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ABSTRACT. Considered here are spatially-periodic, complex-valued
solutions of a class of nonlinear, dispersive evolution equations.
Some easily checked criteria are presented that imply these solu-
tions lose regularity in finite time.

1. INTRODUCTION

Studied here are complex-valued solutions %(t, x) of nonlinear, dispersive evolu-
tion equations of the form

, 10 10 +y

(11) 1Uus +R(;5€')u—Q<;5)‘C‘) (u” ) —0,

where p = 1 is an integer. When realized as particular evolution equations aris-
ing in physics, mathematics, mechanics, etc., the functions R and Q are typically
polynomials in one variable with real coefficients, but our theory will counte-
nance considerably more general functions. This formulation is like that of Dix
[19], [20], who also considered dissipative as well as nonlinear and dispersive ef-
fects (see also Craig, Kappeler and Strauss [18]). The class delineated in (1.1)
includes a wide range of interesting partial differential equations including non-
linear Schrodinger-type equations and Korteweg-de Vries-type equations. In the
case of Schrodinger equations, complex-valued solutions are natural, whereas for
Korteweg-de Vries-type equations, real-valued solutions are normally considered.
(On the other hand, see Birnir [6], [7], who used the inverse scattering trans-
form to study singularities of complex-valued solutions of the Korteweg-de Vries
equation itself. See also Weinstein [44] where the KdV-equation with a deriva-
tive Schrodinger-type nonlinearity 9x(|u|P1) and complex-valued solutions are
studied, and Martel [30] where the linear KdV-equation with the nonlinearity
i1|1|P~! and complex solutions is considered with 1 < p < 7)
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Attention will be given to solutions of (1.1) that are spatially periodic, and
therefore representable in terms of Fourier series in the spatial variable x. OFf
special interest will be solutions whose Fourier series contain only positive modes,
by which is meant the coefficients of e*** vanish for all k < 0.

Consideration of equations of the form (1.1) arose in our study of the inter-
action between nonlinear and dispersive effects in evolution equations, and espe-
cially when addressing the possible loss of regularity and singularity formation.
This is a subject that has received considerable attention in the last decade or so.
Perhaps the first major step was the virial-type relation derived by Zakharoy [46]
and, independently but later, by Glassey [21], which they used to show blow-up
of certain solutions of the nonlinear Schrodinger equation

(1.2) e +Au+ uPlu=0

in R™, for p = 1 + (4/n). Since Zakharov's and Glassey’s work, there has been
considerable effort to improve and extend their results (e.g. Ogawa and Tsut-
sumi [37], [38], [39], Martel [31], and Kavian [22]). With the exception of
[22] and [39], the known blow-up results are set on the whole of R". Kavian
considers a bounded domain with homogeneous Dirichlet boundary conditions,
while Ogawa and Tsutsumi consider periodic boundary conditions as we do in
the present paper. More precisely, they establish existence of blowing-up solu-
tions for the case p = 5 (the so called pseudo-conformal case when n = 1), first
by adapting their own work on R [38] and then by using the ideas of Merle
[34]. In addition to energy-type arguments, there is another argument relying
on the pseudo-conformal transformation of the equation for the particular power
p =1+ (4/n) that also establishes blow-up (see Weinstein [43], [45], Cazenave
and Weissler [17], and Metle [34], [35]). In this case, there are solutions given
explicitly in terms of the giound state for the equation that blow up in finite time,
and, as Merle has shown, solutions exist that blow up at an arbitrary finite num-
ber of pre-assigned points in R™. It is worth to remark that numerical simulations
(e.g. Le Mesurier et al. [28], [29], Landman et al. [27], and Akrivis el al. [1])
indicate that the blow-up in the pseudo-conformal case is fundamentally different
from that obtaining for other values of p. In the critical, or pseudo-conformal
case, there are also some interesting results about the stability of the blow-up.
These were initially developed in a seties of papers by various combinations of
Blaha, Laedke, Spatschek, Stenflo and Kuznetsov (see [23], [24], [25], [26]). A
careful appraisal of these ideas may be found in [3]. Helpful general references for
the nonlinear Schrédinger equation include Cazenave [15], [16] and Sulem and
Sulem [40].

Another interesting class of equations where blow-up results have been in the
foreground are Korteweg-de Vries-type equations. For such equations, the situa-
tion is less clear than in the Schrédinger case. Formal calculations and theoret-
ical considerations (cf. Albert et al. [2], Bona and Weissler [14], Angulo et al.
[4], Metle [36], Martel and Merle [32]), and detailed numerical simulations (see
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(8], [9], [10], [11]) indicate that some real-valued solutions of the generalized
Korteweg-de Vries equation

(1.3) U + upux + Uxxx = 0

become infinite at one or more points in finite time provided that p > peric = 4.
[ndeed, computer approximations of solutions to (1.3) and rigorous analysis indi-
cate for example, that blow-up occurs when solitary waves are perturbed appropri-
ately, which corresponds to the fact that solitary waves are unstable if p > 4 (sce
(13], [33]).

Under assumptions on R and Q to be made precise in the next two sections, it
will be shown by a method that appears different from those just mentioned, that
certain smooth, periodic initial data yield solutions of equation (1.1) which form
singularities in finite time. As will be apparent later, our results do not depend
upon a critical value of the exponent in the nonlinearity, and hence they are unlike
the blow-up results for the Schrodmger and Korteweg-de Vries-type equations
discussed above, where global existence of smooth solutions is known for values
of the exponent in the nonlinearity less than the critical value. Furthermore, the
present theory is not like the dispersive blow-up results of Bona and Saut [12]
because they do in general depend upon the size of the initial data. Because of this
aspect, and as is otherwise obvious from a study of our detailed development, the
singularities obtained here depend upon nonlinearity in an essential way.

Examples where our theory is effective include the following equations:

Example 1.1. The generalized Korteweg-de Vries equation (R(y) = 3 and
Q) = y):

(GKdV) U + Uxxx + (up+1)x - 0

Example 1.2. The generalized Korteweg-de Vries equation in laboratory co-
ordinates (R(y) = > — y and Q(y) = »):
(L'GKdV) Ut + Ux + Uxxx + (up+1)x b 0

Example 1.3, The nonlinear Schrodinger equation with power nonlinearity

(R(y)=-y*and Q(y) = -1):
(NLS) UL + Uxx +UPTL =0,

Example 1.4, The following derivative nonlinear Schrédinger equation (R(y) =
~y?and Q(¥) = -y):

(d-NLS) Ut + Ugx — H(UPT)y =0,
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Example 1.5. The “mixed” Korteweg-de Vries-Schrodinger equation (R(y) =
¥} £y?and Q(y) = y):

(KdV‘NLS) ut + uxxx =+ iuxx + (up+1)x = 0-

It is worth noting that none of the other methods available to establish blow-
up of solutions to the nonlinear Schrédinger equation are effective on Examples
1.3 and 1.4 above. Moreover, since f(u) = u?*! (p a positive integer) is Lips-
chitz on bounded subsets of H!(S*), it follows that the initial-value problem for
Example 1.3 is locally well posed in H'(S!). Thus the results of this paper imply
the existence of H!(S!)-solutions which form singularities in finite time in the
H'-norm. A more detailed view of the sense in which blow-up is established is
presented in Section 3.

Here and below, S! connotes R/(277), the one-torus. When convenient, we
will think of functions defined on $! as functions defined on R that are periodic
of period 27T,

The present theory is developed in two stages. In Section 2, equation (1.1)
is considered as an infinite system of ordinary differential equations (in time) for
the associated Fourier coefficients. A great simplification of this infinitely coupled
system is effected by the restriction to solutions whose nonpositive Fourier modes
all vanish. Indeed, the infinitely coupled system reduces to a sequence of linear
inhomogeneous ordinary differential equations, which are immediately seen to
admit global solutions, and whose structure can be studied in some detail. In
Section 3, the properties of these Fourier coeficients, which exist globally in time,
are used to show that certain solutions themselves given by the corresponding
Fourier series, cannot remain regular for all time.

2. A CLASS OF FORMAL SOLUTIONS

In this section equation (1.1) is transformed into a sequence of ordinary differen-
tial equations and the solutions of these equations are investigated. More precisely,
consideration is given to solutions to (1.1) of the form

2.1) u(t,x) = > ar(t)e™>,
k=1

where the time-dependent coefficients a(t) may be complex-valued. In particu-
lar, nontrivial real-valued solutions of (1.1) are excluded by the form (2.1). The
initial value, which may be located at t = 0 since the equation is time invariant, is

(2.2) u(0,x) = > ar(0)e™**.
k=1
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If the function u is given by (2.1), then u?*! is given (at least formally) by
(2.3) u(t, )P+ = > bi(t)et,
=1

where the series (2.3) is determined from (2.1) by series multiplication. Because
the series (2.1) features only positive modes,

(2.4) bi(t) =by(t) =---=by(t) =0, forallteR.
If R and Q are polynomials, then

i Jo

@.5) o (1 ox

. . 19\ . .
ikx _ ikx - ikx _ ikx
) = R and @ (o= ) €™ = QUie™.
For more general functions R and Q, (2.5) is taken as the definition of R(—idy)
and Q(—10x) in the present, periodic context.
Equation (1.1) is equivalent (at least formally) to the system of ordinary dif-
ferential equations

(2.6) ia (t) + R(Kax(t) — Qk)by(t) =0, k=1,2,3,....
In particular,
2.7) ai(t) = ar(0) exp[iR(k)t], fork=1,...,p.

Each coefficient ay (i) is determined only by the first k equations in (2.6), i.e., by
a finite system. Moreover, the nonlinear term by (t) is determined by ai(t), ...,
@k-1(t), and so each equation in (2.6) for k = 2 is in fact 2 nonhomogeneous
linear equation. It follows by a simple induction argument that the initial-value
problem associated with (2.6), where the coefficients ax(t), k = 1, 2, 3, ..., are
specified at t = 0, say, is globally well posed in the sense that each coefficient ag (t)
is uniquely determined, defined for all ¢ € R, and depends smoothly on a; (0),
a0 fork=1,2,....

It is also clear that any sufficiently regular solution of (1.1), having the form
(2.1), will also satisfy the system (2.6). It seems therefore propitious to study
the infinite system (2.6) in its own right. Thus, consider the system of ordinary
differential equations depicted in (2.6) for a family of functions ax : R — C,
k = 1, where the by (t)’s are given by (2.3). Specifically, attention is given to
the initial-value problem associated with data ax(0), k = 1. This initial-value
problem is equivalent to the system of integral equations

(2.8)  ax(t) = expl[iR(k)t]ax(0)

t
— iQ(k) expliR (k)] L expl—iR(K)s1bi(s) ds, k= 1.
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Definition. We say that the series for w(t, x) as in (2.1), with u(t, x)?*! given
by (2.3), is a formal solution of (1.1) if the coefficients ay(t) and by (t) satisfy (2.6),
or equivalently, (2.8).

Henceforth, the following structural assumption on the function R will be in
force.

Condition (8).

(@) The function R is real-valued and maps integers to integers,
(b) either R(y) 20 forally =1, orR(y) <0, forally = 1, and
(©) forally = 1 andz > 1, IR(y)| + |IR(2)| < [R(y + 2)|.

The following proposition singles out another, and perhaps more transparent
property that implies Condition (S).

Proposition 2.1. Let0 < vy < 1 and let R be a real-valued function defined on
[0, ) such that

(@) R(y0) = 0;
(b) R is strictly increasing on [vo, );

() for Yo # 0, R is convex on [yy, ©); if Yo = 0, it is demanded that R be strictly
convex on [0, o).

Ifin addition R : N — Z, then R satisfies Condition ().
Similarly, if

() R(y0) =0;
(b") R is strictly decreasing on [ yo, );
(<) for o # O, R is concave on [y, ); if yo = 0, the function R is strictly concave;

then R satisfies Condition (S) if it maps N to Z.

Proof The proof is given for the first statement only. Suppose ¥ = 1 and
z 2 1. By convexity, assuming ¥ # Yo,

R(z+2)-R(2) _ R()=R(») R
% T y-» ¥y

Since one of these inequalities is strict (the second one if o # 0, and the first one
if o = 0), it follows that R(z + ) > R(y) + R(z).

If v = yp (in which case o = 1) then R(y) + R(2) = R(») + R(2) =
R(z) < R(z + ), since R is strictly increasing. O

Proposition 2.2. Suppose that R satisfies Condition (S). Let w be a formal solu-
tion of (1.1) of the form displayed in (2.1). It follows that the functions ay, k = 1,
are periodic with period 211, More precisely, the time-dependent coefficients ay (t) and
by (t) are of the following form.
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IfR(y) =0 forally = 1, then

R(k)

(2.9) a(t) = > ogne™,
h=kR(1)
R(k)-1

(2.10) bi(t) = > Brne™,
h=kR(1)

whereas if R(y) < 0 forall y > 1, then

IR(K)| ,
2.11) a(t) = > ogpe ™,

h=k|R(1)|

IR(K)|-1 ,
(2.12) br(t) = > PBrre ™,

h=k|R(1)|

where the Xip, and Bi,n are numerical constants.

Remarks. It is not necessary that R(k) € Z for k € N. What is really needed
to obtain a result of this nature is that for all k € N, R(k) € ZT for some fixed
T # 0. In this case, the Fourier coefficients ay (t) will be periodic in ¢ with petiod
21t/7. For example, if R is a polynomial whose coefficients are rational multiples
of a real number v, say, then this latter condition will be satisfied with T = v/«k,
where K is the least common multiple of the denominators of the rational numbers
appearing in the coefficients.

The upper limits in (2.9) and (2.10) make it clear that the coefficients ax(t)
and b (t) are finite sums of exponentials.

If R satisfies Condition (S) and R(y) = 0 for all ¥ = 1, then for k > 1,
0 < kR(1) = R(1) + - -+ + R(1) < R(k), and so the sums in (2.9) and (2.10)
include at least one value of h. If k = 1, the sum in (2.10) is empty. Not all the
coefficients in the above sums are nonzero. Indeed, if 1 < k < p, then By = 0 for
all possible h. Moreover, Byrx) = 0 for all values of k. If R satisfies Condition
(S)but R(y) <O forall y > 1, then 0 = kR(1) = R(1) + - - - + R(1) > R(k), if
k > 1, and similar remarks hold.

Proof. Consideration is given to the case where R(y) = 0 for all ¥ = 0,
the other case being very similar. An argument in favor of the result is made by

induction on k. For k = 1, ..., p, formulas (2.9) and (2.10) are obvious since
ar(t) = ax(0) exp[iR(k)t] fork=1,...,p, and
bi(t) =by(t) =+ - =by(t) =0 forallt eR,

and R(k) is an integer for each k by assumption.
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Suppose now that k > p + 1 and that the formulas (2.9) and (2.10) have been

shown to hold through k — 1. By definition, the coefficient b (t) is the sum of all
products of the form

ak] (t)a’kz(t) et a'kp+1 (t)l

where k1 + - -+ + kp41 = k, and kj = 1. Moreover, by the induction hypothesis,
each such product is a linear combination of products of exponentials of the form

p+1
explifit] explihat] - - - explihyeit] = exp [i( > hy)t],
j=1

where each integer h; satisfies
ij(l) = hj =< R(kj)

forj=1,...,p + 1. It follows that

p+l1 p+1 p+1 p+1
kR(1) = (> kj)R(1) < > hj< > R(kj) <R( Y kj) = R(k).
j=1 j=1 j=1 =1

In other words, bk (t) is a linear combination of exponential functions of the form
et where kR(1) < h < R(k). This proves formula (2.10). Formula (2.9) is
an immediate consequence of (2.10) and the integral representation (2.8) for the
ar(t). 0O

For future reference, note that
(2.13) ai(t) = o, r(y e B,

and so a1(0) = ay,|r(1)), in the notation of the last proposition.

Corollary 2.3. Under the same hypotheses as those appearing in Proposition 2.2,
if w given by (2.1) is a formal solution of equation (1.1), then u and uP*! are
obtained by the following (formal) double series. If R(y) = 0 for all y = 0, then

o  R(k)

(2.14) ut,x)=> >  ogpehtett™ and
k=1h=kR(1)
o R(k)-1

(2.15) u(t,x)P=> > PBrneelx,

k=1h=kR(1)
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whereas if R(y) <0 forall y = 1, then

o |R(k)
(2.16) ut,x)=> > ogpe Me*™ and
k=1 h=k|R(1)|
o |R(k)|-1
(2.17) ult, x)p+1 Z Z Bkhe iht th
k=1 h=k|R(1}|

The coefficients Qx,n and By, satisfy, in the first case,

(2.18) Ok h = R(?») Bxn, kR(1) <h <R(k), k=2,

and in the second case,

o A k)

(2.19) Okh = R0

Bkh, kIR(D)| <h <|R(K)|, k = 2.

Finally, the relationships (2.18) and (2.19) are, in their respective cases, necessary
and sufficient for the series given respectively by (2.14) and (2.16) to be a formal
solution of equation (1.1).

Remark. The following special cases of (2.18) and (2.19) are of particular
interest:

Q(k)

mﬁmqmnh fork = 2.

(2.20) Ok kIR(1)| =

Note that this one formula includes the two cases i = kR(1) and h = k|R(1)]| in
(2.18) and (2.19), respectively.

Lemma 2.4. The coefficients Brkr(1) in (2.15) are determined uniquely by and
can be calculated in terms of the coefficients oy o r(1) withk' < k. A similar statement
holds for the coefficients By kir(1)| in (2.17).

Proof. The proof is presented only for the case (2.15), the other case being
entirely analogous. By definition of the coefficients, each Bikr(1) is a sum of all
products of the form ok, n, Xk, h, * * * Kiyyy hyper» Where ky + ko + - - - + kpy1 = K,
hi+hy+ -+ RHper = kR(1), and kjR(1) < h; < R(k;), forall j = 1, ...,
p+1.

The only way all three of these conditions can be met is if h; = kjR(1), for
J=1,..., p + L. This proves the lemma. O

The following result is an immediate consequence of this lemma.
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Proposition 2.5. Suppose R satisfies Condition (S), and let w given by (2.14),
respectively (2.16), be a formal solution of (1.1). Let v be the formal series obtained
from w by deleting all terms except those whose coefficients are of the form Xy xir(1))»
so that

(2.21) v(t,x) = Z Ok kR (1) e KHRDD.
k=1

Then the series v is also a formal solution of (1.1) and

(2.22) v(t,x)Pt = Z ﬁk'klR(l)Ieik(x+R(1)t),
k=1

where the coefficients By kr(1) are the same as in (2.15), respectively (2.17).

Remark. While the above formulas are valid whether R(y) = 0 forall y = 1
or R(¥) < 0 forall ¥ > 1, in the latter case R(1) < 0 and so they are more
conveniently written in the following way:

(2.23) v(t,x) = Z ak'klR(l)leik(x—lR(l)lt)’
k=1

(2.24) v(t,x)PH = Z Brxir(yy @K F=IROIE),
k=1

Proposition 2.6, Suppose that R satisfies Condition (S) and letu given by (2.14),
respectively (2.16), be a formal solution of (1.1). Suppose further that p > 2. It fol-
lows thar

(2.25) Ok kR(1)| = Bikiryl =0, ifk # 1 (modp).

Proof. The proof is presented in case R(y) = 0 for all ¥ > 1. By (2.7) and
the fact that kR(1) < R(k), for k = 2, it follows that ot kg1 = 0 fork = 2, ...,
p. Also, Bxn = 0, fork = 1, ..., p, as noted already in (2.4). Thus, (2.25) is
correct if k < p + 1.

The strategy now is to prove (2.25) by induction. Suppose that it has been
proved through k — 1, for some k > p + 1. Following the arguments in the
proof of Lemma 2.4, it is observed that By kr(1) is the sum of all products of
the form Oy ky R(1) Ok R(1) * ** Ok ki R(1) where Iy +ky + -+ - + kpi1 =k,
kj=1,j=1,..., p+ 1. By the induction hypothesis, each such product can
be nonzero only if k; = 1 (modp), j = 1, ..., p + 1. If this is the case, then
k' =ki+ky+ - +kpsys =1 (modp). This proves (2.25) for Bxxr(1y. The
assertion for otk kr(1) now follows from (2.20). o
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Proposition 2.7. Suppose that R satisfies Condition (S). There exist two sequences
{eck 1k =1,2,..., and k = 1 (modp)} and {dy : k = 1,2,..., and k =
1 (modp)} with c1 = 1 and dy = 0, depending only on the functions R and Q
and the integer p, such that if w given by (2.14), respectively (2.16), is a formal
solution of (1.1) with oy, r(1)| = a € C, then

(2.26) ok kr) = crak, Brkir() = dra*, foralk>1,k=1 (mod p).

In particular,
k
(227) Ck = WQ—(I()Rmde for k = 2, k=1 (mod p)
Also, if
(2.28) f(z) =D ckzk,
k=1
then
(2.29) F(2)Pt = > dp 2k
k=2

both in the ring of formal power series and as analytic functions inside their joint radius
of convergence.

Remarks. The radius of convergence p of the power series in (2.28) will play
a key role in the blow-up result described in Section 3. Notice that p depends
only on the functions R and Q and the integer p. Throughout the remainder of
the paper, in case p = 1, the condition k = 1 (mod p) is taken to be a vacuous
restriction.

Proof. As before, the proof is presented in case R(y) = 0 for all > 1. The
statement (2.20) is clearly true for k = 1. We construct the sequences

{ck:k=1,2,...,and k=1 (modp)},
{dr:k=1,2,...,and k=1 (modp)}

iteratively, taking care to observe at each step that the construction depends only
onR, Q, and p.

Suppose the sequences have been constructed up through k —~ 1 in such a
way that (2.26) holds. The term Bikr() is the sum of all products of the form
Oy ki R(1) Oky kaR(1) * * * Kkpyy kpiiR(1)> Where Ky + Ky + -+« + kpy1 = k, kj = 1,
j=1,...,p+1,and k; = 1 (mod p). Since (2.26) holds up through k — 1, we
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know that &, k;r(1) = ijakf, j=1,...,p+1,and so Bxkr(1) is the sum of all
products of the form ¢k, ¢k, * * - Ck,,, @¥, with the same conditions on the indices
k;. This sum produces the appropriate value of dg, and the corresponding value
of ¢k is derived from (2.20). The formula (2.29) is a consequence of Lemma 2.4.
The proposition is established. O

The proof of the following proposition is now obvious.

Proposition 2.8. Suppose that R satisfies Condition (S). For some function Q
and positive integer p, let

{ck:k=1,2,...,and k=1 (mod p)},
{dy:k=1,2,...,and k=1 (modp)}

be the two sequences constructed in Proposition 2.7. Let p denote the radius of conver-
gence of the power series Y, cxz* in (2.28). If a € C is such that |a| < p, then the
Sunction

v(t,x) = z Cmp+1amp+lei(mp+l)(x+R(1)t)
m=0

is an infinitely differentiable traveling-wave solution of (1.1).

Remark. As before, in the case R(y) < 0 for all v > 1, it is more revealing
to express U (t, X) as U (t, X) = Y Cmp+1a™P Flelmp+Dx—IRMIL),

3. FINITE TIME BLOW-UP OF REGULAR SOLUTIONS

In this section, it is shown that certain solutions to {1.1) must lose regularity
in finite time. In outline, this result is established as follows. First, a class of
weak solutions u of (1.1) is delineated, which include the condition that u :
[0,T] — L2P*2(S!) is continuous at least for some T > 0. (The symbol S! is
the one-torus as mentioned in Section 1.) It will be clear from the definition of
these weak solutions that they have associated Fourier coefficients ax(t), k € Z.
In case ax(t) = 0 for 0 <t < T and k < 0, these Fourier coefficients give
rise to what was earlier termed a formal solution of (1.1). It then follows from
Proposition 2.2 that the coefficients {ax (t)};_; may be extended to the entire t-
axis and that, so extended, they are periodic in t with period 2. In case T = 21T,
the L2([0,277] X [0,271r])-norm of the solution © can be calculated by Fourier
analysis. On the other hand, under hypotheses to be made precise presently, the
radius of convergence of the power series constructed in Proposition 2.7 is finite,
say equal to p < +00. A consequence of these facts is that, if |a1(0)| > p, then
the norm of u in L2([0,277] x [0, 277]) is infinite, contradicting the presumption
that u : [0, T] — L2P*2(S!) is continuous.
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We now embark upon the program just outlined. A few basic facts about the
function classes of periodic distributions D’ (S!) and H™(S!) for m € R will find
use. If u € D' (SY), then its Fourier coefficients are defined to be

ax(u) = ZLTF(u,e‘“‘"),

where (,) connotes the usual dual pairing of D’(S!) with D(S?) = C*(S?). The
Fourier coefhicients {ax(®)}kez corresponding to @ € D(S') form a sequence of
rapid decrease, meaning that Y xez(1 + k?)N|ax(@)| < +oo for all real N, while
the Fourier coefficients {ax (1) }kez of u € D’ (S!) are a sequence of slow increase,
meaning that that for large enough values of M, sup, ., (1 +k2)"M|ai(u)| < +oo.
For s € R,

H () = fueD'(s): Y lar(w)2(1 + k) < oo},
kez

with the obvious inner product and induced norm; thus, D’ (S!) = Useg HS(S!).
Moreover, any sequence {a}kez which is rapidly decreasing determines a unique
element @ in D(S!) whose Fourier coefficients ax(®) = ai for all k. Similarly,
any sequence {ax}kez such that > ez lax|?(1+k?)* is finite determines a unique
u € H*(S') whose Fourier coefficients ax (1) = a are precisely the specified
sequence. In particular, any element u € D’(S!) is determined uniquely by its
Fourier coefficients (see e.g. Treves [42] for an account of these facts about periodic
distributions).

Henceforth, the functions Q and R will both be assumed to have polynomial
growth. This is expressed in the following formal requirement.

Condition (G). There is an m € R and a constant C such that
[R(k)| +1Q(k)| < C(1 +k*)™2 forall k € R.

The definitions of the operators R(—i3/9x) and Q(-i8/3x) in (2.5) clearly
make sense when applied to u € H*(S!). Indeed, if u € H*(S!) has Fourier
coefficients {ax(u)}xez, then R(—id/0x)u is the periodic distribution whose
Fourier coeflicients are {R(k)ar{(u)}xez. Because R satisfies Condition (G) with
an index m € R, it is easily deduced that R(—-id/9x) : H5(S!) — HS"™(S!) isa
continuous linear operator. The same remarks apply to Q.

In fact, the bound in Condition (G) will only be used for k > 1 in our
principal developments.

The following notion of solutions in L;-based Sobolev spaces of negative order
provides a broad context in which to discuss initial-value problems for (1.1).

Definition. Let m = 0. A function W is a strong H™-solution of (1.1) on
[0, T] ifu € C1([0, T, H™(SY)),

(3.1) Q (l_@_) (uP*l) and R (_1__6_) u

idx idx
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lie in C([0, TY; H-™(S")), and the combination of terms on the lefi-hand side of
(1.1) s the zero function in C([0, T1; H-™(SY)).

If Q and R satisfy Condition (G) and u € C([0, T]; L??+2(S!)) is a distribu-
tional solution of (1.1) in D’ ((0, T) X S!), then it follows that u is a strong H™™-
solution of (1.1), where m is the index appearing in Condition (G). Indeed, both
u and u?*! lie in C([0, T1; L2(S')), and hence by the continuity of the operators
Q and R mentioned above, both the terms in (3.1) lie in C([0, T1; H-™(S')). It
follows from (1.1), therefore, that u; € C(0,T;H™(S!)). But u €
C([0,T};L2(SY)) < C([0,T); H-™(S)), and so u € CY([0,Tl;H-™(S')).
Since all three terms in (1.1) are thus known to be continuous functions with
values in H=™(S1), it follows, since the equation is satisfied distributionally, that
it is satisfied in the sense of H="(S!), identically in t.

Notice that many standard solution classes arising in the theory of differential
equations lie in the class of strong H~™-solutions. Certainly a classical solution, by
which is meant a function u(t, x) such that each term in (1.1) can be interpreted
as a continuous function on [0, T] X S!, is a strong H~™-solution with m = 0,
say. Similarly, a solution in the sense that every term in (1.1) can be interpreted
as an L2-function of space and time also qualifies as a strong H™™-solution. In
particular, suppose that R satisfies Condition (S), so, in particular, it is real-valued,
and consider writing a solution of (1.1) formally as an integral equation by use of
Duhamel’s principle thusly:

t
(3.2) u(t) = eRtyg - iQ (li)J QUE=9R )P+ g
10x 0

where the spatial variable x has been suppressed, 1o(x) = 1(0,x) is the initial
data, and it is supposed as above that u : [0, T] — I27+2(S!) is continuous. On
account of the last presumption, ug € L2(S!), as is u(s)?*! for each s € [0, T].
The Co-group e*R? is defined via its action on the Fourier coefficients of U, viz.
(et = eRM g, where ay = ar (1) is the k" Fourier coefficient of u. As R
is real-valued, this group acts unitarily on all the spaces H*(S!), and in particular
on L2(S'). Thus, because of the polynomial growth assumptions in Condition
(G) on R and Q, all the terms in the integral equation (3.2) lie in H=™(S!) for
cach t. It is routine to verify that, if u € C([0, T];L?**2(S")) is a solution of
(3.2), then it is in fact a strong H~"-solution of (1.1) as previously defined. The
key point needed to ascertain this fact is that L?>(S!) is contained in the domain
of the generator iR of the unitary group e*Rf on H~™(S1).

Theorem 3.1. Suppose for some m = 0, the functions Q and R satisfy Condition
(G). Suppose also that R satisfies Condition (S). Let p be a positive integer and let u €
C([0, T1;L2P+2(S1)) be a strong H ™ ~solution of (1.1) whose Fourier coefficients
ax(t) vanish on [0,T] for allk < 0. Let p be the radius of convergence of the power
series (2.28) in Proposition 2.7. If |a1(0)| > p, then it must be the case that T < 2.
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Remarks. This theorem provides a blow-up result in the following sense.
Suppose that equation (1.1) is well posed as an initial-value problem in some
Banach space X embedded continuously in L27*2(S!). For example, X might be
HS(SY) for s = p/(2p + 2). Thus for ug € X, thereisa T > 0 and an associated
solution u € C([0, T1; X) of (1.1) at least in the sense of distributions. Moreover,
we presume that the correspondence between initial data and the solution is con-
tinuous and that the value of T can be chosen uniformly on subsets of initial data
that are bounded in X. Since L2?*2(S') D X, © comprises a strong H™™-solution
of (1.1) as remarked above, where m is the value appearing in Condition (G).
Suppose that the solution % has only positive Fourier modes as in (2.1). Our the-
orem together with the just posited local well-posedness result in X implies that
the solution U cannot remain finite in the X-norm on the entire temporal interval
[0,27]. These remarks apply to the GKdV equation introduced in Examples 1.1
and 1.2 and to the Schrédinger-type equations appearing in Example 1.3.

It is worth to remark that the Weierstrass g-function can be used in the case
of the KdV-equation itself, Example 1.1 with p = 1, to provide complex solutions
that form singularities in finite time. If we consider § with real and imaginary
half-periods K and iK', respectively, then u(t, x) = —6g(x — it +ito | K, iK") +
i/2 defines a solution of (GKdV) with p = 1. If we choose ty to be a small
positive number, say, then u is infinitely smooth (analytic in fact) as a function
of x and periodic in x with period 2K at t = 0. However, when t reaches tp, u
exhibits a singularity (pole of order 2) at x = 0. More elaborate explicit examples
can be constructed using the finite-gap solutions of the KdV-equation (see e.g.
the monograph of Belokolos et al. [5] for an exposition of these). So far as we
know, these are unrelated to the solutions constructed here when our arguments
are specialized to the KdV-equation.

Proof. Tt is clear that the H=™-solutions posited to exist have Fourier coeffi-
cients that define formal solutions in the sense of Section 2. In consequence, the
theoretical considerations developed in Section 2 are available to us.

Suppose to the contrary that T > 277. Then the solution u is 2 member of the
function class L2([0, 211]1 X S'). Because R satisfies Condition (S), Proposition 2.2
implies the Fourier coefficients {ax (t)} 5, of u are given by (2.9). In consequence
of the orthogonality properties of the functions {eitkx+hD)}, pez in L2([0,217] X
[0,2711]), it follows from (2.14) that

5 0 R(k) 0
It o 2mixionny = 472 >, >, lownl? = 4% Y ok riroil®
k=1 h=KkR(1) k=1

On the other hand, according to Proposition 2.7 there is a sequence {ck}y_,
such that o kr(1y = cxa* where @ = a1, r(1)] = @1(0). In consequence, the last
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inequality may be continued thusly:

2 o0
1|2 0,0m1x10277) = 4702 D |k kiR 12 = 412D Iek|? 1a1(0) 1% = +oo,
k=1

since |a1(0)] > p, where p is the radius of convergence of the series
Z’o(o=1 Ckzk. O

The remainder of this section is devoted to obtaining a better understanding
of the parameter p that figured so prominently in the last result. Conditions on
Q and R will be given which imply that p < . In such cases, the preceding
theorem is not vacuous. Conditions are also presented that distinguish between
the two possibilities p > 0 and p = 0. The essential assumptions are connected
with the behavior of the quantity Q (k) /[R(k) — kR(1)] that has arisen in earlier

considerations.
Proposition 3.2. Letp > 1 be a fixed integer. Suppose that R satisfies Condition
(8). For some function Q, let
{fex :k=1,2,..., and k =1 (mod p)},
{de:k=1,2,...,and k=1 (modp)}
be the two sequences constructed in Proposition 2.7, and let p denote the radius of

convergence of the power series Y. cxz* in (2.28).
() Ifthere exist C > 0 and ot > 0 such that

Q(k) & .
(3.3) R — kR(D > Ck*, forallk=2, k=1 (modp),
then p = 0.
(b) Ifthere exist C > O and a nonnegative integer m such that
(3.4) Q) > £, forallk =2, k=1 (modp),

R(k) —kR(1) ~ km

then p is finite.

Remark. The condition (3.4) is clearly satisfied if R and Q are polynomials
such that R(k)Q (k) > 0, forall k = 2, k = 1 (mod p). If, in addition, degQ >
degR, then condition (3.3) is valid with & = 1.

Proof of part (a). Recall that by Proposition 2.7, ¢ and dj are nonzero only
if k=1 (modp). Let & = 0 be given and suppose that (3.3) holds for this value
of a. Then there exists L > 0 such that

(04
ckzL(%) dx, forallk=2, k=1 (modp).
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It will be shown by induction thatif y < (p + 1)L, then

.4
(3.5) ckzy“”wp[(kii)q , forallk=1, k=1 (modp).

It is clear that (3.5) is true for k = 1, since ¢; = 1. Suppose (3.5) has been proved
through k — 1. As observed several times, d is the sum of all products of the form
Ck,Cky * * * Ckpyy» Where ky + - -+ + kpy1 = k, andkj =1 (modp),j=12,...,
p + 1. In particular, the product cicy - - - c1Ck—~p is equal to cx—p since ¢; = 1.
Moreover, the latter product occurs p + 1 times in the sum. Since all the ¢y are
nonnegative, it follows that dx = (p +1)ck—p. Thus, by the induction hypothesis,

k-1\" (k—l)“
ck=2L|—— ) dp=L|—— | (p+1)ck-
k (p) k - p+1)ck—p

k—1\* (k-p-1),1°
1 (E21) e on [ (E2221) ]
( ’ )(v 5% | P
o o
=Ly l(p + 1)y%-D/p [(%H > ylk=Nip [(%)'] :

This proves (3.5).

From (3.5), it is adduced that if o« > 0, then the radius of convergence is zero
as asserted in statement (a). If & = 0, then the radius of convergence is finite,
which is the assertion in statement (b} when m = 0. O

Proof of part (b). The case m = 0 is already in hand, but notice that if (3.4)
is valid for a value my, say, then it is valid for any m < mo. Thus in establishing
statement (b), it suffices to demonstrate the conclusion is valid for m sufficiently
large.

Fix an integer m > 1 and a real number » > 0. Consider the two analytic
functions

a1
and f(z)P*! = Zr ——
(I1- {-rz)p}m(pﬂj,fp

z
For an integer n > 0, denote by App.1 and Bup1, respectively, the coefficient
of z"*1 in the Taylor series expansion of f(z) and f(z)?*! around 0. Note
that both of these series have radius of convergence equal to 1/7. Elementary
calculations establish that A; = 1, B; = 0, and

A?'{p+] _ r?
Bupia Tim(n)’

n=1,

where Ty, is the polynomial

nmn+m/p)n+m/p+1)---(n+m/p+(m-2))

Tm(n) = (m/p+m-1(m/p+m=2)-.-(m/p)
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of degree m with positive coefficients depending on m and p. In other words, for
allk =2,k =1 (modp), one has

r 2

A= T k=D o

Let R and Q be as in the statement of the proposition and suppose (3.4) to
be valid for some positive integer m and some positive constant C. By choosing »
small enough, it can be assured that

Qk
R(k) —kR(1) ~ Tim((k—-1)/p)’

forallk = 2, k = 1 (mod p),

and therefore that

rP

md’k' forallk = 2, k=1 (modp).

Cyx =

Since ¢; = Ay = 1 and d; = B = 0, a straightforward induction argument shows
that for all k = 1, ¢y = A and dx > By. This proves statement (b) and the
proposition is established. ]

Proposition 3.3. Fix an integer p = 1. Suppose that R satisfies Condition (S).
For some function Q, let

{ek 1 k=1,2,..., and k =1 (mod p)},
{dr:k=1,2,...,and k=1 (modp)}

be the two sequences constructed in Proposition 2.7, and let p denote the radius of
convergence of the power sevies (2.28) based on the sequence {Cx} ;. Let

{Ck:k=1,2,..., and k=1 (mod p)},
{Dr:k=1,2,...,and k=1 (mod p)}

be the two sequences constructed via Proposition 2.7 relative to R and —Q. Then
the radius of convergence of the power series Y. Crz* is also p. Thus the radius of
convergence, and hence the blow-up results of Theorem 3.1 do not depend on the sign
of the nonlinear term.

Proof. Let {ck} and {dy} be as in the statement of the proposition, the coef-
ficients obtained from the polynomials R and Q via Proposition 2.7, so that

- Q(k)

- md"’ fork =2, k=1 (modp).
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Let € € C be such that €# = —1. Set Cx = &k~l¢y, forall k > 1 with k =
1 (modp). (It will turn out that {Ck}}_, is exactly the sequence defined via
Proposition 2.7 for the functions R and —Q.) Note that C; = 1 and that *¥~! € R,
forall k = 1 with k = 1 (mod p). Let Di be the coefficients obtained from the
Cx by forming the product

o

kakar: Dyz
(a9 = 5 Dt

k=1 k=p+1

in the ring of formal power series. In other words, Dy is the sum of all products of
the form Cy,Cy, + « - Ck,,, = €¥P ey, Cr, - - - Chypyys Where ky + -+ - + kpyy = k
and kj = 1 (modp), j =1, 2, ..., p + 1. It follows by inspection that Dy =
er-lgy forallk=p+1, k=1 {mod p), whence

-Q(k)

Cie = R(k) — kR(1)

Dy, k=2 k=1 (modp).

Thus the sequences {Cx : k = 1,2,..., andk = 1 (modp)} and {Di : k =
L,2,..., and k = 1 (mod p)} are determined by the same R, but with —Q instead
of Q. This proves the proposition. u

Remark. 1f u is a formal solution of (1.1) of the form (2.1), it may be that
ai(t) is identically zero. In this case, blow-up results analogous to those enunci-
ated in the preceding propositions may be obtained by studying the lowest nonva-
nishing Fourier mode. If we denote this mode by «, then the analogue of Proposi-
tion 2.7 is the existence of two sequences {cx} and {dy} such thatey = 1, dy = 0,
and ki k|R(k)| = ckak, BkK,k|R(K)| = dkak, for all k = 1, k=1 (modp), with
a = O,|R(x)|. Moreover, the relationship

Q (ki)

= Rikr) — kRGo) Yo k=2, k=1(modp),

Ck

still holds. With this observation in hand, analogues of the previous propositions
(as well as those which follow) are readily established in the context where a; = 0
for j < k.

In particular, suppose that R and Q are polynomials such that R satisfies Con-
dition (S), the product R(k)Q (k) is either everywhere positive or everywhere neg-
ative for k = 2, k = 1 (mod p), and degQ > degR. Then any nontrivial regular
solution of (1.1) of the form (2.1) must blow up in finite time.

Attention is now turned to specifying conditions under which p > 0, which
then implies the existence of regular solutions of (1.1).



778 J.L. BONA ¢ E.B. WEISSLER

Proposition 3.4. Let p > 1 be an integer. Suppose that R savisfies Condition
(S). For some function Q, let

{ck:k=1,2,...,and k=1 (modp)},
{dp:k=1,2,...,and k=1 (modp)}

be the two sequences constructed in Proposition 2.7, and let p denote the radius of
convergence of the power series in (2.28). If additionally there exist C > 0 and m = 1
such that

(X051 c

(3.6) = <

R0 — kR < o Porallk=2, k=1 (modp),

then p > 0. In particular, in this case (1.1) has an uncountable family of smooth
traveling-wave solutions as described in Proposition 2.8.

Remark. The restriction in (3.6) is satisfied if, in addition to R satisfying
Condition (S), R and Q are such that degQ < degR.

Proof We use the same notation as in the proof of Proposition 3.2. By (3.6),
there exist m = 1 and ¥ > 0 such that

Ul e
IR(k) ~ kR(D] = T (k= 1)/p)’

forallk =2, k=1 (modp),

and so

lck| < - |di|, forallk=2, k=1 (modp).

T ((k — 1”1’)

Since ¢; = A; = 1 and d; = By = 0, an easy induction argument shows that
lck| < Ak and |dg| < By, and these inequalities establish the proposition. O

In the special, but frequently occurring case p = 1, a different proof gives the
same result assuming only deg Q < degR. To show this, the following preparatory
lemma is useful.

Lemma 3.5. For any real number v > 1, the inequality

k-1 1 231+1

J"'Z—'l (k=7 = r=Dk+1)7

is valid for any integer k > 1.
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Proof.

k-1 1 k 41
J; (k= prj" = .[1 (k+1-x)rx"r ax

(k+1)/2 4r i
=2L (k+1—x)"x" *

2. 8" (k+1)/2 ¢ i
=k+D7 L P
2.8
S
(r—1)(k+ 17 O

Proposition 3.6. Suppose that R satisfies Condition (S) and that p = 1. For
some function Q, let {cx : k = 1,2,...} and {dx : k = 1,2,...} be the two
sequences constructed in Proposition 2.7 from Q and R and let p denote the radius of
convergence of the power series defined via the ¢ s as in (2.28). If there exists C > 0
such that

|Q (k)]
(37) m < C, forall k = 2,

then p > 0. In particular, (1.1) has an uncountable family of smooth traveling-wave
solutions as described in Proposition 2.8.

Proof’ By (3.7), there exists L > 0 such that |cg| < L|dgl, for all k = 2. Fix
v > 1, and choose M > 0 and y > 0 such that

237 +1
LMT 151 and My > 1.

(First choose M small enough, then choose y large enough.)
We prove by induction that for all k,

M k
(3.8) el = 2%
Clearly (3.8) is correct for k = 1, since ¢; = 1 < My. Suppose that (3.8) is true

through k — 1, for some k = 2. From the induction hypothesis, the previous
lemma, and the fact that (since p = 1)

k-1
dx = D ck-jcj, foreachk = 2,
Jj=1
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it follows that

k-1 k-1
1
ckl < Lldg| <L _jici| S IMPyR N —
Jj=1 Jj=1
3r+1 k k
SLszk 2 < My My

- Dk+ 17 = kD7 =k
This concludes the proof. =
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