STABILIZING, MONETARY INJECTION POLICIES *
JERRY L. BONA t AND JENNY LI ¢

Abstract. The primary concern of this paper is to understand how prices and interest rates
respond to open-market operations. It is shown according to a simple mathematical model that
a single monetary injection will lead to a temporary fall in both real and nominal interest rates
and a gradual rise in prices. A particular focus of the present investigation is the determination
of an optimal monetary policy wherein injections take place in more than one time period, and
corresponding to which the equilibrium prices are most stable. The existence of such a policy is
established by a mathematical analysis and its detailed structure explored by numerical simulation.
A feature of this paper is the systematic and interactive application of tools from economic theory,
mathematics and modern scientific computation.

1. Introduction. The goal of the present work is to develop theory bearing upon
the response of prices and interest rates to government intervention in the money sup-
ply. This issue is one of obvious importance that has attracted both descriptive and
theoretical commentary. Conclusions have been made from several points of views
and based on a variety of models [c.f. Baumol (1952), Tobin (1956), Grandmont and
Younes (1973), Bryant and Wallace (1979), Lucas (1980), Stockman (1981), Townsend
(1982), Helpman (1982), Polemarchakis (1982), Sargent and Wallace (1982), Gross-
man and Weiss (1983), Bona and Grossman (1983)]. Analytically, an open-market
operation is defined in these papers as a government purchase with money of some
other asset together with the associated adjustments in (lump-sum) transfer payments
that are needed to keep the path of government consumption unchanged. The main
concern is whether the open market operation has any effect on economic quantities
such as real and nominal interest rates, level of output and prices. Most of the afore-
mentioned works have concluded that the open-market operations have real economic
effects. Not all the studies adhere to this conclusion. Modigliani and Miller suggest
that changes in the money supply brought about by open-market operations will have
no effect on price level. Wallace (1981) and Chamley and Polemarchakis (1982) have
shown that in a model in which money is held only for its rate of return, characteristic
open-market operations are neutral. '

The approach taken here is to develop a simplified mathematical model which
nevertheless maintains the primary relationships between the dependent and inde-
pendent variables, and to investigate this model using both analytical and numerical
tools. The predictions made on the basis of this model are then taken as a potential
guide to the actual market response to open-market operations.

The model upon which our study is based was put forward by Grossman and
Weiss (1983). This model, described in detail in Section 2, features consumers with
perfect foresight, firms owned by the consumers that produce a single, perishable
good, and the government. Going beyond this pioneering model where consumers
possessed only logarithmic preferences, consideration is given to a broad class of utility
functions. In the case considered by Grossman and Weiss, namely consumers having
a logarithmic utility function, it was shown that open-market operations can have real
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effects and that a monetary expansion will lead to a temporary reduction in both real
and nominal interest rates and an eventual increase in prices. However, current price
levels are unaffected by anticipated future monetary injections, a situation contrary
to common experience.

The analysis of the class of utility functions considered here, which includes a
one-parameter family of the homothetic ones, is considerably more involved than
that coming to the fore in Grossman and Weiss (1983). The equilibrium prices as
a function of a discrete period variable n are governed by a second-order, implicit,
difference equation with but one initial condition, whereas the assumption of loga-
rithmic utility leads to a first-order difference relation. In the second-order case that
arises here, the relevant solution is obtained by solving a functional equation of the
form g(fof (z), f(z),z) = 0 for the unknown function f. The equilibrium price se-
quence is then realized by iterating the function f on the initial price p;, so that the
price at the nt* period is p, where po = f(p1), ps = f(p2) and so on. The existence
of a price-function f relating the price at period n + 1 to the price at period n is
established in two principal steps. First the stable manifold theorem from dynamical
systems theory is employed to prove the existence of a local solution by relating f to
the graph of a stable manifold for an auxiliary two-dimensional mapping. The local
solution is then shown to be the restriction of a globally defined solution by an exten-
sion argument. The analysis just described, which is worked out in detail in Section
3, is telling in the case of homothetic utility functions. In Section 5, an application
of the implicit-function theorem allows the results for homothetic utility functions to
be extended to a much broader class of utility functions.

The outcome of this analysis is quite satisfactory as regards its economic interpre-
tation. Indeed, the aforementioned drawbacks of the Grossman-Weiss model are seen
to be special to the assumption of logarithmic utility. To understand better the de-
tailed structure of solutions for economically realistic values of the model’s parameters,
numerical simulation seems to be indicated. Accordingly, we report in Section 4 an
efficient and accurate scheme for the approximation of solutions of the model which
is implemented as a computer code. After suitable testing, the computer program
was used in an investigative mode. In addition to providing quantitative information
about solutions, the code led to the formulation of an interesting conjecture about
monetary policy.

Briefly stated, it is found both analytically and numerically that a one-period ex-
pansion of the money supply leads eventually to a new, higher, price level. However,
equilibrium prices approach this new steady state in an oscillatory manner. Such
oscillation might well seem undesirable, and preliminary numerical simulation indi-
cated it could be suppressed if the injection was spread in a particular manner over
two or more periods. This leads to a set of theoretical results about stabilizing the
price adjustment the model predicts in response to government monetary injection.
These ideas are also developed in Section 4. They have potential implications for
government policy which are visited in the concluding Section 6.

2. The Model. In this section, a detailed description is presented of the model
which will be the center of attention henceforth.
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2.1. Basic components

The major components of this class of models are consumers, firms and the gov-
ernment. Consumers are supposed to have perfect foresight and they come equipped
initially with a stock of money and government bonds. Firms, owned by consumers,
produce an exogenous good and sell it to other consumers for profit. Because con-
sumers need cash to purchase goods, they sell their bonds to the firms and to the
government. The firms use the profit from selling goods to purchase bonds from con-
sumers and immediately put them into the owners’ interest-bearing accounts, as it is
clear that under certainty they will not hold cash if the interest rate is positive. The
government uses cash to purchase bonds, thereby injecting money into the market.
This is the most common and probably the most flexible way for the government to
influence the economy. We assume that the cash will eventually find its way into the
hands of consumers. They can only obtain cash from the bond market (which will
be referred to as the “bank” henceforth). Consumers use the money from their bank
withdrawals to purchase the unique perishable consumption good which is exogenously
supplied at a rate of C units per period. Because of transaction costs, consumers tend
to bunch cash withdrawals and hence there is a period between consumers’ trips to
the bank. It is assumed here that the time between two consecutive trips to the bank
is fixed, and that consumers will not all go to the bank at the same time. More
specifically, we take it that each consumer goes to the bank every other period and
withdraws enough cash to finance consumption expenditure over the ensuing two pe-
riods. The amount of withdrawal is determined by the possibility of inter-temporal
consumption substitution, and thus is influenced by the expected prices and future
nominal interest rates. Note that in this simple model, the market could not clear
if all consumers simultaneously showed up at the bank to make a withdrawal. For
simplicity, we assume that there are two classes, a-type and b-type, consumers. The
a-type consumers go to the bank every odd period, whereas b-type consumers appear
there every even period. As usual, these two classes of consumers will be lumped, and
from now on it will appear that there are exactly two consumers in the economy. The
consumers are infinitely lived here, though one can also realize this sort of model in an
overlapping-generations context where consumers are participating economic agents
for exactly two periods each (see Bona and Grossman [2]).

2.2. Formulation

The optimization problem faced by consumers is described in more detail. Let N,
and N, denote the set of odd and even positive integers, respectively. Each consumer
must choose bank withdrawals M} (¢t € N;) and consumption plans C! so as to

(1) maximize »  B'U(CH),

t=1

i = a, b, subject to the constraints that only money can purchase goods and that all
the money will be spent before the next bank withdrawal. These constraints may be
expressed as

() nCt =Mg, piCy+pCy =M,
and
(3) pe41Cipy + Pe42Cipg = M}, for all teN;, i=a,b.
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In (1), U is a given utility function that reflects consumer preference and B € (0,1)
is a “discount” factor. As usual, we assume that U’(z) > 0 and U"(z) < 0. The
price of the single good in period ¢ is p, t = 0,1,---. The two quantities M} are the
consumer’s initial money holdings and the later money holdings M} must satisfy the
overall wealth constraint

i .
(4) Z%SW*, i=a,b.
ay
tEN;

In (4), the W* are the nominal values of the non-monetary wealth of consumer i,
o =R1R,- . “Req (With Q) = 1)

is the nominal growth factor between period 1 and period ¢, and R;_; is the nominal
interest rate on assets held in the ¢** period (between ¢ and ¢ + 1).

In this model, the non-monetary wealth W* of consumer i consists of three compo-
nents. The first is a claim to a fraction of the firm’s revenue which is deposited into an
interest-earning account every period. If s* € (0,1) denotes the fraction of the firm’s
revenue claimed by consumer i, then assuming there is no government ownership, we
must have

s +sb=1.

Thus the current nominal value of the total income of consumer i from the firm’s
revenue is

o0

#Y 2O

where C is the exogenously given output produced by the firm. The second component
of W is the one-period maturity government bonds that the consumer currently holds.
This component is denoted by B. The third component of W is the per-capita tax
that consumer 7 is obligated to pay to cover the government debt (denoted by B).
In this two-consumer economy, the per-capita taxes are taken to be B/2, where B
equals the value of the government bonds that the consumers currently hold minus
the current nominal values of the future government money injections, which is to say

2\ M7~ M
(5) B=Bo-) ——*HL,
t=1 t

where By = B§ + Bf, and M} is the exogenously given money supply. Combining
these three components leads to a formula for the non-monetary wealth, namely

[ o]
6 Wi=3s' ~—— + By — —.
( ) ; a; 0 2

To study the optimization problem (1)-(3), consideration is given to the auxiliary
optimization problem that concerns a consumer who has just withdrawn M amount
of money from the bank at the end of a given period, and will allocate it between
expenditures in the next two periods. This consumer thus faces the problem

Jax U(C1) + BU(Cz)
4



subject to
71CL +pCr = M.

Under the assumptions mentioned earlier on the utility function U, it is well-known
that the above optimization problem has a unique solution for given p;, p, and M.
The solution for the optimal choice C, is denoted by

(7 Cy =Cy(X,Y), where X = % and Y = M

D2
Because of the special structure of the global optimization problem (1)-(3), the just
described local optimization problem plays a central role in its resolution. Indeed,
it is straightforward to verify the standard transversality condition as in Arrow and
Kurz (1970). Then, using the identity

D ATIUECH =UEH) + Y BU(CH,) + BU(CE,))

t=1 tEN,

and the fact that the constraints (2) and (3) are decoupled with regard to the period
t, it is concluded that the optimal strategy for a consumer is, at each visit to the
bank, to withdraw all their available cash and allocate it between the ensuing two
periods according to the solution of the local optimization problem. In the notation
introduced above, the optimal choices of C¢ for the problem (1)-(3) are given by

(8 nCt = Mg

and

9) Pe+1C¢4 + P42 Clyp = M,
where

Dty1 Mta)
Ct,=C (—, — or t€N,.
t+2 ? Dit+2 Pi+2 » S ¢

Similarly, the optimal choices of C} satisfy
(10) pe+1Cy + Pe+2Ciy = M?,

where

ch.. =, [P M}
ty2 = C2 { —/,——}, for te NyU{0}.
Dt42 Pt+2

The requirement that the market be in equilibrium implies that the flow of cash
into the market at each period equals the relevant consumer’s desired withdrawal
and that goods demanded by consumers are equal to the goods supplied. These
equilibrium conditions are expressed as

(11) Ci+C = C,

(12) M +Mp = M,
5



which initially satisfies
Mg+ M§ = M.

It is assumed that the money supply changes only through open-market operations.
For t > 0, M} represents the money holding of consumer i, which is, at the start of
a banking period ¢ € N;, equal to the amount just withdrawn from the bank, and
on the period following a banking period is equal to the withdrawal in the previous
period, but reduced by the previous period’s spending, namely

(13) M;=M; , -p:C; for t¢gNi
As a consequence of (13) and (3), it follows that

(14) M}_, =pC}, for te€N;.
Combining (13), (11), (14) and (12), one obtains the formulas

(15) M =p,C+M;~M;_,, for teN
and
(16) M} =M; ,-pC, for t&Ni.

Equation (15) states that the flow of aggregate money withdrawals from the bank
must equal the flow of money into the bank. The latter consists of two terms. The
first is the aggregate value of firm’s receipts p;C which are assumed to be deposited
instantly by firms into the interest-earning accounts. The second term M{ — M{_, is
the change in aggregate nominal money engendered by the government through open-
market operations. Thus, under equilibrium conditions, it appears that the bank
withdrawals are determined solely by the price levels the consumer will face for the
. next two periods and the money supply.

Attention is now turned to a specification of the equilibrium prices. Combining
(14) with (16) (with ¢ = b) gives that, for t € N,,

Pe42Ci = My, = MY — piya G,
which, by (9) and (15), can be written as

. nC + MP — Mf_
P41C + praCa (PH—I ’ t t—1
Dt4-2

)=M: for te N,.
Dt+2

A similar argument shows that the above identity also holds for t € Ny. In conse-
quence, for ¢ > 1, it transpires that

piy1 ptC+ M — Mf-1) = M?
) - t-
Pty2 Pt+2

17 Pt+1C + pe42C2 (
Combining (8) with (10) at ¢ = 0 gives

p1 M s
18 nC+pC (-——,—) = Mg.
(18) 1 2 0
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The equations in (17) comprise a system of nonlinear, second-order difference equa-
tions for the equilibrium prices p;. It is worth note that once the prices are known,
all the other economic quantities are determined by the preceding relations.

2.3. Homothetic utility function

To gain more insight into the model, attention is focused on the class of homo-
thetic utility functions. In Grossman and Weiss (1983) where the model originated,
a logarithmic utility function was proposed and the model was analyzed on the basis
of this special form. The analysis was particularly simple in this case because the
equilibrium prices are described by a first-order, linear, difference equation with a
single initial condition. However, a serious drawback was that the current price level
is independent of anticipated future monetary injections. To better understand the
potential of the model, we introduce the one-parameter family of homothetic utility
functions U = U4 defined for values of consumption ¢ > 0 by

—-A
1-4°
where A > 0 is fixed and A4 # 1. In this case, it is easy to see that
C2(X1 Y) = Y¢(X)’

U(e) =Ualc) =

where
,31 /A
(19) #(X) =

and B € (0,1) is the aforementioned discount factor. Because of the special form of
C,, equations (17) and (18) reduce to

(20) pes1C + (0eC + M? — M2 (%:%) =M, for t>1,
-+ ,

and

(21) pC+ M2 (%‘) = M.

Note that ¢ is monotone increasing if A < 1, but monotone decreasing if A > 1. If
A <1, ¢(0) = 0 whereas if A > 1, ¢(0) = 1. In all cases, ¢(z) < 1 for all z > 0.

Interest rates. As shown by Grossman and Weiss [4], two-period nominal interest
rates can be derived as a function of the price path and path of nominal money .
withdrawals.

Consider the choice of optimal money withdrawals by an agent at the bank at
t — 1. At an interior optimum the agent is indifferent between withdrawing an extra
$1 and spending it in period t, or letting the $1 grow to $R;_1 R; in period t+ 1 and
spending this amount in ¢ + 2. This gives rise to the first-order condition

(22) U'(Ci) = B°U ,(Ct+3)pt+1 ——RiRiy1, t€N;

Let z: = RyR:y1. Then the z; are uniquely determined by (22) for all ¢ > 1.
Note that

m—1
A2m+41 = H T2541

=0
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and
m-—1

QAom = R1 H Z2j.
j=1

To determine R;, we use the wealth constraints (4). At the first glance, (4)
contains two conditions, but in fact (4) with i = a is consistent with (4) with i = b.
More precisely, we have

LEMMA 2.1. At equilibrium prices and bank withdrawals, (4) holds for i = a if
and only if it holds for i = b.

Proof. The proof is a straightforward application of identity (15), which holds at
the equilibrium prices and bank withdrawals, and the identity (5). O

2.4. Basic parameters used in the model

To aid the reader, the basic economic parameters appearing in the model just
described are reviewed here.

N,: the set of odd positive integers;

Ny: the set of even positive integers;

M¢: the initial money holdings of consumer i;

Bi: the initial nominal holdings of government bonds by consumer i;
M. the exogenously given money supply;

pe: the price level during period t;

M}: the money holdings of the consumer i at the end of period ¢;
R;: 1 plus the interest earned from the end of period ¢ to the end of period ¢ + 1;
ai: og=R;-Ry---Ry_; with ¢y = 1

C#. the consumption by consumer i during period ¢;

W?. the non-monetary wealth of consumer i.

3. Equilibrium Prices. In this section, attention is given to the uniqueness,
existence and some qualitative properties of equilibrium prices in the model described
in Section 2. The development here is a streamlined version of the account appearing
in Bona and Grossman (1983). For simplicity of exposition, and without loss of
generality, it will be assumed henceforth that

C=1 and Mj=1.

This amounts to a choice of units and it means that the single good is exogenously
supplied at a rate of one unit per period and the initial money in the market is one
unit. We will concentrate here on the case where 0 < A < 1. From the construction
of the function C2(X,Y), it is apparent that this represents the situation wherein an
increase in the rate of return on savings X, with the level of wealth ¥ held fixed,
results in larger future consumption C,. That is, the substitution effect dominates
the income effect associated with a change in rates of return.

3.1. Single monetary injection
For the rest of Section 3, it is assumed that the unannounced monetary policy
involves only a k% increase in the money supply at the end of period 1. Thus money
i lnjected into the market only once, and s6
M{=(14+kM;=1+k, t2>1.
8



In this case (20) can be rewritten as:

(23) Dy + ‘f’(fi‘l‘)l’t-l =1 for t2>2,
n+k Pt . s o
- where p; = Tr T and p, = 1 for t > 2 are scaled prices and the initial condition

(18) becomes
24 +Mb<&>=1.
(24) D 0® P2

3.2. Uniqueness

It will be demonstrated in this subsection that the equilibrium prices are uniquely
determined by the specifications (23)-(24). We start with some general aspects of the
situation obtaining for the model with a homothetic utility function and A4 < 1.

Note that the steady-state equilibrium value associated to (23) is

_ 1

P=Tveay
In general, as shown below, any solution of (23) will alternate below and above the
steady state equilibrium value p.

LEMMA 3.1. Let {p,;}$° be a sequence satisfying (23). Then for anyt, P <pif
and only if p,,; > P.

Proof. If for some t, p;,p,,; < P, then

P 1-p 1-p
¢ ( t+l) —_ t+1 > _ —_ ¢(1).
Diyo D D

Because of the assumption that A < 1, ¢ is an increasing function, and it follows that
Piy2 < Py < p. Continuing this argument inductively shows that

Py <P, <p;<p, forall s>t

Thus, there exists p* such that p* = lim, 0 p, < p; < p. Taking the limit as the
period becomes unboundedly large in equation (23) gives

p'+o(l)p*=1.

This means that p* = 5, which is a contradiction. Similarly one proves there exists
no ¢ such that p;,p,,; > 5. 0
Our next result gives a priori bounds for any possible solution of (23). -

LEMMA 3.2. Let {p,}{° be a sequence satisfying (23). Then there exist constants
01, 02€ (0,1) so that oy < p, fort >1 and p, <1 -y fort > 2.

Proof. Let p* (which is less than p) be the unique solution of the equation

. Py _
p-+ﬂﬁ) 1.
9



If p, < P, then Lemma 3.1 insures that p,,; > p. Therefore, again because ¢ is
increasing,

p
1=p, +¢(t)p,y < P, + $(E2),
P p
which implies that p, > p*. Thus we may choose 0y = min{p,p*} = p* and have

Py >opforallt>1.
Similarly, if p, > p, then p,,; < 7 and hence

pr=1-¢(2iyp,_, <1-p,_16(1) <1—014(1),
P

provided that ¢ > 2. Thus, we may take o, = 014(1). 0

As regards uniqueness of the price-path {p,}$°, the following result shows the
situation to be satisfactory.

LEMMA 3.3. For any p; € (0,1], there corresponds at most one solution {p,}°

of (23).

Proof. Suppose that {p,}{° and {p,}{° are both solutions of (23) with p, = p,
and p;,p; € (0,1) for all £ > 2. If p, = Ps, then it is obvious that p, = p, for all
t. Without loss of generality, we may assume that p, > p,. By a direct calculation,
using the fact that ¢! = ¢ where

¢(_¥) = gY/(A-1) (l:_:f) o ,

T

it is seen that

. e
(25) Diyy - P: (g(phpt—l)) -
Diyy Py \9(Py, Dy_1)
with
1-p,
9\P,P )= ————.
(Pt Pe—1) Pt Dy~ 1

It is clear that g is decreasing with respect to each variable. Thus successive applica-
tions of (25) yield

P >P;, for all t2>1

Furthermore it is elementary to see that p,g(p;,p,_,) is decreasing with respect to
the variable p,, and thus

P9(Pe, Pr—1) < Pe9(Byy Pr-1)) < Prg(Dy, Pr—1),
which, together with (25) implies that
Pri < by (&)1—'_7 _ (&>1+r:x

Piy1 P \D: D:
10



A recursive application of the above inequality gives

. o N (e2)t?

Pent o (32-) -0, as t— oo,
Piy1 y 23

which contradicts Lemma 3.2. 0

3.3. Existence

To study the existence of solutions to the problem (23)-(24), we propose to seek
the solution in terms of a price function f such that

(26) Pe1 = f(py), t=1,2,3,---.

It is easy to see that the sequence {p,}$2; given by the above formula is a solution
of (23) if f satisfies

(27) 1—z¢ (;08)) = f(z), for z€l0,1].

The function f determined by the above equation will play a crucial role in our
study.

LEMMA 3.4. The functional equation (27) has a unique solution f defined and
real-analytic on [0,1). This solution satisfies the properties

1. f(p) =p, and
2. -1< f'(z) <0, for z€[0,1].

The somewhat lengthy proof of this result will be presented in Subsection 3.5
below. Combining it with the previous lemmas, the following results emerge.

THEOREM 3.5. For any given normalized price p, € (0,1), the sequence {p;}$2,
satisfies (23) if and only if

(28) Diyy = f(py), t=12,3,--,

where f is the solution of (27).

THEOREM 3.6. There ezists a unique sequence {p,}{2, that satisfies both (23)
and (24). Furthermore, p; is the unique solution of

D1 b
(29) nto (-———-(1 n k)f("fsi%)> My =1.

Proof. Consider the function

= P____ -
(30) gl(p)—p+¢<(1+k)f(§—i—§)) My -1

Note that g; is monotonically increasing and g,(0) < 0, g1(1) > 0. The desired result
then follows from the intermediate-value theorem for continuous functions. O

11



An interesting consequence is that the prices are increasing in the first three
periods as a result of the unannounced money injection. After this initial increase,
prices oscillate around and converge asymptotically to a value that comprises a new
equlilibrium for the system.

THEOREM 3.7. Let {p;:}§° be an equilibrium price path corresponding to a positive
monetary injection k > 0. Then we have that

(31) P <p2 < (1+k)p,
and for t > 2,

pt > (1+k)p, t€N,, pt <(1+k)B, t€ N
Moreover, it must be the case that

(32) Jim pe = (1+k)p.

Proof. If ¢ = p1 /(1 + k), then (29) may be rewritten as

(33) Hi(g,k) =1+ k)q +¢<f(q1+kq/1(1+k)))Mg=l.

Recall that for all z € (0,1), ¢'(z) > 0, and f'(z) < 0 according to Lemma (3.4). In
consequence, since ¢; < 1, we have

oHy >0 and 2

0, % >

It follows that if ¢; is viewed as a function of k, then %—9,;‘- < 0. When k£ = 0,
g1 = p1 = P. Hence for k > 0, ¢; < P, or what is the same, p; < (1 + k)p. Now
to show ps < (1 + k)P, define go = (p1 + k)/(1 + k). It is easily seen that if p; is a

solution to (29), then g2 < 1. Write (29) as

-k/(1+k
(34 Hlgr F) = a(1+8) — o+ (2L ) gy
f(g2)
Simple considerations establish that
aHz a}12
—a—'&z— >0 and ETA <0,

so that %‘% > 0 Thus g is an increasing function of k, whence f(g2) is a decreasing
function of k. Since f(g2) = 1—1{’7_73, this latter quantity decreases as a function of k.

At k=0, ﬁ% =p2 =P, and so for k > 0 p2 /(1 + k) < P, as advertised.
It remains to prove (32). By Lemma 3.4, we know that
= ! <1
p= max |f' (@)

T+ £A11 v vy
It follows from th

©
3}
D
v
3
A
2
2
:
&
o+
i
®

NTOTN f]’;at

ANASA Taia Vaa

1f(2) =8l =1f(=) - F@) = |f' () |z — Bl < plz - pl.
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Thus, if p; is given, then for j > 1,
|Pj1 =Bl < #|p, - Bl
and the conclusion follows. O

3.4. A numerical illustration

In this subsection are presented some numerically-generated examples of price
functions and equilibrium prices. The numerical methods used to obtain these results
are somewhat technical. They are described very briefly here and are then used to
demonstrate various interesting aspects of the model. A complete account of the
numerical methods together with their theoretical analysis and extensive numerical
testing is reported in Li (1993) and Li (1997).

Price function. The price function can be computed, for example, by a finite-
element discretization. Let C([0,1]) connote the continuous, real-valued functions
defined on the closed interval [0,1]). Given a positive integer n, consider a partition
of [0,1] as follows:

i—1

0=z1<z2<...<2; <+ <zTp =1, with :ci:n T 1<i<ln.

Let V}, connote the subspace
Vi = {v € C[0,1] : v is linear on each interval (z;—1,%;), i=0,...n—1}.

Let w; € V3, be the unique function satisfying

(1 ifi=j,
wi(35) _{ 0 otherwise.

Then {w;}2, forms a basis of Vj, which is known as the nodal basis. In fact, every
v € V3, can be represented exactly as

n

v(z) = Y v(z:)wi(z).

i=1

The so-called nodal-value interpolant
I . C[O, 1] =V

plays an important role. It is defined by

n

(Inv)(z) = Y v(z)wi(a).

i=1

The fully discretized version of the equilibrium equation (27) is the equation

fa(z) = Fu(f)(z) = In(F(f))(z), where F(z)=1-z¢ (ffjs:(vﬂ)?))

for f, in V. A rigorous analysis of the approximated problem provides several useful
facts. First, for h small enough, it is inferred that the approximate problem possesses
a unique solution, at least for relatively small monetary shocks. Secondly, if f is the
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F1G. 1. The price function f

solution of the continuous problem and fj is the solution of the discrete problem,
then the difference between them is bounded above as follows:

If = falle,a) < BRI lloo,1),

where the constant B depends on the size of the shock, but not on h.

Figure 1 shows the profile of a computed price function, denoted by f, based on
the subspace of piecewise linear functions defined on 29 subinterval of [0, 1] with equal
size 1/29. The particular price function displayed here corresponds to the parameters
A =0.4 and 8 = 0.9975.

To check the accuracy of the numerical approximation of the price function f, we
computed the residual vector r = (r;) € R%°, where

ri = f(zi) — F(f(z:)), z:i=(i—1)/29, 1< < 30.

This residual vector is plotted in Figure 2. We observe that the maximal value of r;
is of the order of 10~2!. This shows that the computed price function very accurately
satisfies the equation (27) and suggests that it is a good approximation of the exact
solution. )

Using the computed price-function f and the initial price p;, the equilibrium
prices are readily obtained via the iteration (28) in Theorem 3.5. Figure 3 shows an
example of a typical solution. Notice that p; < p2 < (1 + k)5 and that the subse-
quent prices oscillate around (1 + k)7, a situation in agreement with the conclucions
enunciated in Lemma 3.1 and Theorem 3.7. Also evident in Figure 1 is that the price
function is decreasing just as described in Lemma 3.4. Thus the qualitative features of
the model, establiched by exact analysis are reproduced in the numerical simulations.
This aspect lends further assurance of the veracity of the numerical caculations.

14
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F1G. 2. Plot of the residual

3.5. A proof of Lemma 3.4

This subsection provides a proof of Lemma 3.4. The proof will be divided into
two steps. The first step is to establish a local existence result and the second step is
to establish global existence by extending the local solution.

The proof of local existence is based on the following well-known result from
dynamical systems theory as expounded in Hirsch & Pugh (1968), for example. Our
approach is a slight refinement of that appearing already in Bona & Grossman (1983).

LEMMA 3.8. Assume that U C R? is an open set and g: U — R? is a differen-
tiable mapping satisfying :
1. g(X) =X for some X €U, and
2. the eigenvalues \; and Ay of Dg(X) satisfy

.I/\1|>1 and |A2I<1.

X, such that
1. v is the stable manifold for g, which is to say that

g({7h) c {»},

2. the eigenvector of Dg(X) corresponding to )z is tangent to v at X, and

real-analytic. :

Then there ezists a unique curve y defined in a neighborhood of X, and passing through

The above lemma will be applied to prove local existence. It will be shown that
there exists a positive constant § and a real-analytic function f defined on Q5 =
(P — 6,p+ ) such that for all z € Qs, F(f) = f, f() =pand -1 < f'(z) <0.

15
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F1G. 3. Plot of a typical price path

Let ¢ = ¢~ as in the proof of lemma 3.3 and let g : R? — R2 be given by

_(_r .
9(p,q) = (¢ (L;ﬂ)’p)

Obviously g is real-analytic near the point X = (5, ). Moreover, g(X) = X and the
eigenvalues of Dg(X) are seen to be

1+¢')+V(I+¢ D)+ 4¢(1)¢’(1)

A 26/(1)
\ 1+ ¢'(1) - /A + ¢ @D)? + 4¢(1)¢'(1)
2 2¢'(1)

with associated eigenvectors

_( M | A
1=(4) e ne(t)

respectively. It is easily verified that —1 < A2 < 0 and A; > 1 since ¢/(1), ¢(1) > 0.
Hence, according to Lemma 3.8, there is a stable manifold for the mapping g near
(p,P) given by a curve v = (s), defined for s near zero, say, such that

7(s) = (m(s),72(s)) with 71(0) =4(0) = d’hgg; Ao

Because of these properties and the form of g, the curve v may be reparameterized
111 Ene I()I'III

() = (f(2),2),

16



for z € Q5 for some § > 0, where f is an analytic function defined on 5 such that
f(P) = p and f'(p) = X;. In particular, we see that 0 > f'(5) > —1. Because g maps
7 into itself, if z is near p, then there is a y near j such that

9(f(z),z) = (F(y), ).
By the definition of g, this means that‘

_ f@ _
f(y)—W @) and y = f(z).

Consequently, it transpires that

_f@)
SUE) = S

or equivalently

e =1-as (5.

This proves that f = F(f), at least when f is viewed as a mapping of Q; into itself.

Since ~1 < f'() < 0 and f is continuous, it follows that for sufficiently small §,
-1 < f'(z) < 0if |z ~ p| < 8. This result comprises the local existence theory and
finishes step 1 of the proof of Lemma 3.4.

Attention is now turned to the proof of existence of the price function on the
whole domain [0, 1]. The idea is to extend the local solution defined near 5 obtained
above.

First note that the uniqueness of f is obvious. In fact, if f is another such solution,
but f (1) # f(p,;) for some p, € (0 1], then the sequences generated by iteration,
namely p,1; = f(p;) and P, = f(D,) with p, = p, will be two different solutions
of (23) with the same initial configuration. This contradicts Lemma 3.3.

Consider the auxiliary function

t

1- -1 11
YR (e )

for all values of ¢ for which f is defined. It is easy to see that f is a solution of 27
if and only if ‘

9(t) =

9(f(z)) ==z

for all z in the interval of the definition of f. Thus g is actually the inverse function
of f.

LEMMA 3.9. Let g be as defined above, where f is a solution of (27) on some
interval Q C [0,1]. Then it follows that

(35) g'(t) < =1 +7), forallt € Qy,
where
(36) y=p"% 0'1 min(o;!, = - 1).

17



and 3 is the discount factor, A is the parameter in the homothetic utility function,
while o1 € (0,1) is the parameter appearing in Lemma 3.2.

Proof. If z = ﬂt;-, then by Lemma 3.2,

t
zs—si.
o1 o1

Direct calculation and Lemma 3.2 then imply that

T S SN BT
90 = o (6+0-09 )

70
L g pdE)
Z 5 T %0
= 148 %254 (% Y P T
> 1+p%of (o7 + (5 - 1)(1-1)
2 147

Let i be the smallest integer that satisfies
(1+7)6>1.

For i <o +1, define Q; = Q5, where & = (1 + 7)i6. Let fo = f and iteratively
define

1-1¢

gi-1(t) = : , for z€Q;,
(37) ¢ Efz'—l( t)j

fi(z) = g{'_ll (z), for ze

for i = 0,1,---,ip + 1. By induction, it is easy to see that f; and g; are both well
defined, the estimate (35) holds for each g;, and

Qi C Qi Cg(ioy), filg,_, = fica-

By the definition of 29, 1 € Q;, C Qip+1- Thus 0 = g,—o(l) € Qi 41. As i,+1 must be
a subinterval of [0, 1], we conclude that

Qio+1 = {0, 1]

Consequently f; 1, is defined on the whole interval [0,1] and satisfies (27). The
elementary properties of real analytic functions allow one to adduce the extension
given by (37) is analytic and hence f is analytic on [0, 1).- The proof of Lemma 3.4 is
now complete. O

4. Multiple monetary injections and stabilization. This section aims to
study how government monetary policy can be designed to control the fluctuation

ro. P14 £ M L SIS T 28 o AT A - v 4
of equilibrium prices that is a consequence of monetary cxpansion. Assume that the

desired monetary policy involves a fraction k increase in the money supply. This

18



amount of money can be injected into the market either at one time or at several,
perhaps consecutive times.

It turns out, as we shall show, that multiple injection is preferable to one-time
injection in the sense that price and interest-rate oscillation can be eliminated by
appropriately chosen policy. As a consequence, we conclude that the government can
use the open-market operations as a tool to stimulate the economy while prices are
kept relatively stable.

4.1. The Set-up

In this subsection, we take it that money is injected into the market at n different,
but consecutive times j = 1,2,---,n, the j — th injection in the amount k; M takes
place at the end of time period 7, where :

and the money supply at the end of period j is

e 1+5k 1<j<n—1,
7 1+k j>n.

In this case, (20)-(21) can be rewritten as

(38) D +pt_1¢( Pt ) = 1 for t Z n -+ 1, and
Dy
p; =
(39) Pit+ @1 +k)g(=) = 1+) b 1<j<n,
Dj+1 =
pt +kn Pt b
= = > - = {J.
where p,, k—}-l’pt k+1f0rt_n+1,po Mg, and ko =0

Obviously we can solve (39) for p;; in terms of p; and p;_;, namely

(40) pi+1 = 8i(pj,pj-1), 1<j<n-1,
for certain functions S;. Applying (40) recursively for j = 1,2,..n — 1 gives that
pi =Tj(p1) for 1<j<n+1,

for some functions T;. The explicit expression for T; can easily be obtained inductively.

LEMMA 4.1. Assume that p; belonging to (0,1) satisfies

Tn(pl) 3 n—1 .
(41) Ta(m1) + (Tn-1(p1) + kn-1)¢ ((1 T [f.’,.lk_k" )) =1+ Z k;.

Then 1f pj, 1 < j < n, is deiermined by (40) and p,,;, = f{p,)
{p:}$° satisfies (39) and (38).
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The proof of the above Lemma is straightforward. However whether or not there
exists a p; belonging to (0,1) satisfying (41) is a little subtle. We shall establish
existence of such values p; in some special and practically interesting cases.

4.2. Two injections
The special case wherein money will be injected into the open market in exactly
two consecutive periods will be discussed in this section. Since the total amount kMg
is placed in the market in two periods, the money supply in the first two periods are
Mg and M} = (1 + k1) M, respectively, and the money supply at all other periods
t=2,3,--+,is M{ = (14 k)Mg. According to (39) and (38), the equilibrium prices
P1, P2 and p; have to satisfy

P+ M&b(’i) =1,

Pk mnt ky _
1+k 1 +k ¢( ) L,
Pt+Pt—1¢( =1, for t2>3,
Pt+1
k—k
where p, = pz—:—_iTl and p, = ﬁf—I for t > 3. Corresponding to (40), we have

D2 = St (p1) where

bal/A A1
sl<p)—[M°ﬁp ﬂ”*‘] ”

with p2 = S1(p1), whereas (41) now becomes

Si(p1)

Si(p) +p1 + k1¢((1 " k)f(slgmlszk—kl)

)=1+k1.

Define the function H by

_Si(z)  z+hk S1(z)
H(m)_1+k1 1+k1¢((1+k)f(—1—(312$))

Evidently H(z) is continuous and

zll,n,} H(z) =-1 31_'ml H(z) =
where p* = 1 — M{. By the intermediate-value theorem, there exists p; € (p*,1).
satisfying H(p1) = 0, with p; = Si(p1) and p, = f(p,_;) for t > 3. The equilibrium
price path {p,} is thereby obtained. :

Comparison with one injection. Assume that p, and g, are the equilibrium prices
for one injection and two injections, respectively, that correspond to the same total
monetary expansion.

The unscaled equilibrium prices {p;} and {¢:} are plotted in Figures 4-7 for a
set of values of k;. As shown in Figure 4, two equilibrium prices coincide for ¢ > 2 if
k = k1. But as k; gets smaller, {q;} gets closer to the steady-state equilibrium price.
However, after k; passes a certain critical value, the prices appear to drift away from
the steady state. Such a critical value k; = .532 (shown in Figure 6) that makes the
equilibrium prices most stable will be called a stabilizing injection and its existence
will be rigorously justified in the next subsection.
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FIG. 4. First test: Single injection of 0.8 and double injection with ky = 0.3, k2 = 0.5. Here
A=0.63, 8 =0.99, Mg =0.5 and K = 0.8. In the graph, the solid line corresponds to one injection,
the dashed line to two injections and the equilibrium price p is marked by — - —..
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F1G. 5. Second test: Sin

gle injection of 0.8 and double injection with k1 = 0.4, ko = 0.4. Here

A—=083 20099, Mg =05 and K = 0.8, In the araph, the solid line corresponds to one injection,

the dashed line to two snjections and the equilibrium price p is marked by — - —..
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FI1G. 6. Third test: Single injection of 0.8 and double injection with k1 = 0.529, k2 = 0.271.
Here A = 0.63, 8 = 0.99, M§ = 0.5 and K = 0.8.In the graph, the solid line corresponds to one
injection, the dashed line to two injections and the equilibrium price § is marked by — - —-.
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FI1G. 7. Fourth test: Single injection of 0.8 and double injection with k1 = 0.65, k2 = 0.15.
Here A =063, 8 =0.99, M8 = 0.5 and K — 0.8, In the gmph, the solid line corresponds to one

injection, the dashed line to two injections and the equilibrium price § is marked by— - —-.
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Fi1G. 8. Fifth test: A smaller value of K. Single injection of 0.0016 and double injection with
k1 = 0.0008, k2 = 0.0008. Here A =0.63, 8 =0.99, M§ = 0.5 and K = 0.0016. In the graph, the
solid line corresponds to one injection, the dashed line to two injections, and the equilibrium price
7 is marked by — - —-.

Existence of stabilizing injections. The stabilizing injection observed in the nu-
merical experiments reported above is of both theoretical and practical interest. This
paragraph is devoted to a proof of its existence.

THEOREM 4.2. Suppose that money is injected into the market at two consecutive
times and that M¢ € [p(1 — k/¢(1)), (1 + k)]. Then, there exists a k; € (0,k) such
that,

(42) D

for allt > 2, where

p

pt+k-—k Dt
P2 1+t PET 1% for t23

Proof. 1t suffices to show (42) for ¢t = 2. Recall that p, satisfies G(p,,s) = 0
where

_(+k)py+s—k pr+s, (1+kp,+s—k
Gpz, ) = 1+s s T+Rfmy "
and p; = p1(p,) is given by
YL D1 AN
1 T Mgy ) =1

1+k)py+s—k
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We need to show there exists a k; € (0, k) such that G(5,k1) = 0. As G is obviously
continuous with respect to s, it suffices to show

G(,0)<0, G(p,k)>0.
We first claim that if s = k, then

n+k_ _
1+k& > P

If not, then p; < (1 + k)p = K and thus

y48

-1
p2+s—k)

< u+km-k+Aﬁm1—E£%E)-1

< u+m@—n+Mwu-a£%E)

< (Mg -(1+R)DP)e1) <0,
which is a contradiction. Consequently

— = Ptk 1=
6@k =+ Be1) - 1=(

Next, it is asserted that if s = 0, then
hn _
<p.
1+k -7
For, otherwise we have p; > 5(1 + k), and then it transpires that

0 = P+ Mgy~ !

_ (1+k)p
(1+k)p

> Mg¢(mg_—k)-(¢(1)—k)ﬁ
= ¢(1)[Mg - (1 - k/¢(1))f] > 0,

which is a contradiction. Consequently, it is seen that

pit+k
1+k&

- P)(1) 2 0.

)1

G0 = (+Rp-k+poll- ) =1
_ k
= A+ - ) — SDI <O

o

Remark 1t follows from the proof that the restriction on M¢ can be weakened as
follows:

A g (LRI,
$(1+ wrwyp=r) o1 - wrmp)
As a consequence, if k > $(1), then Theorem 4.2 is true for all M} € [0, 1]. The above

theorem shows that optimal injection exists if k is not too small. In fact, numerical
experiments indicate that no optimal k; exists if k is very small.
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5. More general utility functions. The preceding results were all predicated
upon the assumption that the utility function is homothetic. It is natural to inquire
what part, if any, of the forging theory remains valid for more general utility functions.
A first step in the direction of more generality is taken in this section, where we study
a class of utility functions near to the homothetic ones. To fix ideas, consider the
situation wherein the economy features unit output and there is a single monetary
injection. In this case, the (normalized) equilibrium prices satisfy the equations

(43) Pt+Pt+1C2( Pe ’&l)=1, t=2,3,...,

Di+1 Piya
where C; is the demand function which is related to the utility function via the local
optimization problem (7). When the consumer is equipped with a homothetic utility
function, then C2(X,Y) = Y¢(X). The next preparatory result shows that if U is
‘nearly’ homothetic, then C, almost has the form just mentioned.

1—-A

LEMMA 5.1. Let U(C) = 61'_,4 + v(C) where v is such that

(44) V(€)= (C+g(C))~* ~-C4

for a given function go. Then the demand function C2(X,Y) satisfies
C:(X,Y) =Y(X) +g(X,Y),

where

(45) l9(X,Y)] < sup go(t)+ X sup go(t/X).
N o<ty o<t<Y

Proof. By their definitions, the demand functions C; and C,, comprise the solu-
tion of the problem

By U(Cy) + BU(Cy)

for the appropriate utility functions U. Applying the well-know hecessary condition
for maximization problems, there appears the relation

CrA +9/(C1) = BX(Cy4 +1'(Cy)).

Since v'(C) = (¢ + go(C))~4 — C~4, it is seen that

C1 = (BX)™VA(Cy + 90(C2)) — 90(C1)
and
Co=Y - XC, =Y = X(BX)"V/AC; — X(BX)™/*go(Cy) + Xgo(Ch).-
It follows that

Ce =Y ¢(X) + 9(X,Y),
25
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where

9(X,Y) = —(B~V/AX "1 4)p(X)go(C2) + X $(X)g0(Ch)-
Noting that f~1/4AX1-1/A4(X) < 1 and ¢(X) < 1, there obtains

lg(X,Y)] < sup  (lg0(C2)| + X|go(C1)]) = sup (go(t) + X go (Y);t))
XC1+Co=Y 0<i<Y

< sup go(t)+ sup Xgo(t/X)= sup go(t)+X sup go(t).
o<ti<Y o<ty 0<t<Y 0<t<Y/X

Because of (7) and (45), the equilibrium equation is reduced to

P P
P+ Py 1¢('—)+Pt+19< b, o 1) =1
Py1 Pt+1
As before, we seek solutions to the above equation in the form Dis1 = f(p;) with the
function f necessarily satisfying

(46) F(z) +z¢ ( ff;(z))> + fof (z)g <“—ff;2) fofazx)) -

It is previously established that if go = 0 (whence g = 0), then there exists an
f satisfying the above equation. We will use the Implicit-Function theorem to show
that the price function f also exists (hence so do the equilibrium price sequences) if .
go (as in (44)) is sufficiently small.

LeMMA 5.2. Ifa, b, ¢ are constants and c # 0, then

a+bt+0(%) 1 ad
m = E [a«i— (b"' ?)t:I +O(t2),

ast— 0.
Proof. The proof is elementary. 5]

LEMMA 5.3. Let

F(f,9)(@) = f(2) + ¢( Sz ))) 14 fof(z)g (f—‘””)— —-‘”—)

Jof( fof(z)’ fof (z)
Assuming that f is as in Theorem 1.3, then
OF
37 o) h(z) = a(z)(I + T)h(z)
where
(47) (Th(E) = i),
and

a(r) = 1-ba )ffﬁ(“)”)w( )Fof (2),
| f()

(i@
bz) = -a¢ <fof(z>> (fof ))*
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Proof. By definition, for any h in C(£;),

oF _ o F(f+1th,0)(z) — F(£,0)(x) .. F(f-+th,0)(z)
87, "0 =l TR =ty R,

Here we have used the fact that F'(f,0)(z) = 0. Using this fact again yields

F(f +1h,0)(z) =th(z) += [¢ (( f f %D(;TS;))(@-J ¢ (ffJSZZ)) ] '

By Taylor expansion, it is deduced that
(f +thX(f + th)(z)

(f + thef(z) + (f' + th'of (z)th(z) + O(t2)
fof(z) + t(hof (z) + fof (z)h(z)) + O(t?),

as t = 0 An application of Lemma 5.2 leads to

(f +th)(=) _f= 1 h(z) - f(z)(kf(z) + f’of(z)h(x))} :
(f + th(f + th)(z) fof(z)  fof () fof (z)
+0(t?).

It follows from another Taylor expansion that

p ( f(z) + th(z) )

(f + thy(f + th)(z)

@) 1 [ f@)(ef(e) + Fof @)hiz)) )

= ¢(f°f(x)> * G ["‘ ) @) ]“’O“ 2

(@ Ly (S@ L\ [y @) + o @h(a)

= ¢(fof(z)>+"’ (fof"<z) fof(z)) [h” 0 ]t
+0(¢%),

as t = 0. Therefore, one has

OF| (@1 [ f@)E) + ff@h)
3F | yo ) = Pla)Had (fof(rc)) @ ["” @) ]
_ (L@ L (1) f@fF)
= @ [” ¢ (m) 7 (&%) (fof(z))ﬂ]
g (@ i@,
=0 (fof(z)) Fray @

= a(z)h(z) + b(z)kf(z) = a(z}(I + T)h(z).

LEMMA 5.4. The operator T defined in ({7) satisfies

1Tl Bc(@s),c@s) <Y <1,

provided § is sufficiently small. (If X andY are Banach spaces, B(X,Y) connotes
the bounded linear operators from X to Y)
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W

Proof. Since
b(p) = -¢'(1),
it follows that
a@) =1+4¢'(1) —¢'1)f'(0) 21+ 4'(2).
Hence, if § is sufficiently small, then |

S5+ ¢'(i) _

< -
Ib/allcas) < FPTey

v<1.
Therefore, we have
TRl Bcs).c@s < Ib/allc@anlibllcesifllces < Ylihllews)s
whence || T ||s(c(as),cs) < 7- o

LEMMA 5.5. Define a mapping A by

_or
Of l(s.0)

Then A : C(Q2s) = C(Q;5) is one-to-one, onto and A~ is bounded.

A =a(z)(I+7T).

Proof. First remark that I 4+ T has the desired properties since the norm of T
viewed as a mapping of C(€s) is less than one. Since the function a is bounded above
and away from zero, it follow that multiplication by a is a one-to-one map of C(f25)
with a bounded inverse. The result follows since A is the composition of two such
maps.

0
LEMMA 5.6. There are two positive constants § and 7 such that for any

g € C(R") with gollcirr) <
there ezists an f € C(§s5) that satisfies (46) for allz € (p—4,p+6) N[0, 1].
Proof. Let

FU7,9)(@) = o) + 0 (L) ~ 1+ p@ye (L5, 225

By Lemmas 1.3 and 1.4, A = % is a one-to-one, onto map having a bounded
o

inverse. The desired result then follows from the Implicit-Function Theorem. O
THEOREM 5.7. There are two positive constants § and 1 such that for any
g0 € C(RY) with |lgollc(rry < ms
there exists an f € C(Qs) that satisfies (46) for all z € (P — 9,1].
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Proof. It suffices to show that ]%((%))-I < 1 for z € [p,1]. It is straightforward to
ascertain that this inequality is equivalent to

- % [fof (z) — f(z) — Fof (z)f(2)] > O.

The latter inequality is valid for z € (, 1] since b(z) < 0, f'of (z) < 0 and

fof(z) — f(z) 2 0.

)
With the existence of the price function established, the existence of equilibrium
price sequence then follows directly.

6. Concluding remarks. The principal conclusions derived on the basis of the
foregoing analysis is that a monetary expansion in an economy will lead to a gradual
increase in price level. Moreover in the absence of further perturbations, the price path
will approach a new steady-state in a oscillatory manner. These general conclusions
appear to be in broad agreement with some of what is observed in real economies.

The numerical experiments based on the Grossman-Weiss model show clearly
that the size of the price fluctuation depends substantially on the level of government
intervention in the money supply. A potentially interesting aspect of the present
investigation is the existence of what we have termed ‘stabilizing’ monetary injections,
in which the new equilibrium prices and interest rates are reached monotonically,
without oscillation and in a minimal length of time. There is also the prospect of
using multiple injections to move the economy from the old equilibrium to the new
equilibrium monotonically, and in small increments.

Finally, it deserves remark that the indogeneous inclusion of productions is needed
to truly justify the appellation ‘optimal’ to the multi-step injection polices discussed
in Section 4. An investigation of this aspect is currently under way and the outcome
will be reported in due course.
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