1 + 2)672(L 4 ).
0

The lemma, is established. a

The estimation in (3.30) is now completed. For the last term in the integral,
integration by parts, the inequality | [ u® dz| < |u]pe|u|?., the previously obtained
uniform bounds on |u(-,t)|p~, and proposition 3.2 lead to

¢
‘/ exp[—52"(t—s)]di/ uwddzds
0 $JR

< b /t expl -0 (t —4)] ds+ c((1 +1)7% — exp[—62“¢t]). (3.32)

(14 s)1/2
Combining (3.32) with lemma 3.4 and (3.30), we obtain
2121 < elexp[—621] + 672 (1 +1)~V/), (3.33)
To complete the estimation of |u|g1, observe that
i = lyl3e + lvsl?s < (1 +687)lylFe < clulfs <c(1+8)7Y% (3.34)

Adding together the last two estimates leads to a family of inequalities for |u(-,t)| g1
of the form

[l = lyl3n + 123 < clexp[—62¢] + 672 (1 +1)71/), (3.35)
which are valid in the subset of the {—¢-plane defined by the relation

1 1/2v
—log(1+¢ <4
(w og(1+ ))
In particular, (3.35) holds for ¢ large enough and § = 6y < 1, thus proving (3.24). O

The following enhancement of Schwartz's inequality provides a sharp bound on
the interaction of the z-modes with the long wavelength y-modes, improving upon
the standard Schwartz inequality by the small factor (exp[—d2¥] 4- §°(*)).

LEMMA 3.5 (Enhanced Schwartz). Lety € PsL?(R) and z € QsL?(R) be given. If
in addition 7 satisfies the estimate (3.14), then for all s > 0 the following inequality
holds:

[(D*y?, 2)| < e6°+%/2 (exp[—62“t] + 6°M)) 2| 2. (3.36)
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Proof. By Plancherel’s theorem, it is observed that

(D*?, 2) = / ki + kal* (ks + ka)(k0)(ke) ks k.
R

The definition of the orthogonal projections Ps and ()5 shows that the latter integral
is supported only on the region A = {(k1,k2) : |k1| < 4, k2| < 9, |k1 + k2| = 6}
Taking absolute values and applying the Schwartz inequality, we have

I(D*y?, 2)]

< / 15(kn + ka)llkr + k19 [5(k2)] dky dk
A
1/2 1/2
< ( / |2(k1+k2)|2|k1+k2|2sdk1dk2) ( [ )Pl ? ks
A A
(3.37)

To estimate the first integral on the right-hand side of (3.37), observe that on A
the bound |k; + k2| < 24 holds, and hence

1/2 5§ 8 1/2
(/ |2(ky + ko) |?|ky + k2| dky dk2> < cd® (/ / |2(ky + k2)|% dk; dk2>
A 0 Jé—ka
5 1/2
< ¢6°|2| L2 </ dkz)
0
< 82|z 1a. (3.38)

For the second integral, employ the estimate (3.14) for |§(k, t)|, the triangle inequal-
ity, and the fact that for (kq,k2) € A the sum |ki |2 + |k2|? > |k1 + k2|? > 6% to
find

(/A lg(kl)lzlﬁ(k2)|2> A

1/2
<of [ explaial? + ko)1)
\JA /

1/2 1/2
+ 9, ( / exp[—2|lc1|2"t]|1c2|2"> o, ( / |k1k2|2”>
A A
1/2 1/2 1/2
< cexp[—52”t] (/ 1) + Ce (/ |k2|2”) + ¢ (/ |k1k2|2”)
A A A

< cbexp[—62Vt] + c.6°t (3.39)
Taken together, the inequalities (3.37)—(3.39) imply (3.36). d
The following bounds on |z|g+ are useful in the sequél.

PROPOSITION 3.6. Let ug € H* for some k = 2. There exist constants tog =
to(|uo|gr) and 8o = do{|uo|mx) such that for allt =ty and 0 < & < by,

l2(-, )| e < cexp[—36%(t — to)] + c8%/2HP) =2, (3.40)

where p is as given in proposition 3.2.
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Proof. Taking the L?-inner product of (2.1) with the quantity z + D**z and inte-
grating by parts, there results,
g
2dt
Expand u as y + z in the first term on the right-hand side of (3.41), apply the
enhanced Schwartz inequality (3.36) and inequality (3.22) to obtain

|23k + 1D 2[5 < |(utia, 2)| + |(utia, D*2)]. (3.41)

|(utia, 2)] < l(¥yz, 2)| + Clyalree|2lZ

< ¢85/ (exp[—6%“t) + 6°)|2| g + 522 | D" 2|4 (3.42)
Consequently, there is a 8o = 8o(|uo| g+ ) such that for § < §o, we have
[(uug, 2)| < c85/2 (exp[—61] + 8°)|z| e + 11D 2. (3.43)

For the term |(uug, D?¥z)|, we consider only the case k = 2, as the cases kE>2
require similar estimates and an inductive argument. Expand u as y + 2, collect
terms linear, quadratic and cubic in z, integrate by parts, and apply Schwartz’s
inequality and lemma 3.1, to arrive at

|(uug, D*2)| < 8"/ |y|32|2| L2
3 . .
+¢ S 642y 12| D372 12| D?2| 12 + | Dz|p | D2lFa. (3:44)
i=1

Using the inequality |Diz|z2 < |D¥2|g2 valid for i = 1,2 when 0 < v < 1, as well
as the inequality (3.22) and the temporal bounds

|Dz|pe < c|Dz| YR |D%2|}0 < (1 + )7
afforded by proposition 3.3 and theorem 2.2, the expression (3.44) above reduces to
|(wtug, D*2)| < c6'3/2|2 2 + c(82 + (14 ) V/3)| DY 2[4 (3.45)

For t > to = to(Juo|g1) and 8 < 8o(|uo|x2), we have c((1 + t)~1/8 4 §2) < &, say,
and hence

|(utig, D*2)| < c83/2|2| g2 + 3| D¥ 2l%pa. (3.46)
Combining (3.41), (3.43), and (3.45), there obtains
1d
§E|z|%1,, +1D¥z|3s < c6%/2 (exp[—62t] + 6°)| 2| pr2. (3.47)

Applying lemma 3.1 to bound |D”z|%, from below by 6%“|2(3, in (3.47), dividing
by |z| 2, and integrating from ¢y to t leads to

|2(- )2 < c(L + t6%/2) exp| =62 (t — to)] + c6°/>+7 7%,
< cexp[-36%(t - tO)](thpo(l +05/2) exp[— 167 (¢t — to)]) + 8%/2+77%.
(3.48)
A simple calculation shows
?;g{(l + t6%/2) exp[—%dz"(t —to)]} <1+ 8522y L ¢

and the result (3.40) follows. O
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We are now prepared to state and prove our principal decay estimate.

THEOREM 3.7. Let 0 < v < 3 be given. For initial data ug € H*(R) N L'(R), for
some k = 2, the solution u of (2.1) satisfies,
sup((1 + ¢)Z+1/2) Diy (. 1)|2,) < oo, forj=0,...,k. (3.49)
20
Moreover, for any € > 0 there exists a constant c. > 0 and for all0 < & < §o(|ug|gx)
there are times T; = 7;(8), =0, ...,k such that for t > 7;, the projection z = Qsu
satisfies

|D7z(-,t)| 2 < cexp[—16%(t — ;)] + cd? V), forj=0,...,k.  (3.50)

The times 7; are given by 7;(8) = to — ¢;672" log(6), where to and c; depend only
upon |uo|gi, and the ezponent v is v(v,€) = 3 + p(v,€) — 2v, where p is as given
in proposition 3.2.

Proof. Fix k > 2. Inequality (3.50) is proven first, and inequality (3.49) follows from
(3.50) and (3.22). For j = 0, return to (3.6) and follow the subsequent arguments
with the exception of using the enhanced Schwartz inequality to bound |{(yy., 2)]|.
In place of (3.9), there obtains

d
alz(-,t)h,z + 18%|2(-, t)| 12 < 6%/ (cexp[—d2“t] + cc6P). (3.51)
Define 7o = —6~1/2¥plog(¥), so that for t > 79, one has exp[—62“t] < 6°. Integrating
(3.51) from 79 to t yields
|2(-,t)|z2 < cexp[—18%(t — 70)] + .8, (3.52)

which is exactly (3.50) for j = 0. Arguing inductively, assume (3.50) is valid for
j < n and aim to prove it for j = n. Taking the L2-inner product of the nth spatial
derivative of (2.1) with the quantity D™z and integrating by parts, there results
the equation

1d
n,|2 n+v,_ 12 __1 n+1,,2 n
Ed—lD Z|L2 + |D Z|L2 = '2'(D u ,D Z). (353)
TATni 1 An +ha ht hand aide of 72 B2V dijatvibhiits +ha darivatis A
"Ll\l\z lll = y 0 ULL ULLC LLBLLU 1u.uxu Dxu.u \.IL \ /, \ALDULLUMU\J \JAL\/ \A\JLLV(AA\J&VDD, ouLu.

collect terms linear, quadratic, and cubic in 2 t reach the differential inequality

n+1
|D"z|L2+|D"+"z|L < o(|(D™1y2, D2)| + > |(DIyD™ 17z, D"2))|
j=1
(/2 '
+ ) [(D7zD™12,D"2)|), (3.54)
i=1

where [z] represents the least integer greater than z. Apply the enhanced Schwartz
inequality (3.36) and lemma 3.1 to the linear and quadratic terms of (3.54), respec-
tively, to deduce

|(D™+1y?, D"2)|
[(D7y)(D™+1772), D™2)|

< d"B/2 (exp[—02“t] + c.67)| D"z L2,
< Djylf,oc:1Dn+1_j2|L2|DnZ|L2 (355)
< CJZ--211|D11-}-92|€2.
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For the cubic terms, there are two cases. When n > [n/2] + 1 (that is n > 4),
proceed as follows:

|((D?2)(D"+~92), D"2)| < ¢| DI 2|00 | D™~ 2| 12| D" 2| 2
< 6~ HI=V(|DI 2|2 | DI 2| 12) 2| D™ 22, (3.56)

Since j < [n/2] < n— 1, the inductive hypothesis (3.50) holds at orders j and j+1
and for ¢ > T, = Tpn 241 — ([n/2] + 1)672 log 4, one has exp[—-§2/(t — n)] < ed'*7
for | = 7,7 + 1. It follows that

(|1 D9 2| 2| DIt 2| 2) /2 < ¢ 89 F1/2H, (3.57)
which in light of (3.56) implies
(D7 2) (D™ 7 2), D"2)| < 87H3/272 | Dtvg|2,. (3.58)

Thus for § small enough, the cubic and quadratic terms in (3.54) may be absorbed
into the term |D"‘*“’z|2L2 on the right-hand side, thereby obtaining the inequality

%wnzm +16%|D" |1 < 8™/ (expl—621) + cc?), (3.59)

valid for ¢ > 7,. For the special cases n = 1,2, and 3, the quadratic terms can be
handled as above by taking & small enough. After integration by parts the cubic
terms reduce, in each of the three cases at hand, to a single term of the form
c|(DzD™z, D™z)|. This may be estimated using Schwartz’s inequality, the bound
|[Dz|pe < (|Dz|p2|D?2|L2)*/?, and proposition 3.6, resulting in

(DzD™z, D™z)| < ¢6~2|Dz| Lo | D™ 1" 2|3,
< 0% (exp|—36%(t — to)] + 62 +/2)| D™ 2|, (3.60)
Thus for t > 7, = tg — 2672(2p + 1) log(é), it is adduced that
exp[— 362 (t — to)] < c82°*1/2,
and the analysis may proceed as in the previous case, for § small enough, by ab-
ch)rgréi )the cubic terms into the dissipative term |D"*¥2|2, on the left-hand side

Returning to equation (3.59), observe that in all cases exp[—02t] < c8? for t > 7y,
and hence

%|Dnz| L2 + 6% |Dr2| 2 < c 6™ E/2HP, (3.61)

Integration from 7, to t > 7, yields exactly (3.50).

The temporal decay of |Du(-,t)|1z2, follows readily from the identity |D7ul7, =
[DIy|2, + |D72|2,, and the estimates on y and 2z previously derived. Applying
Parseval’s formula and (3.14), it transpires that

(<) 1
Dy, ) < [ 1K expl-2lk b + . [ s, (3.62)
—00 -6

which, arguing as in (2.5), can be extended to

DIy (-, t)[22 < (1 + )~ @TD/2 4 ¢ 52042041 (3.63)
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Combining this estimate and (3.50) leads to the bound
|DIu(-,t)|22 < (1 + t) "I+ 4 0 62042041 4 clexp[—16% (¢ — 7;)] + c67T)2,
(3.64)
For times ¢ satisfying
t > 7;(8) — 267%(j + ) log(d), (3.65)
it thus transpires that
|Du(- t)[22 < c(1 +8)~GIHN/2v | ¢ g2+2041 | ¢ 20427, (3.66)
Denote by 8; = f;(¢) the quantity
{ 25 +1 2j+1 }
27 +2p+1"2j+2y

and observe that p > 1 implies §; < 1, so the curve & = (1 + t)~#i/2” lies within
the region of the t—4-plane defined by (3.65) as long as ¢ > to +c(1+¢)P log(1+¢),
i.e. for t large enough depending only upon v, the order j of the derivative, and the
norm |ug|gi. On this curve the bounds (3.66) reduce to

|DIu(-, )22 < o(1 + t)~Ri+1/2v, (3.67)
Since u € L*®°(R*; HY), the supremum in (3.49) has force only for ¢ large enough,
and the proof of (3.49) is complete. O

The following is an immediate consequence of theorem 3.7.

COROLLARY 3.8. With the same hypothesis as those appearing in the statement of
theorem 8.7, the solution u of (2.1) satisfies

sup((1 4 t)U /2| Diy(-,t)|Lw) < 00,  forj=0,...,k—1. (3.68)
t20

4. Universal asymptotics

Theorems 2.1, 2.2 and 3.7 show that the noniinear equation (Z.1) and the iinearized
version (2.3) share the same regularity and asymptotic decay rates. It is now shown
that these decay rates are sharp, and in fact the two equations share the same
universal, self-similar asymptotic form governing the final stages of their decay. To
facilitate the discussion, recall the asymptotic form f* given in Fourier transformed
variables as

F¥(k) = exp[~[k|*]. (4.1)

More specifically, for initial data uo from the weighted space L(q), where g(z) =
V1 + z2, with non-zero total mass A = f:x;o uo(z) dz = ug(0), the associated so-
lution w of (2.1) decays at exactly the rate prescribed by theorems 2.1 and 3.7.
Moreover, the long-time asymptotics of the solutions are given, to leading order, by
the universal asymptotic indicated below, which depends on the initial data only
through the single parameter A.

The next proposition summarizes the result in view for the linearized problem
(2.3).
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PROPOSITION 4.1. Given v satisfying 0 < v < 1, an integer k = 2, and initial
data ug € H* N L(q), there are positive constants c1, ... ,cx depending only upon
|uo|L1(q) such that the solution v of (2.3) corresponding to initial data ug satisfies

. A [ -
p{ot = ()},

where A denotes the total mass of the initial data.

< ci(L+t)~ G/ forj=0,... k,

(4.2)

Proof. Observe that if uo € L(g), then zuo(z) € L', which implies that
d -
—Ug € L,

dk
As a result, the following inequalities hold:

[5(k) — T(0)| < Ml ol < clblluolicaco) (43)
Recalling that the solution of (2.3) is given in Fourier transformed variables by
o(k, t) = exp[~(|k[* + ik*)t]ug(k), (4.4)
one may write

o(k, ty = Aexp[~|k|*t] + A(exp[—(|k|* +ik?)t] — exp[—[k|*1])
+ exp[—(|k[* + ik®)] (Go (k) — A).
Subtract the quantity A exp[—|k|?t] from both sides, take the absolute value of the
resulting expressions, and employ the estimate (4.3), thereby deriving the inequal-
ities

|6k, t) — Aexp[—{k[2t]] < (A[1 — exp[-ik*¢]| + Iklluol 2 (q)) exp[—[k[*1]

<
< c(|k|3t+ |k|)exp[——|k|2"t]. (4.5)

Multiply (4.5) by the quantity |k|’ and take the L*-norm of both sides. Following
the arguments exposed in theorem 2.1 leads to (4.2). Note that the inverse Fourier
transform of A exp[—|k|?“1] is exactly the self-similar rescaling of f* which appears
on the left-hand side of (4.2). .

It is now demonstrated that | D’ (u—v)| .2 decays more quickly than either | D72
or |DIv|12, and hence a simple application of the triangle inequality implies that u
possesses the same universal asymptotics as evidenced by v in (4.2). These results
are contained in the following theorem.

THEOREM 4.2. Let the parameters p and v of equation (2.1) satisfy p = 1 and
0<v< % and let € > 0 be small. Then for initial data ug lying in the space
H* N LY(q) with q as above and k > 2, there are positive constants c1(e), - .. ,ck(€)
such that the solution u of (2.1) has the universal asymptotic behaviour

| " _ (141) —(2j+14+2p(e))/4v
j . I N B < e —_—
P {u( R <t1/2">} L c’(e)(in(l +f-)> ’

forj=0,...,k. (4.6)
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Here the universal form f* is given by ({.1), the constant A denotes the total mass
of the initial data, and the exponent p(e€) is as given in proposition 3.2. In the case
P =2 or 3 the same result holds with the exponent p replaced by 1.

Proof. The function u satisfies (2.1) with initial data ug, while v satisfies (2.3) with
the same initial data. It is natural to introduce the quantity w = u — v, which is a
solution of

(4.7)

Wy + Mw + Wy = —uPug, zEeR, t>0,
w(z,0) =0, z € R.

Fixing our attention on the case p = 1 for definiteness, the nonlinear term wu,
may be regarded as a forcing term, and w may be solved for explicitly in the form

w(k,t) = —%/O exp[—(t — s)(|k}* + ik3)]a * a(k, s) ds. (4.8)

The convolution inequality |f * g|pe < |f|r2|g|r2 applied to @ * @ in the integral
above, the decay estimates (3.13), and Holder’s inequality applied as in the argu-
ments preceding (3.15) yields, for any € > 0,

[ (k, t)] < celkl?, (4.9)

where p = p(v,€) is as given in proposition 3.2. This readily provides a bound on
| D? Psw|r2 via lemma 3.1, namely

S
| DI Psw|%, = / k% | (k, t)|? dk < c 6220+ (4.10)
é

To bound the Sobolev-norms |DQsw|yz2, use the triangle inequality to conclude
|D?Qsw|rz = [D?Qs(u — v) |2 < |D?2|2 + | DI QsvLe.
It is easily seen using (4.4) that
|DIQsv| 12 < cexp[—621],

where the constant ¢ depends only upon the quantity |ua|zs. This estimate and the
bounds on z afforded by (3.50) of theorem 3.7 imply

|DIQsw|r2 < cexp[—82(t — 7;)] + .67+, (4.11)
Since p + % < 9, to leading order in §, |D/w|z 2 may be bounded in the manner
|Diw|r2 < | DI Pswlrz + |DFQswlre < ced’TPHH2 4 cexp[—62(t — )], (4.12)

valid for 6 small enough and t > 7;. Writing ¢t = ¢t + 7;(d), and viewing t; as a
fixed quantity, we optimize (4.12) by choosing

e fitp+1/2 Sl

so obtaining

log (1 + t) ) i (4.13)

|Djw|Lz < cj(e)< L,
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For this choice of 4,

ty 14ty
—— n ]_
T =0 Clog(i 4 t4) Og(log(l T tr)

That is, 1/t = O(1/t) and hence ¢, may be replaced with ¢ in (4.13) so long as
the constant c;(¢) is properly adjusted. The triangle inequality implies that

D’ {u(-,t) - ﬂ%&f* (W)}

< D, e +

> <t0+ct+.

L2

Di{v(-,t) — t—l/_2;f* (W)HH’ (4.14)

and (4.6) then follows from (4.13) and (4.2). This completes the proof in the case
p = 1; the cases p = 2,3 are similar and omitted. O

5. Discussion

Introducing a family of orthogonal Fourier projections, we have shown them to be
an effective tool in the analysis of the long-time evolution of model equations of
the form (2.1). This methodology facilitates the extraction of dispersive smoothing
effects and provides a natural mathematical truncation which reduces the short-
wavelength component of the flow to a linear regime, forced by the long wavelengths.
The asymptotic results of theorem 4.2 can be extended to include higher-order
terms. Moreover, the foregoing analysis does not rely upon a small-data assumption,
lending currency to the idea that a hybrid matched asymptotic could be developed
connecting short-time perturbative formulae to the long-time asymptotic results
presented here.
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