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Abstract
For a class of generalized Korteweg—de Vries equations of the form

up + W)y — DPu, =0 (*)
posed in R and for the focusing nonlinear Schrodinger equations

iuy + Au+ulPu=20 (x%)

posed on R", it is well known that the initial-value problem is globally in time
well posed provided the exponent p is less than a critical power pcg. For
P 2 Perr» it is known for equation (*x) and suspected for equation (x) (known
for p = 5 and 8 = 2) that large initial data need not lead to globally defined
solutions. It is our purpose here to investigate the critical case p = peir in
more detail than heretofore. Building on previous work of Weinstein, Laedke,
Spatschek and their collaborators, earlier work of the present authors and others,
a stability result is formulated for small perturbations of ground-state solutions
of (xx) and solitary-wave solutions of (x). This theorem features a scaling that
is natural in the critical case. When interpreted in the contexts in view, our
general result provides information about singularity formation in the case the
solution blows up in finite time and about large-time asymptotics in the case
the solution is globally defined.

Mathematics Subject Classification: 35B05, 35B35, 35B40, 35Q35, 35Q53,
35Q55, 76B15, 76B25, 76E30

/

0. Introduction

Evolution equations that feature a balance between nonlinearity and dispersion have been
the focus of intensive investigation for more than three decades. The initial impetus for
this scientific activity was the inverse scattering theory (IST) for the Korteweg—de Vries

0951-7715/02/030759+28$30.00 © 2002 IOP Publishing Ltd and LMS Publishing Ltd Printed in the UK 759



760 J Angulo et al

equation. A widerange of theoretical and applied studies are currently centred around nonlinear
dispersive wave equations. These works use tools including, but certainly not restricted to, the
inverse scattering transform.

One of the lessons learned from the IST is that solitary waves play a central role in the
long-time asymptotics of solutions to the initial-value problem (a conclusion buttressed by the
present study). Indeed, for the Korteweg—de Vries equation (KdV-equation henceforth)

U + Uy + (uz)x + Uy =0

itself, general classes of initial disturbances are known to resolve into a finite sequence
of solitary waves followed by a dispersive tail. A companion result is that individual
solitary waves are orbitally stable solutions of the evolution equation. The exact theory
of stability of solitary waves commenced with Benjamin’s paper [Be2] (see also [Bo]) and
reached a state of some maturity more than a decade ago (e.g. [AB, ABH, Al1, Al2, BBBSS,
BS,LBS, W6]). In the mid-1980s in the papers of Strauss and his collaborators and Weinstein
[BSS, GSS, W3, W5], it came to light that not all solitary-wave solutions are stable. Both
necessary and sufficient conditions for stability of the solitary-wave solutions of a range of
nonlinear dispersive evolution equations appear in various of the above references. These
results have been supplemented by more recent studies (see [AS,Lel, Le2,Lol,Lo2,Lo3, M,
MM1, MM2, MM3, PW]).

An interesting issue emerges from the fact that there are unstable solitary waves, namely
the question of their longer-time behaviour under general perturbations. The answer to this
query does not follow from the theory leading to the conclusion of instability. The instability
results are based on a local analysis made in a neighbourhood of the solitary wave whose
stability is in question. This analysis, which uses in an essential way the Hamiltonian structure
of the equation, shows that there are initial data consisting of arbitrarily small perturbations of
the solitary wave that leave a small but fixed neighbourhood of the solitary-wave orbit in finite
time. Once the solution has left this neighbourhood, there is no reason to expect that calculus
based on linearizing around the solitary wave being studied will continue to provide helpful
information about the solution.

Numerical simulations have provided a set of conjectures related to the question raised
above. The answer appears to depend upon the particular equation which is under study. As
an example, consider the class of generalized KdV-equations

U+ g + UP)y + Uy =0, 0.1

where p is a positive integer. Solitary-wave solutions u(x,t) = ¢.(x — ct) exist for any
¢ > 1 and are unique up to translations in the underlying spatial domain (and sign in the
case p is odd). These travelling-wave solutions are stable, and even asymptotically stable, for
all values of the speed ¢ of propagation provided that p < 5 (see [ABH, BSS, MM2, PW)).
For p > 5, solitary waves of all speeds are unstable (see [BSS] for p > 5 and [MM3]
for p = 5). In the unstable case, it appears that initial data for an appropriately perturbed
solitary wave lead to a solution that blows up (becomes infinite) in L,-norm in finite time
(see [BDKM1, BDKM?2, BDKM3, BW, DM]). For equation (0.1) in the critical case p = 5,
this has been rigorously confirmed in a recent, remarkable paper of Martel and Merle [MM4].
On the other hand, for the generalized regularized long-wave equations or BBM-equations of
the form

U+ Uy + W)y — Upyy =0, 0.2)

solitary waves also exist and are unique to within spatial translations (and sign if p is odd) for
any value of the speed ¢ > 1. These travelling waves are stable, for all values of the speed
when p < 5, whilst for each p > 5, there is a critical value ¢, > 1 for which the solitary
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waves with speed in the range 1 < ¢ < ¢, are unstable, but those with speed ¢ > ¢, are
all orbitally stable (see [SS]). In this latter situation, extensive numerical simulation of the
equations in (0.2) indicates that solutions move away from the unstable waves and converge
to a sequence of one or more stable solitary waves followed by a dispersive structure (see
[BMRY)). In any event, solutions cannot become infinite in finite time no matter how large is p.
Certain, more general versions of the equations in (0.1) in which the nonlinearity has the form
9, f (u), where f is not necessarily homogeneous, have also been analysed recently and both
stability and instability results are available in this context (see [Lo3]).

This paper aims to add to the discussion outlined above. We formulate and prove a
theorem relating to the solitary-wave solutions of the initial-value problem (IVP henceforth)
for the KdV-type-equations

Uy + iy + Py — DPu, =0, xeR, t>0,
u(x, 0) = uo(x),

where 8 2 1, p > 2 is an integer, and u : R x [0,7) — R for some T > 0.
The homogeneous operator D? is a Fourier-multiplier operator defined for suitable functions
v:R — Rby

DPu(E) = E1PD(&) 0.4)

for &€ € R. Here and below, a circumflex surmounting a function connotes that function’s
Fourier transform with regard to the spatial variable x.

The solitary-wave solutions of (0.3) are smooth, travelling-wave solutions of the form
u(x,t) = S(x — nt), with n > 1, that are symmetric about their crest and which decay to
zero at infinity (see [All, Al2,Be2, BBB,BL1,BL2,CB, W6]). After a scaling, they satisfy the
elliptic pseudo-differential equation

D?S +nS — §P =0, (0.5)

(0.3)

and while they are probably unique to within sign and translation in the underlying spatial
domain, they are known to be unique only for special cases (see [AT, AlT]). These solitary-
wave solutions are orbitally stable when p < peic = 28+1 (see [ABH, Al1,Al2,BBBSS,BSS,
W4, W6]). Meanwhile, they are unstable if p > pc;; (see [BSS]). For this class of equations,
it is well known (see [ABFSa, AL, BBBSS]) that the IVP is globally well-posed provided the
exponent p is less than the same critical power pe;r = 28 + 1 that arises in the question of
orbital stability. The results herein pertain exactly to the critical value of the parameters where
p=28+1.

For nonlinear Schrodinger-type equations, a similar commentary applies. Consider the
IVP for the focusing nonlinear Schrédinger equation (NLS-equation in what follows)

i, + Au+ ulPu =0, xeR, 20,
u(x, 0) = uo(x),
where A is the Laplace operator on R” and u# : R” x [0, T) — C for some T > 0. For any

pwith0 < p < 4/(n—2) (any p > 0if n = 1 or 2), the evolution equation in (0.6) admits
standing-wave solutions of the form

0.6)

ur(x, 1) = G(x)e™, 0.7)
where A > 0 and G = G, satisfies
AG —AG +GP = 0. (0.8)

A ground state G, is the solution of (0.8) that has minimum energy. These special solutions,
which are real-valued, positive and decrease rapidly to zero at infinity, play an important role in
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the theory of Schrédinger-type equations just as solitary waves do for (0.3). They are unique to
within spatial translation and may be taken to be radially symmetric by an appropriate choice
of coordinates (see [BL1,BL2, BLP,Kw,S]). When p < p.; = 4/n, these standing waves
are orbitally stable in H!(R") (see [C,CL, W1]), but if p > pcy the ground states are known
to be unstable (see [BC, GSS]). Regarding the IVP (0.6), global well-posedness obtains for
arbitrarily large data provided that p < pc, just as for the KdV-type equations (0.3). On
the other hand, if p > pc, then there are solutions that blow up in finite time, although the
exact structure of this singularity formation has not been settled (see [Z, G] for early results
about singularity formation). The first result describing the asymptotic behaviour of blowing-
up solutions of the NLS-equation appears to have been that of Weinstein [W3, W5]. Later,
Laedke et al [LBSK] studied Weinstein’s results and attempted to extend them to a larger class
of initial data. In [ABLS], certain details related to the last cited work were provided by the
present authors that added precision to the resulting theory. Numerical studies of this blow-up
phenomenon were pioneered by Papanicolaou and co-workers [LePSS, LPSS] (see also the
recent work of Akrivis ef al [ADKM1, ADKM2] and the references contained therein). See
Weissler [We] for recent results where the nonlinearity |u|?u is generalized to the form f(u)
where f need not be homogeneous.

In this paper, in addition to our analysis of solitary waves, we also extend the
previous analysis reported in [ABLS] of ground-state solutions of the IVP for the focusing
NLS-equation (0.6). Roughly speaking, our earlier work established that the blow up near
unstable ground-state solutions for the case p = peie = 1 + 4/n is stable in a sense made
precise in theorem 5.1 below. We also announced in [ABLS] a result providing a more detailed
description of the evolution of the parameters involved in theorem 5.1, modelled on theorem 7
of [BS], which applies directly only in case p < pes. In this paper, we offer in theorem 5.2
a detailed proof corresponding to our earlier speculations.

The results obtained here for KdV-type and Schrodinger-type equations are particularly
interesting because the analysis is formulated exactly for the critical power of the nonlinearity,
and so for cases where the solitary waves or the ground states are just unstable. Because there
is special structure available for the critical values of the parameters, issues associated with
these values have naturally received considerable analytical and numerical attention.

The plan of this paper is as follows. Section 1 is devoted to notation, a more detailed
review of prior theory that bears upon the present developments for KdV-type equations, and
a statement of our principal results for KdV-type equations. Section 2 is concerned with sharp
conditions for global well-posedness of the IVP (0.3). Then, in sections 3 and 4, the stability
theory for KdV-type equations, including results about the variation of the stability parameters,
is set forth. Section 5 contains the aforementioned results on the variation of the stability
parameters for the NLS-equations. Our conclusions are briefly reviewed in the last section.

1. Notation, prior results and statement of main theorems

1.1. Notation

The notation in force is simple. An unadorned norm symbol | - || will always denote the
L>(R*)-norm in the spatial variable x. The norm of a function f € L,(R") is written | f|,.
Usually, the value of the dimension n will be obvious from the context, and so we may write
simply L, rather than L,(R"). The norm in the function class H* = H*(R") is denoted || - ||;.
The multiple notations for the L,-norm || - || = || - |lo = | - |2 do not appear to cause confusion.
The L,-inner product of two functions f and g is denoted ( f, g). The orthogonality condition
(f, g) = 0 will sometimes be indicated by the annotation f 1L g.
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If X is a Banach space of functions of the spatial variable x, then the class C™ (0, T'; X)
is the class of m-times continuously differentiable functions from [0, T] to X with
the norm

lullemo,r:x) = sup  sup 18/ u(®)]x.
0<j<m 0T
When X is a concrete function class such as H*(R), an element u € C™ (0, T; H*(R)) is such
that u(t) € H*(R) for each ¢t € [0, T]. When it is useful to display the spatial dependence
of u(t), we will write u(x, ¢) rather than u(¢)(x). As already mentioned, # is the Fourier
transform of the function u with respect to the spatial variable x. It will also be convenient on
occasion to write Fu or F,u if the variable is in doubt, for the same Fourier transform. As
noted in (0.4), for B > 0, D? f is defined via the Fourier transform as the pseudo-differential
operator with symbol |&|#. Notice that D = D! = H3d,, where H is the Hilbert transform.

1.2. Preliminary results for KdV-type equations

The local well-posedness results for the IVP (0.3) in the L,-based Sobolev classes H*(R) are
as follows. For any integer p > 1, the IVP (0.3) defines a continuous mapping from the class
of initial data X to solutions in C(0, T'; X) for some positive time interval [0, T']

() for > 2 and X = H*(R) for any s > 18 or
(i) for B > O and X = H*(R) for any s > 3.

For the first result, see [AL]; to establish the latter result, one may use Kato’s theory [K] (see
also[ABFSa, Sa]). For more subtle results in the special cases § = 2and § = 1 (the Korteweg—
de Vries and Benjamin—Ono cases, respectively), see [GV, I, KPV1, KPV2, KPV3, P, T]
and the references contained in these articles. One can also establish the existence of
weak solutions in the case § > 1 in H*(R) for s 2 %,B and p < Peit, fOr p = pet
and initial data that are small enough in L,(R), or for p > p.4 and data that are small
enough in H#/2(R). This may be accomplished by regularizing the evolution equation and
passing to the limit in a standard way using weak-star compactness of bounded sequences in
L (0, T; H*).

To extend the local results to global ones, the following conserved quantities associated
with (0.3) are useful:

1
E(v)=—/vDﬂv—
2 Jr
1
F(v)=—fv2dx.

2 Jr

g vPHdx,
p+l (1.1)

Provided that v € HP/2 where B > (p — 1)/(p + 1), these integrals both converge (where
[ vDPu is interpreted as [ | DP/2v|?). They are independent of ¢+ when evaluated on solutions
of (0.3) that lie in C(0, T; HP/2). In this latter case, their values are thus determined by the
initial data. Regarding global well-posedness in the critical case p = pct, we are only aware
of results in H#/2(R) for 8 2 2, and with a restriction on the size of the L, (R)-norm of the data
(see [AL]). In the next section, as part of our development, there is obtained what is probably
a sharp bound on how large the data can be for global existence to obtain in the critical case
(theorem 2.1), For 1 £ B < 2 and the critical value of p, global well-posedness results seem
not to be available even for small initial values.

Concerning the solitary-wave solutions S = S, of equation (0.3), these satisfy (0.5)
and may be shown to exist by variational methods (e.g. the concentration compactness
method [All, Al2, CB, W6] in the case the nonlinearity is homogeneous) and by positive
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operator methods or the recent ideas of Lopes for more general nonlinearities [BBB,CB,Lo2].
These techniques allow one to deduce the existence of even solutions of (0.5) that decay to
zero at infinity. Regarding positivity of solutions, extra conditions are needed to guarantee
this property (see the discussions in [BBB, CB], for example, where there is established, under
suitable restrictions, existence of even positive travelling waves, strictly monotone decreasing
on R* and such that S and all its derivatives are bounded, continuous L-functions). However,
their existence is established and, independently of the question of uniqueness, the spatial
asymptotics and analyticity of such solitary-wave solutions was determined in [BLi, LiB].

Explicit solutions for the pseudo-differential equation (0.5) are known only in certain
special cases. For the case f = 2 (the gKdV-equation), solutions which are powers of the
hyperbolic secant, suitably normalized, exist for every p 2 2. On the other hand, for the
gBO-equation (8 = 1) the only explicit solution available is

2n
%+ E2
found by Benjamin in the mid-1960s for the case p = 2 [Bel].

A theory of orbital stability that applies to the solitary-wave solutions of (0.3) has been
developed by a number of authors over the last three decades (see e.g. [All,Al2,ABH,Be2,Bo,
BSS,W6]). Listed next are sufficient conditions due to Bona et al [BSS] for both stability and
instability. These conditions are often satisfied by the solitary-wave solutions of equations of
type (0.3). Let £ be the linear, self-adjoint, closed, unbounded operator defined on the dense
subset H? of L,(R), given by

L=DP+n—psr'. (1.2)

Sy(6) =

Suppose L and §;, satisfy the following properties.

(H;) The operator £ has a single negative eigenvalue which is simple, with eigenfunction
gn > 0, the zero eigenvalue is simple with eigenfunction S;’, and the remainder of the
spectrum of £ is positive and bounded away from zero.

(Hy) The curve n — S, is C! with values in H*#/2(R).

(H3) The mapping n — gy, is continuous with values in H 1+8/2(R). Moreover, foreach n > 0,
1+ |x]2(d/dn) S, and (1 + |x])!/2g, lie in L1 (R).

For n > 0 define the function d : R* — R by
d(m) = E(Sy) + nF(Sy).

In the case (H;) and (H;) hold, then the solitary-wave solution S, is orbitally stable if d is a
convex function of », which is to say d”(n) > 0. On the other hand, if d”(n) < 0 and (H,),
(H,) and (H3) all hold, then the solitary wave is orbitally unstable. It was shown in [BSS]
(theorem 4.1) that for any n > 1, S, is stable if p < 28 + 1 and unstable if p > 28 + 1.

Hypotheses (H; ) and (H;) have been verified for arange of values of # and p. For instance,
they are known to hold for the gKdV-equation 8 = 2 and p = 2 (see [ABH, Be2, Bo, W4])
and for the BO-equation 8 = 1 and p = 2 (see [All, BBBSS]). Moreover, a set of conditions
implying the properties of the spectrum of £ required by (H;) can be found in the works of
Albert [All] and Albert and Bona [AB].

Some of the more recent work (e.g. [Al2, Lel, Le2, MS]) on stability of solitary waves
has focused on weakening the spectral hypotheses listed above. These theories are more
satisfactory in this aspect. However, in the absence of an appropiate uniqueness result, they
only establish stability of the set of travelling-wave solutions, but do not ensure the stability
of individual solitary waves.
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2. Global solutions

What we believe to be sharp size restrictions on the data for the global well-posedness for the
IVP (0.3) in the critical case are established here. A helpful preliminary result is the following
sharp inequality of Gagliardo—Nirenberg type.

Theorem 2.1. Let 8 = 1. If f € HP/2(R), then for anyr > 2, f € L,(R) and there is a
constant C,. g such that

| FIL S Crp| DP2 1|28 || | @8-/, @.1)

The smallest constant C,, g for which this inequality is valid is

Coe_ P 24rp-\ 1 ]
MEETCET] NSV 1T B

where WV is a function in HP/2(R), satisfying
DAY+ W — | W2y = . (2.2)

Proof. For 1 <t <2and 1/r+1/t = 1, the Fourier transform F is a bounded linear operator
from L,(R) into L,(R). For any f € L,.(R) and A > 0, it follows from the last remark and
Holder’s inequality that for w = 2/(2 — ¢), there is a constant M such that

A% 1/t
1fl € MIF NPl = MIFD ) = M ( /R 4+ (gpy 2O d&)

(h+[EF)
e N 1/2 I 1/tw
<M | n+ d et ],
<u([oremnfore) ([ )
: r=2)/2r
= AT (3] £ + | D g 2) / e edy
R (L [yP)ie=3

= MAPQMIFI% + | DP2 £112)12,

where M| is a constant and b = (r —2)/2rf — 1 < 0. Choosing A = || D#/2 f||2/|| f||? in the
last inequality gives (2.1).

Concerning the value of the best constant C,. g, it will suffice to show that the infimum of
the functional

(| DFI2 £ =278 £)|@orB=1/p

J(f) =
|flr
over f € HP/2(R) is attained. If this is the case, then
1
Crp = —,
")

where ¢ is any element for which J takes on its minimum value. It will turn out that any such
¢ must satisfy the equation depicted in (2.2).

To show that the infimum is attained, consider the following two-parameter family of
minimization problems:

1(8, T) = inf {—/ |fG)I"dx : f € HFAWR) with |[DP2£|2 =9, and || f||*> = 1:} :
R
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where 9, T are positive constants. It follows from (2.1) that I (¢}, T) > —oo. By homogeneity,
it transpires that I (¢, 1) = 9et?I(1,1) wherea = (r —2)/2B and d = (2+r(8 — 1))/28.
Since I(#,7) <Oanda+d = %r > 1, there follows the sub-additive property
I0,7)<I(0,0)+1(0 —0,v—28)
for (0, ¢) € (0, %) x (0, t). The sub-additivity of I (s, 7) together with the concentration-
compactness theory (see [CB,L1,12]) implies the existence of a ¢ € H#/?(R) N C*®(R) such
that | D?2¢||? = 9, ||l¢||*> = t and |¢|" = —1 (¥, T). An appeal to homogeneity then assures
that J (¢) = inf{J(f) : f € HP2(R)—{0}}, whence J'(p) = 0 and so g satisfies the equation
2aDPo +2bcip = calp| " 2p (2.3)
for suitable positive constants c1, c;. To determine the value of C;, g, multiply (2.3) by ¢ and
integrate the result over R to obtain 2a|| D?/2¢||?> = —2bc ||@||? + c2|@|7. Next, multiply (2.3)
by x¢’ and use the equalities H(x¢") = xHg" and D~ (xHe") = (8 — 1)DPp+xDF¢’, to
obtain a(8 — 1)||Df2¢||> = bey||@l|* — (ca/7)|@|. In consequence,

R B R
If
(o \YD o ra
- (32)" ().
then W satisfies (2.2) and C, g = [J(¥)]~! as advertised. O

The following additional hypothesis is needed in the proof of global well-posedness for
(0.3) for certain initial data in the critical case p = 28 + 1.

(Hp) The positive solitary-wave solution of (0.3) in HA/2(R) is unique up to sign and
translations.

As previously mentioned, this hypothesis is known to hold in special cases such as the
KdV-equation itself, the Benjamin—Ono equation and the intermediate long-wave equation
(see [AT, AIT]). Itis a very likely assumption in a wide range of circumstances. Presuming the
validity of (Hp), theorem 2.1 implies that for each > 0, ||S,|| = ||¥|| wheneverr = p + 1.
Moreover, the best value of Cp.1,6 is (p + 1)/2]1S11*.

The next theorem results from assuming (Hp) and taking into account the local
well-posedness results already mentioned in section 1 (see section 1.2).

Theorem 2.2. Let p > O be an integer and suppose that p = 28 + 1. If B 2 2, then the IVP
(0.3) in HP/2(R) is globally well-posed in the open ball Bg(0) in HF/2(R) for R = ||S||, where
S is the solitary-wave profile solving (0.5). Moreover, if |ug|| € Bg(0), then E(ug) = 0.
Proof. Since the L, (IR)-norm of a solution « of the IVP (0.3) is conserved, it is only necessary
to establish an appropriate a priori bound for || D#/2u(¢)||. The conserved functional E presents
itself as a natural candidate in this endeavour. Observe that

%nDﬂ”u(mF S B+ - i I
Using theorem 2.1 with » = p + 1, a calculation shows that

28
1D 2u()? [1 - (”""“”) ] < 2E(ug),

(B
and the result follows. O

Remark. It follows from the last inequality that if 8 > 2 and the initial data ug lies in H*(R)
for some s > % and satisfies the condition [|uo]] < || S|, then E (1) = 0. The same conclusion
is validif 1 £ 8 < 2. In particular, for 8 > 1, E(S,) 2 0 for all n > 0.
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3. Stability theorem for KdV-type equations in the critical case

Attention is turned to the behaviour of solutions of equation (0.3) in the critical case p = 28+1.
Following [LBSK, W3, W5], introduce the auxiliary functions

P(x, 1) = u(® Puut) " x, 1), (3.1)
where

By 178 A2 2/p
u(t) = <{u{!). D u[f})) _IDPPu@)|| 32)

(S, DPS) |\ pres|Er
§ =S, w0 =1and 0 £ ¢ < ¢* with t* the maximal time of existence of the solution of
(0.3) under consideration (if the solution is global, t* = +00). Note that unless u is the zero
solution, u(z) € (0, 00) for0 < ¢t < t*. The normalization 1 (0) = 1 is a temporary one made
to simplify the presentation of the argument. It will be dispensed with later. It is easy to check
that the function ¢ verifies the identities

@ oGOl = llut, DI = lluoll, (3.3)
(i) (1), DPH(-, 1)) = (S, DPS), (34)
(i) E(p(, 1)) = Flt)gE(u(', ). (3.5)

Our first lemma states that the function ¢ lies in an appropriate smoothness class.
Lemma 3.1. Ifu € C([0, t*); H?/2(R)), then ¢ € C([0, t*); HEZ(R)).
Proof. This is a straightforward consequence of the fact that u € C([0,¢*); R) and
0<pu() <oofor0 Lt < 1™, O
Since the stability considered here is with respect to form, i.e. up to translation in space,
it is propitious to introduce the orbit
O(Sy) ={g | g =1, 8, for some r € R}

of S,. Here 1, is the translation operator givenby 7, f (x) = f(x+ r) forall x € R. To measure
the deviation of ¢ from O(S,), introduce the pseudo-metric

Pr(@C, 1), Sy = inE(1DP2 (- +7,1) = DPESO)I + mlip - +1,1) = SOIP)
on HP/2(R) (see [Be2,Bo, CL, W4]). Define the set K to be either

K = {uo | up € H#*(R) and E (uo) < 0} (3.6a)
ifg=2orifl < B <2,
K = {ug | up € H*(R) and E (uo) < 0} (3.6b)

where s > % is fixed, but otherwise arbitrary.
The next theorem is a stability result which pertains to the spatial structure of the solutions
of (0.3) in the critical case p = 28 + 1.

Theorem 3.2. Let p > 2 be an integer and let p = 2B+ 1. Forn > 0, let S = S, be a
solitary-wave solution of (0.3). For any € > O there is a 8 = 8(¢) > 0 such that if ug € K
with py(ug, S) < & and u is the solution of (0.3) corresponding to the initial value ug, then
u € C([0, t*); HP2(R)) and
inf {nllu(, ) — p(@®'"? S —r)I?
reR
1

n(t)p

forallt € [0, t*), where t* is the maximal existence time for the solution u and 4 is as in (3.2).

+ IDPPu, 1) — ' 2DPPS (@) = )IP} < € 3.7




768 J Angulo et al

Remark. For 8 = 2 which is the generalized KdV-equation, a result similar to our theorem 3.2
was established by Merle [M, lemma 1] making use of a concentration-compactness argument
as in Weinstein [W3]. The difference here, other than the broader range of B, is two-
fold. In [M], the parameter A(z) which corresponds to our wu(z) is defined implicitly via a
minimization problem or by using the implicit-function theorem. Here, the function u(t) is
defined directly in term of the solution u. Our proof of theorem 3.2 may thus be made by direct
calculation and thereby includes the case E (1) = 0 as well as the case E (ug) < 0.

Proof. Suppose at the outset that u(0) = 1. The proof is based on the time-dependent
functional (see [LBS,LBSK,LS])

1 i 2k
Bylul= ——E@u(, 1)+ 1 (””‘ ””) UG, DI = ISIP),

u(t)? 20 sl

where k € N will be chosen later. From the definition of By, it is clear that if u is a solution of
(0.3) then B[u] = B,[ug]. Using (3.1)~(3.3) and (3.5), we may write B,[u] in terms of ¢ thus:

: 2%
Bl = EGC,0)+ 2 ("-‘”%) (16 ¢, DI = 151, (3.8)

where the explicit dependence on . disappears.
As will be argued presently, if it is established that, modulo translations, the inequalities

@ AB, < collug — SII, (3.9)
B p—1 o 2k o
i) AB Z e ¢, 0) = Slifp =2 ) I8¢ 1) = Sligjs — D cuslig (1) — SIhrs  (3.10)
j=1 Jj=1

hold for AB, = f}, [¢]— B, [S], where ¢;, ¢y, ; are fixed constants, then the result in theorem 3.2
follows.

Hence, attention is turned to establishing these bounds. The upper bound (3.9) is a
straightforward consequence of E(up) < 0 and E(S) = 0, where the constant cq depends on
IS (and on an upper bound for the choice of 8).

To prove (3.10), consider the perturbation of the solitary-wave solution S,

dx+y,t) =8Sx) +alx,t), 3.11)
where a is a real function and y = y () will be chosen later so as to minimize the functional
ML(y) = D2 +y,0) = DPESOIP +mllg - + v, ) — SO
Using the representation (3.11), one calculates that

AB, = B,[S +a] — B,[S]

- n (IS +all\* 2 _ gy
_E(S+a)—E(S)+§( sl ) S +all” =181

2;”? p—1 ) 2k ]
(La,a) + Tz (a, S)? = () Z; lall 5 — 2; c,jmllall}s- (3.12)
Jj= Jj=
The inequality in (3.12) is obtained using the definition (1.2) of £, the Cauchy-Schwarz

inequality and the interpolation estimate (2.1).
A suitable lower bound on the quadratic form IT, is the next order of business.
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Lemma 3.3. Suppose that, for some t € [0, t*) and some y € R, it is the case that

&) < I(DF +p)'72s|. (3.13)
Then, it follows that
inf {TT,(y) | y € R} (3.14)

is attained at least once in R.
Proof. It is immediate that IT,(y) is a continuous function of y € R. Moreover,
Jim T, = D¢ 0] + I DP2SI® + n(lle @I + 1SI)

= I1(DF + ) 2811% + | DP2SI + nlluo| . (3.15)
Hypothesis (3.13), the continuity of I1, and (3.15) imply the indicated result. O

Next, it is established thaE the minimum in (3.14) is achieved at finite values of y at least
for all ¢ in some interval [0, T']. To this end, it is sufficient to obtain the condition (3.13) in
some such interval. Let € > 0 be such that

€* < 3 max{L, n}{(D* + m)'/*S|>.
The solitary-wave solution u(x, t) = S(x—nt) is globally defined, and hence, by the continuous
dependence theory for (0.3) (see [AL] for 8 2 2 and [ABFSa] for 1 £ 8 < 2) for the value of
€ just specified and T > 0, there exists a § > 0 such that if ||up — Sl/g/2 < & then the solution
u of (0.3) corresponding to appropriately smooth initial data ug exists at leastfor0 < ¢ < T
and, in addition,

luC, £) = S¢C — nt)llg2 < e
forallz e [0, T]. Because both ¢ and u are continuous mappings of the time axis into H#/2(R)
over the interval [0, ¢t*), it follows that there is a T; > 0 such that, for all ¢ € [0, T1],

¢, ) — @, 0)lp2 S € and luC,8) —ul, 0)lig2 £ g€
Then, for 0 < ¢ < T = min{T, T;}, we have
oGty —SC—nDllg2 S N@C. 1) —ul, gy + llu, 1) — SC—n)llge

S ) — @ Ollgr2+ lul, 0) — u(, )lig2 + 3¢ S e
Thus, the infimum (3.14) is taken on at values y (t) throughout the time interval [0, T). We
take such values of y as providing a meaning for the definition of a in (3.11), at least for
tel0,T].

The result of lemma 3.3 together with (1.2) provide us with a compatibility relation on a,

namely

f SP1(x)S" (x)a(x, t)dx =0 (3.16)
R

forallt e [0, T]. This relation is obtained by differentiating I'l, with respect to y and evaluating
at values that minimize IT,.

The issue of obtaining the lower bound (3.10) for the right-hand side of inequality (3.12)
is addressed in the next several lemmas. The first one is an abstract result from spectral theory.

Lemma 3.4, Let A be a self-adjoint operator on L,(R) having exactly one negative eigenvalue
A with corresponding ground-state eigenfunction f, 2 0 and let § € N*(A). Assume
(g, fr) # 0 and that

—o0o<a= min (Af, f).

=1
(£,.8)=0

If(A713, 8) L0, then it must be the case that o 2 0.
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Proof. See lemma E.1 in [W2]. O

Corollary 3.5. Let B > 1 and let L = D? +n — pSP~1 satisfy hypothesis (H1). Then there
exists 0 < O such that ifh = S — o DA S, then

min (Lf, f)=0.
Ifl=1
(£,8)=0

Proof. For any given value o, define the function fj by

_ _L B 1+no
Jox) = Zﬂns(x) B

Then using the relations H(xS") = xHS", DP~1(xHS") = (B — 1)DPS + xDP S and (1.2),
we obtain that £ fo = S — o DS = h and, consequently, that

s 1 1 Bg—1
LLfo) = (fo, B)y = [ = 1S)1® + — || D?2S) ——||DP25)* ) 0.
(fo, L fo) = (fo, h) (2,3“ l +2n” I*)o + 25 (P25l K
It is thus obvious that for small negative values of ¢, it is possible to have both (&, gy =
[8,8Sdx — o [ g,DPSdx # 0and (L 'h, k) = (fo, k) <O.
Since A'(£) = Span{S'} and & € NL(L), it follows immediately from lemma 3.4 that
0 =min{(Lf, f) : | f| = 1and (f, h) = 0} = 0.

This completes the proof of the corollary. d

xS (x).

Lemma 3.6. If h =S — o DS witho < 0 chosen as in the last corollary, then

inf((Lf, f): IfIl=1,(f,h)=0,f LS IS} =v>0. (3.17)
Proof. Because of corollary 3.5, it is inferred that v 2 0. Suppose that v = 0. Let { f;} be a
sequence of HA/2(R)-functions with || ;|| = 1, f; L &, f; L $¥~18" and

lim (L f;, f;) = 0.

Jjroo
Then, for any € > 0, there is a J such that, for j > J,

0<nSIDPRHIEenlfilP S p [ 5771 dx e (3.18)

Since [S]e < 00, (3.18) implies || £}l 3,2 to be uniformly bounded as j varies. Therefore, there
exists a subsequence of the { f;}, which we denote again by {f;}, and an f* € HP/?(R) such
that f; = f* weakly in H?/2(R) and, by compact embedding and a Cantor diagonalization
argument, strongly in Ljj,c(R). The function f* satisfies the conditions f* L h and
f* L $P718". A consequence of the just-mentioned properties of the sequence f; and the
decay of S to 0 as |x| — oo is that

f SPTI(f) dx — f SP7L(F*)2 dx
as j — oo. Taking the limit in (3.16) as j — oo yields
0<n< p/S”_l(f*)zdx+e.

As € is arbitrary, it must be the case that f* # 0.
It is now shown that the infimum is achieved. Indeed, weak convergence is lower semi-
continuous, so

IDPRfHI S liminf | DA ).
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Since (P71 f;, fi) = (SP=1f£*, f*) as j — 00, as noted above, it follows that
0 (LS fM) S liminf(Lf), f;) = 0.
j—ooo

Since f* = 0, define g* = f*/| f*||. Then, we have [lg*|| =1, g* L h, g* L SP71§ and
(Lg*, g*) = 0. A consequence of the reasoning just put forward is that there exists at least
one non-trivial critical point (g*, &, 6, v) for the Lagrange multiplier problem

{Lf =of +0h+vS'SPL, subject to

ifl=1 fLS§sr! and (f, k) =0. (3.19)

Using the fact that (Cg*, g*) = 0, it is easily seen that (3.19) implies o = 0. Moreover, since
LS = 0, we have that (£g*, §') = (g*, LS') = v [(§)25P~! dx = 0, which implies v = 0.
It is thereby concluded that

Lf =06h (3.20)
has non-trivial solutions (g*, 8) satisfying the side constraints. But, if f; is the auxiliary
function ar1s1ng in the proof of corollary 3.5, Lfy = h, whence £(g* — 6fy) = 0, and
therefore g* — 6fy € N(L). From the property ( fo, h) # 0 established in corollary 3.5, it
follows from the preceding that & = 0. Therefore, for some non-zero A € R, it is true that

g* = AS’, which is a contradiction since such a function cannot be orthogonal to §#~ g,
Therefore, the minimum in (3.17) is positive and the proof of the lemma is complete. O

Attention is now turned to estimating the term 5 (ﬁa a) + 2kn/|1S1%)a, §)? in (3.12),
where a satisfies the compatibility relation (3.16). We continue to carry over the notation from
corollary 3.5 and lemma 3.6. In particular, o is chosen so that the conclusions of corollary 3.5
are valid. Define @) and a, to be

(a, h) 3
||J'TI|"
It follows from the propertiesof g and i = S—o DP S that (a;, k) = Oand [ SP~'S'a, dx = 0.

Without loss of generality, take it that (a, h) < 0. Thus, from lemma 3.6, the Cauchy—Schwarz
inequality and the properties of a, a1, ) and h, it follows that

(Cai,ay) Z Dillacl?,

layl® = .-
(Lay,ay) = ——(h, Lh),
lI> @ e (3.21)

fa, h)y ~

(Lay,a1) = W(Ul, ai) 2 —=Dalarll llayll
for some positive constants Dy and D,. Identity (3.4) and elementary properties of Hilbert
spaces imply that

—2(a, D?S) = || D*"%a|%.

a = and a,=a—aq.

Thus, from the Cauchy—Schwarz inequality we obtain (recall o and {(a, h) are both negative)

2k 2% B )
ﬁ(a $)2 > ||S|7|72(( h)2 —ola, h)||Dﬂ/2a||2)
= ||S||2(”h” layI* + o &1l llal) 1D?7a]?)

2 S||2 LRI ay I + 2kno Dsllall} 2. (3.22)
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with D3 > 0 also. Choose 8 > 0 so that D; — 6D, = D, > 0. By Young’s inequality,
lavlllayll £ 6llar]®> + (1/6)]ayl|?. Finally, fix k in such a way that

2kn - h,Lh) D

=L AP + u k2 =g

ISl [|A]]* 0
With these choices, it follows from (3.21) and (3.22) that

1 2kn
3(a,a) + 1 (@, 5 2 Dslay|P + Dylas | + 2kno Dalall}

> D'llal* = D"llall},, (3.23)
for some positive constants D', D”. With (3.23) in hand, it follows easily from the specific
form of the operator £ that

1 2kn - 5
Fiaa+ o, $)* 2 Dillall}, — Dalall},, (3.24)
with Dy, D, > 0. Finally, using (3.24) in conjunction with (3.12), there obtains
5 5 N p—1 " 2k .
AB; 2 Dillaliz, — Dallalfy, — eax(m Y lallhs = > ey lallyfs
j=1 j=I1

p—1 2 2k :
2 j+: j+
2 erllally, —c2 ) llallys = > cisllalllhs,
j=1 j=1

where ¢y, ¢3, ¢, are positive constants that depend only on 7.

Now we are in a position to prove theorem 3.2. Suppose first that ug lies in the set X of
‘negative-energy’ initial values defined in (3.6) and suppose |lug — S|| g/2 = 8. Then at least
for t € [0, T, it follows from (3.9) and (3.10) that

a0y (@ (1), $)) £ AB, < o8, (3.25)
where g(x) = eix% — ¢, 00 ¥ — Y3 ¢ j37*. Since fla(-, O%p = on(H(, 1), 8) is
a continuous function of ¢ € [0, t*) (see lemma 2 in [Bo]), it follows from the inequality

q(on(9(:, 0), 5)) = cod (3.26)
and (3.25) that given € >> 0, then for all ¢ € [0, T],

o @, 1), S) L€, (3.27)

provided that & is chosen small enough at the outset.
To finish the proof, we show that the inequality (3.27) is still true for ¢ € [0, ¢*). Following
[Bo], let

A = {t : the infimum in (3.14) is attained at finite values of y}.

As shown above, [0, T] C A. Let Ty be the largest value such that [0, 77) C A and suppose
that 77 < ¢*. Then from (3.25) we obtain that

inf I, = p, (@ (-, 1), 5)* < €2 < (D + )25

Since inf II, is a continuous function of ¢ for all ¢ € [0, #*), there is a T > 0 such that
inf IT, < ||(Df +n)V/25)?

fort € [Ty, Ty + T]. But then lemma 3.3 implies that the infimum in (3.14) is taken at
finite values of y and this contradicts the choice of T;. Therefore, T; = t* and the stability
theorem 3.2 is established if 1 (0) = 1.
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Now we discuss the general case wherein the initial data are not necessarily such that
1(0) = 1. First, note that if S, is a solution of (0.5) for > 0, then R(x) = n/1=P)§, (n~1/x)
satisfies

DPR+R—-R” =0.

By the uniqueness hypothesis, this means $(x) = S,(x) = n'/7~! R(5'/# x), up to translations
and sign. Moreover, since p—1 = 28 wehave that | R|| = ||S, || and | D#/2S,||?> = n| D?/*R|}.
Let uy € K obey the inequality

nlluo — Syl + | DP*ug — DPI2S, |1 < 82, (3.28)

where 8 will be determined presently. Corresponding to n; > 0, a solution S,, of (0.5) has
| DA2S, |* = n1|| DP/2R|2. 1t is therefore possible to choose n; such that || D25, ||* =
| D#/2ug| 2. Then if

: oy 1
oo (1R Pue P\
" | DA2S,, |2 ’

it is obviously the case that i, (0) = 1.
The idea is to apply the preceding theory to the case 7 = n; and then use the triangle
inequality to conclude the desired result for the given value of n and ug (see [ABLS,Bel,Bo]).
An estimate of the quantity

L, 0), Sy, ) = n luC, 1) — w(@®2 S, (@) )12
+ ()P DPPu(, t) — w()V? DP2S, (u(t) ||

will be helpful. Denoting S, by S as before and S, and u, by Si and w1, respectively, it

follows from the definitions of @ and w, that

I (1), Sy, p) S max {% %] Ly (-, 1), Sty )+ 172 S ) = ) Saua 1P
+;15 I DP2S () — /> DPI2S (g )12 (3.29)

The right-hand side of (3.29) may be bounded above as follows. First observe that

w2 S x) = i’ §1 (w1 %)

and consequently the second and third terms on the right-hand side of (3.29) vanish.

Therefore, it is only necessary to estimate the term I, (u(:, £), S1, @1) in (3.29). For this,
it suffices to show that p,, (49, S1) < Cs, where C = C (1, R), and then apply the foregoing
theory for the special case pu1(0) = 1. Because py, (9, S1) < pp, (0, S) + p, (S, S1), we
may estimate p,, (o, S) and py,, (S, S1) separately and still reach the desired inequality. First,
consider the term pp, (S, S1):

o0, (S, S £ m|IS — SiI* + | DP2S — DPI2 5y |2

1/28 /8 \ |
= mf R(x) — (ﬂ—l) R ((ﬂ> x)
R n n
+n/ Dﬁ/zR(x) F <ﬂ>l/2ﬂ Dﬂ/ZR <ﬂ>1/ﬂx
R n n

dx

2
dx. (3.30)
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The first integral in (3.30) can be bounded above as follows:

1/28 e\ |
[ reo= (%) (%) ")
R n n

1/8 128\ | A28 g
<2y (%) fR<x)—R((%) x) ax+ 22Ty,
R

nl/p
Thus, the fundamental theorem of calculus together with Minkowski’s inequality yields

i\ V8 : 1
/ R(x)—R((—) x) dx§/(/
R n R (m/mi8
i . 5 172
/ (/ —R(tx) dx) dr
(m/mY8 \JR

dr
1 2 1129 242
llx R'|2 (/ 302 dt) — 4|??|_I—_ﬂm”xR/“2.
(m/mVe "?1”3

Consequently, it transpires that

dx

2

d
—R
@ (tx) dt) dx

2

IIA

: 1/26 e \|? 2 V2B _ V22
o [z - (Z) & ((ﬂ) x) ar < 202 R ) 4 gL
R n n U
(3.31)
Similarly, the second integral on the right-hand side of (3.30) may be bounded above thus:
112 AN
n/ DP?R(x) — (ﬂ) DP?R (ﬂ) x| dx
R n n
’)‘__'mn'ﬂﬂ ?;JIIBIZ
o [IDP/R|> +4|lx DP*R'|”]. (3.32)
1
The inequalities (3.31) and (3.32) imply
21 l2p 1/2p 2
(o 8, SO € = TURIP + 415K
Inini/B _ 172812
2L pereRy 4 ax Do R
n\/B
+
< CRLT i — pirep, (3.33)
/b
It is now determined that there is a positive constant C = C(#, R) such that
Im —nl = C§ (3.34)

at least for small values of 6. Indeed, from Young’s inequality and (3.28) there follows

1
I =l = oI woll® — 1DP2 8P|

~IDF
< W”DIWS”Z_,.
< 1
= | DPRR|?

1
— {1+ =)Dy, — DP/%5)?
IDPER ( 25) 1D uo I

3
<2n||z)ﬂ/21e||2 + 5) s,
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The inequality (3.34) certainly implies that |n/m — 1] < 1 and |7,/ — 7!/28| < C,8,
where C; = C,(n, R). From (3.33) it then follows that

o, (S, 1) £ C3(R)8. (3.35)

From (3.34) it is concluded that n, /n < 1+ (C/n)8. Therefore, the assumption (3.28) implies

(o, (0, G)I? < max { 2, 1} [nlluo — GI2 + [ DPPug — DP2S|?] < Cus?, (3.36)
m n

where C4 = C4(n, R). Inequalities (3.35) and (3.36) imply that oy, (1o, S1) < 6‘8, and
therefore that

Im (u(.i t)$ Sls Ml) é 6.2‘
Theorem 3.2 is now established. O

4. Behaviour of the stability parameters: KdV-type equations

In the proof of theorem 3.2, it was actually shown that there is a concrete choice of y = y(¢)
(lemma 3.3) for which

(IDPPo(-+y, 1) = DPPSOIP +lig (- + 7, 1) = SOINY? = oy 1), HH Se (4D
for all t < t*, where ¢ is the rescaled version of the solution u of (0.3) defined in (3.1) and

(3.2). In fact, a choice of v for which (4.1) holds may be determined via the orthogonality
condition (see (3.16))

f dx+y,0)8P 7 (x)S (x)dx = 0. 4.2)
R

By an application of the implicit-function theorem as in [BS], it will be shown that as long
as ¢ satisfies (4.1), there is a unique, continuously differentiable choice of the value y (t) that
achieves (4.2).

The principal result regarding the behaviour of the parameter y is stated in theorem 4.3.
First, we need the following lemmas.

Lemma 4.1. Let ug € H*(R) for s sufficiently large. Then the function p defined in (3.1)
belongs to the class C1 ([0, t*); R), where t* is the maximal time of existence of the solution u
of (0.3) with initial value uy.

Proof. If s > max{g, %}, say, it follows from the theory in section 2 and the differential
equation that ¥ € C'([0, t*); L,(R)) N C([0, t*); H*(R)). Now, from the relation

2 1
B _ o] p+l
Y =—r-—o|E ol ,0)d
() DS [ (o) LT ./Ru (x, 1) x}
fort € [0, ¢*), it is adduced that
4
B0y = = p
PR O = s [ WG D D 43)
Therefore, from lemma 3.1, the Cauchy-Schwarz inequality and the Sobolev embedding
theorem, we see that u € C'([0, t*); R). O

Lemma 4.2. Let S = S, be a solitary-wave solution of (0.3) stable in the sense of theorem 3.2.
Leteg = min{||(DB+m)'72S||, [[(DP+m) 728" 2/ | (DP4+n)S8"|}. If€ and ug are chosen such that
€ < €gand ug € H*(R) for s sufficiently large, then there is a unique functiony : [0,t*) — R
such that y(t) satisfies (4.2) for all t in [0, t*). Moreover, the function y is continuously
differentiable.
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Proof. First, note that, for each t < r*, there is an r € R such that the function
G(t,r)= —f Ox +r,1)SP7 (x)S (x) dx 4.4)
R

vanishes at (¢, r). Indeed, since €2 < |(D? + )!/2S§|2, lemma 3.3 shows that there is » € R
such that IT,(r) < IT,(s) forevery s € R. Therefore, I1,(r) = 0 and consequently G(¢, r) = 0.
Next, it is shown that the point r corresponding to the time ¢ is unique. First, from
lemma 4.1 w is of class C! and, as uy is sufficiently smooth, #, € C([0, t*); L,(R)). Since S is
an H*®(R)-function, it follows that G is a C!-function. Let (t,r)beapointwhere G(¢t,r) = 0.
Then from theorem 3.2, relation (4.1) holds with y (¢) = r, where € < ;. Now, calculate
dG/ar at (t,r). Since u,(z,t) = u(t)¥?¢,(w, t), where w = uz, it is easily deduced that

% . PR /RMB/Z%(CU, 1H(DP +1)S' (@ — r) dw
= —% /R [S'() +ay (v, DI(DP + n)S'(y) dy
= -Lys s L / a(y, )(D? +1)S"(y) dy
p P JR
< —%nwﬁ +m)' 28 + %uwﬂ +n)S”|
< (D +1)S"|(o — €) < O. (4.5)

Thus G is a strictly decreasing function of » and hence, for each ¢, can take the value O at
most once.

Finally, to show that the correspondence ¢t — y = yp(¢) with G(¢t,y(t)) = Ois a
C'-function, it suffices by the implicit-function theorem to verify the transversality condition
at each point (¢, y (¢)). But this condition is simply that (3G /8r)|,,y # 0, and this is indeed
provided by (4.5) because € < €. The proof of lemma 4.2 is completed. O

The relation between the translation and dilation parameters involved in our stability result
is now stated.

Theorem 4.3. Let S = S, be an even solitary-wave solution of (0.5). For any € > 0, there
exists § = 8(€) > Osuchthatifuy € H*(R)NK, with s sufficiently large and ||ug— S|g/2 < 8,
then there exists a C'-mapping y : [0, t*) — R such that

@ l@C+y@®),t) —Sllgp S e fort €[0,1%),
t t t I
(@) |y = ne) [ w(5)as| < Centr ( / 1P (s) ds + f i) ds) fort € 10,7,
0 0 0o M(s)
where C depends only on S. If 1’ > 0 and 1 (0) = 1, then

t t
‘V(t)—nu(t) fo uP(s)ds| < Ce (u(t) fo uﬂ(s)dsw(r)—l).

Proof. A consequence of lemma 4.2 is that there is a unique C!-function y satisfying (i) which
is determined by the relationship

G, y@) =0, (4.6)

where G is defined in (4.4). Using the definition of ¢ in (3.1) and differentiating relation (4.6)

with respect to ¢ gives the equation
()

= p—1 ' _
0= 2.0 /]R‘f’(x +y(®), )87 (x) 8 (x) dx

y;ft) / e (x + 7 (@), (DP +m)S'(x) dx
R
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()

+ ‘___]"",;

prnt?

u®)?

/ 2y (2, 1) (D + 1S (W(t)z — y (1) dz
R

fm w2, )(DP + S )z — v (1)) dz. @)

The terms on the right-hand side of (4.7) are estimated separately. It follows immediately from
(4.6) that the first term is equal to zero. Since ¢ (x +y (¢),t) = S(x) +a(x, t), the second term
may be written as

V;' f Gx(x +y, )(DP +m)S'(x)dx = V; [II(D” +m)2S|? - f a(x, t)(D? +n)S" (x) dx]
R R

- y;[n(Df’ + 282 — A@)), 4.8)

where A(t) = O(e) as € | 0, uniformly in time, provided that the value of € in (4.1) is smaller
than the €y of lemma 4.2. It is then seen that (4.8) is non-zero for such values of €.

Now, from relation (4.6) together with u,(z, t) = u(t)*/? ¢, (w, t) where = uz and the
assumption that S is even, the third term may be calculated as follows:

7

#/Rzuz(z,t)wﬂ+n)S’(Mz—V)dz

= i/w¢m(w,t)(Dﬂ+n)S'(a)—y)dw
pu Jr

= / (x4 1)IS(x) +ax, D1 (DP +m)S'(x) dx
PR JR

=¥r [II(Dﬂ +m2s? - / a(x, t)(D? +n)S" (x) dx]
pu R

!

Ll xa(x, )(D? +n)S"(x) dx

P JR
% W
= LE [10# + ) 28" - A®)] + =B, @9)
pH ) 2%
The Cauchy—Schwarz inequality and (4.1) imply that
|B()| = Me,
where M depends only on S.

The final term in (4.7) may be analysed in a like manner as follows. From (0.3), (0.5) and
the condition p = 28 + 1, it is deduced that

/2
- ) u(z, t)(DP + ) S (uz — v) dz
1+8
- fm [DPH(x +7.1) — (B (x +, )7L (DF + )S'(x) dx
M1+ﬂ

=— [nII(D” +m)' 28| +f aDP(DF +n)s"
14 R

—([S +al? — SP)(D? +n)S” dxi|

b
=1
p

148
I(DP +m)' 28|12 — “TC(o, 4.10)
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where
c) = / alDP(DP +1)S" — g(a, S)(DP + )" dx
R
and
P _ QP
(S+a) S . a#0
g, S) = a
pSP1, a=0

1
= / £ (S +ra)dr,
0

where f(r) = r?. According to theorem 3.2 and the Sobolev embedding theorem, a is
bounded uniformly in x and ¢ and hence |g(a, S)| is bounded, independently of ¢. Thus the
Cauchy—Schwarz inequality implies that
C@ £ llall(ID? (D +n)S"| +1g(@, $)lool(DP +m)S”|I)
< Me,
where M depends only on S.
Substituting formulae (4.8)—(4.10) into (4.7) leads to the relation

’ _ Hf_l(t_) _ 1+8 148 C(r)+ ?IA”}
(ro-S@r®) =mor ! e
W' () B(r)
() A(t) = |(DP+n)1/257|2
= O™ + w0 D® + LD p ), @.11)
w(r)

where, for € sufficiently small, D(¢t) = O(¢) and E(¢t) = O(e). Part (ii) of the theorem follows
from (4.11) and the formula for the solution of a first-order ordinary differential equation. This
completes the proof. m

5. Stability theory and behaviour of the stability parameters for the NLS in the critical
casep=4/n

The aim of this section is to establish a stability result similar to theorem 3.2 for solutions of
the nonlinear Schrodinger equation (0.6) in the critical case. Henceforth, it is assumed in (0.6)
that p = 4/n and ug € H!'(R"). It is further assumed that either

(@n=1 and H(up) < 0, or
(byn =22, H(upy) <0, and ug is radially symmetric, or ¢.1
©nz21, |x|luye LR and H(up) £ 0.
In these cases it is known that
lim || Vu(-, )] = +o0
et
holds for the corresponding solution u of (0.6) (see [N, OT)).

Just as for the KdV-type equations, in [LBSK], following Weinstein [W3], consideration
was given to the functions

{W(x, 1) = u@) ™" %u (ﬁ, t) , with

pe =00l 0<r <, and  u©=L

(5.2)
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Here t* is the maximal time of existence of the solution of (0.6) under consideration. Note
that, unless u is the zero solution, 0 < u{t) < oo for 0 < ¢t < t*, It is easy to check that the
function i verifies the identities

@ 1Y ¢, Dl = lut, Dl = luoll
i) |V (., Dl = IVGI, 5:3)

2 " 1
i) HO G 0) = IV GO = S CDIEE = 5 Hul, )

Since the stability considered here is with respect to form, which is to say, up to translation
in space and phase, it is useful, as with KdV-type equations, to introduce the orbit

O(G) = {g | g(x) = Gi(x +ap)e™, (a0, 1) € R" x [0, 27)}

of Gy. An induced metric on the space H'(R") factored by the closed subset O(G,) provides
a pseudo-metric on H L(R™) (cf [Bel, Bo,CL, W4]), namely

W, 1), G = ailelfmn {IVY (- +ag, )™ = VG(O)|?

ay €[0,2m)
+A Y (- + o, DE — GOIP). (5.4)
Define the set S to be
S = {ug | uo € H'(R"™) and one of the conditions in (5.1) holds for ug}. 5.5

Theorem 5.1. Let p = 4/n, & > 0 and let G = G, be a ground-state solution of (0.8). For

any e > 0, thereisa§ = 8(¢) > Osuchthatif uy € S with p,(uy, G) < 8 and u is the solution

of (0.6) corresponding to ug whose blow-up time is t*, say, thenu € C([0, t*); H L(R™)) and
inf - {AlluC, D) — p@"GRE( +ag)e™™ |

Qg € R
ay € [0,27)
()2 IVul, 1) — @ VG (@) +ao))e ™ [’} < e (5.6)
forallt € [0, t*), where u(t) is as in (5.2).

Proof. The proof may be made by the same arguments as those appearing in the proof of
theorem 3.2. For more details, see [ABLS]. O

In the proof of theorem 5.1, it is actually shown that there is a choice of ag = ap(?) and
a; = ay(t) for which

(@), G) = (IVY (- +ag, D — VGOI? + MY (- + ao, 1)e™ — GO
=), G) S 5.7

for all ¢ < t*, and that a choice of &g and o« for which (5.7) holds may be determined via the
orthogonality relations (see theorem 2.2 in [ABLS])

Im | GP (@)Y (x + o), £)]dx =0,
R . (5.8)
Re / GP(x)G, ()1 (x +ap(2), )] dx = 0

fori =1,...,nand ¥(x, 1) = u@®) " 2u(u(®) " x,1).

Just as for the KdV-type equations, the function p defined in (5.2) is easily determined
to be of class C! on [0, t*) provided the initial data are smooth enough (see lemma 4.1).
Therefore, an application of the implicit-function theorem combined with the relations in (5.8)
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allows one to establish the existence of unique C!-functions o (¢) and o (¢) satisfying (5.8)
forallt € [0, t*).

The next theorem is the main result concerning the behaviour of the parameters ¢ and o
for the NLS-equation.

Theorem 5.2. Let p = 4/n and G = G, be a ground-state solution of (0.8). For any € > 0,
there exists 8 = 3(e) > 0 such that if uy € S with |lug — G|y < & and t* is the existence

time for the solution emanating from ug, then there are C'-mappings og : [0, t*) — R" and
1[0, t*) — R such that

(i) 19 ¢ +o(), DD — GOllx < € fort € [0,1%), and
(ii) for ag(t) = (cto,1(2), . .., Ao, (t)) and t € [0, 1),

t t s
< Ce [/ w?(s)ds + [0 ds] .
0 0o M($)

! ITAE] .
leto,i ()] S Cenn(t) w(s)ds + —ds |, i=1,...,n,
0 o ()

t
o1 (t) + A/ wr(s)ds
0

where C depends only on G.

Proof. To show part (i), use is made of theorem 5.1. Differentiating the first equation in (5.8)
with respect to ¢ and using the definition of ¥ in (5.2) and the fact that p = 4/n leads to the
equation

' (1)
2p(1)

Im[ / GPH (x)ela® l:iai(t)W(x +ap(t),t) — Y (x +og(t), 1)

X+ ag(t)

OV (6 + a0 (8), 1) - dt( )

) +ip®)* Ay (x + (1), 1)

H ()W (x + g (1), 1P (x + o (1), t)] d,xl =0 5.9

Writing 1 in the form
Y(x +a, 1)e™ = G(x) +a(x,t) +ib(x, 1),
it follows readily from (0.8), (5.8) and (5.9) that
K (1)
u(t)

_ZI: o,( ) — £ “]Oloj(t)] /l;” fol(x)b(x, t)dx

=22 | GPP(x)dx — p2@) f a(x, )AGP* (x) dx
]Rn ]Rn

() . GP*(x)dx + o} (2) / i x - V(GP™Y(x)b(x, t) dx

—u2@) | GP*[|G +a+ib|P(G +a) — GP*']dx. (5.10)
]Rn

Similarly, there obtains from the second equation in (5.8) that

/ W)
o (0) /R n L IG)BG: _

_Z[ag,j(o “()ao,(r)] | @G watn as
j=1 (t) R"

x - V(GPGy)(®)a(x, 1) dx
R’I
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[ w0
+j; [ao,j(t) - mao,j(t)] /l;" GP ()G, (x) Gy, (x) dx
0
n@) Jre
= M(t)Z/ b(x, ) A(GPG,,)(x) dx + “(t)Z/ GPG, |G +a+ibl? dx.
R .

(5.11)

[x  V(GPG) ()G (x) + GPH (x)G,, (x)] dx

Because G is spherically symmetric, it follows that the fourth and fifth terms on the left-hand
side of (5.11) are zero. Using the notation

800 = / . GP*(x) dx, 8ii = /}R ) GP(x)(Gy)*(x) dx,
Ago(t) = /}R a(x, 1)GP* (x) dx,

Agj(t) = — fm b(x,1)(G"™),, (x) dx,

Ap(@) = — f b(x, NG (x)Gy, (x) dx,

Ay(t) = - f a (%, (G Gy, (x) dx, 5.12)
EJP

x - V(GP*Y(x)b(x, 1) dx,

u

Bo(?) = —f
B;(t) = —f x - V(G?G,)(x)a(x, t) dx,

Co(t) = —
-

C,-(t)=/ b(x,t)A(GPGx,)(x)dH/ GPG, |G +a(x,t) +ib(x, 1)|” b(x, t) dx
Rn Rn

a(x,t)AGP”(x)—f GPH[IG +a(x, 1) +ib(x, )P (G +a) — GP*'],
]Rn

for1 £, j £ n,the n+ 1 equations appearing in (5.10) and (5.11) may be written in the form

i (t)

8oo + Aqo(?) Ao (1) s Aoj () o (1) — u’(t)a ®
Ago(?) gu+An® ... A1 (1) 0.1 wt) ot
A, A, cve G+ Agn , "t

o) 1(1) 8nn + Ann(t) o (1) — w( )ao,n(t)
(1)
£o0 By(t) Co(t)
o ey | Bi(n) Ci(®)
= —au(n)? CHEY G e B (5.13)
i) ¢
0 B, (1) Cn ()

Because the ground state is stable in the sense provided by theorem 5.1, the inequality (5.7)
holds provided that |(ug — G||; is sufficiently small. Therefore, it follows that ||a(-, £)||; < €
and ||b(-, 1)||; £ € for all t. Moreover, as € | 0, there obtains from (5.12) the relations

Aij(t) = O(e), 8ii t+ Aij(t) > 0, 0 é i ] é n, (514)
B;(t) = O(e), Ci(t) = O(e), 0<iZn, (5.15)
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uniformly in ¢. Denoting by A, = (a; ; (1)) the (r + 1) x (n + 1) matrix on the left-hand side
of (5.13), it follows from (5.14) that det A, # O for all ¢. Thus, A, is invertible and (5.13) can
therefore be written in the form

o) (1) [ det A,(1]1) W
o un ! _ oo u(®)? :
: T detA, (=1)* det A, (1]i)
’ r ) _
{].N(r\) - i(_]a[lln(r] "
#(t) (—1)" det'A,(1n +1) )
Bo(t) Co(t)
oy | Bio) Ci(t)
yto wu?]| ], (5.16)
() ;
B,(t) Ca(®)

where detA,(1]7) is the determinant of the n x n matrix that is obtained by omitting the first
row and the ith column of A,. Relations (5.14) and (5.15) yield that

det A,(1)i) = O(e), i=2,3,....,n+1, (5.17)
Bi(t) = O(e), Ci(t) = O(e), i=0,1,...,n, '
as € — 0, uniformly in 7. Now since
detA,(1|1) 2 AdetA, — Aggodet A (1]1)
—A t I — —au(t) + u(t 2
goo 4 (t) detA, u(@)” + () JetA.
= —Au(®)* + ()’ Ao(1)
with fio(t) = O(e), uniformly in ¢, (5.16) can finally be written in the form
PR A A
i ; Bo(t)
wQ) I Do(t) By(t
61 — t = .
oto,l( ) (@) Olo,l( ) , 0 ’ D) H’(” Bi(t)
, =—Apn@) | . | +p@) . |* (5.18)
: : )
K 0 Dau(r) By()

Ol(’),,, @) — mao,n(f)

with D;(t) = O(e)ase — 0,i = 0,1,...,n. Thus, part (ii) of the theorem follows from
(5.18) and the formula for the solution of a first-order ordinary differential equation. This
completes the proof. a

6. Conclusions

Our investigation has been concerned with solitary-wave solutions of a class of generalized
KdV-type equations and the focusing nonlinear Schrédinger equation. Interest has been given
to the critical cases where global existence of solutions corresponding to large initial data
just fails, apparently because the dispersion is not quite strong enough to overcome nonlinear
effects in the face of large values of the dependent variable. In these cases, the solitary waves
are known at least in some cases to lose stability (e.g. for the focusing NLS-equation and for
the generalized KdV-equation).
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Making use of a natural scaling under which the family of solitary waves or ground states
is invariant, an analysis is made of the outcome of ‘negative energy’ perturbations of a given
solitary wave or ground state, S, say. Were S to be stable, we would infer that a solution u
emanating from suitably close initial data stays forever close to S, modulo translations of space
(and time). What is demonstrated instead is that # remains forever close in the energy norm to
the branch B of solitary-wave or ground-state orbits obtained by applying translation in space
(and time) and the aforementioned scaling transformation to S. The analysis posits a solution
form u = G + a, where G lies on B and a is an associated remainder. It is shown that by
choosing the element G = G(t) € B appropriately, a can be controlled in norm, remaining
always small if it begins that way. It is shown that this selection can be made in a natural and
smooth way.

While interesting and suggestive, these results should be viewed as preliminary because
the choice of G is made implicitly based on the gross behaviour of u rather than in some
explicit way.

In particular, our results show that if the solution corresponding to an appropriately
perturbed solitary wave is to become infinite in finite time, then it must do so by essentially
running along the solitary-wave or ground-state branch. This result is in the same direction
as the early weak-convergence results of Weinstein {W3] and the recent weak stability of a
blow-up profile obtained by Martel and Merle [MM1].
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