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ABSTRACT

Studied here is an initial- and boundary-value problem for the Korteweg-de
Vries equation posed on a bounded interval with nonhomogeneous boundary
conditions. This particular problem arises naturally in certain circumstances
when the equation is used as a model for waves and a numerical scheme is
needed. It is shown here that this initial-boundary-value problem is globally
well-posed in the Ly-based Sobolev space H’(0,1) for any s>0. In addition,
the mapping that associates to appropriate initial- and boundary-data the
corresponding solution is shown to be analytic as a function between appropriate
Banach spaces.
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1. INTRODUCTION

This article is concerned with the Korteweg—de Vries equation (KdV-equation
henceforth)

U+ Uy +uny, + Uy, =0 (1.1)

posed as an initial- and boundary-value problem. In the conception pursued here,
one asks for a solution of (1.1) for (x,#) € @ x Rt where Q is an interval in R,
subject to an initial condition

u(x,0) = ¢(x), for x € Q, (1.2)

and appropriate boundary conditions at the ends of the interval. In applications to
physical problems, the independent variable x is often a coordinate representing
position in the medium of propagation, ¢ is proportional to elapsed time, and
u(x,t) is a velocity or an amplitude at the point x at time . Here and below, if
f=f(x,9 is a function of x and ¢, then f, is shorthand for d,.f and similarly
fi=208,f. When Q=R, the entire real line, this is the classical problem whose
study was initiated by Gardner et al. (1974) and Lax (1968) in the middle 1960’s
by way of the inverse scattering theory and by Sjoberg (1970) and Temam (1969) in
the late 1960°s using the then new methods for the analysis of nonlinear partial
differential equations, and by many others since. As will be described presently,
this pure initial-value problem continues to attract attention and its mathematical
theory has proved to be subtle.

Another configuration that arises naturally in making predictions of waves is to
take @ = RT = {x|x > 0} and specify (0, f) for ¢t > 0 and u(x, 0) = 0, say, for x > 0.
Thig corresnnnde to a known wavetrain O‘PI’IPl‘ﬂde at one end and pgopagating into
a quiescent region of the medium of propagation. If u(0,¢) is of small amplitude
(small compared to one in this scaling) and has primarily low frequency content,
then the waves generated by the boundary disturbance will satisfy the assumptions
underlying the derivation of the KdV-equation. The semi-infinite aspect of the
domain mirrors the fact that the KdV-equation written in the form (1.1) is an
approximation only for waves moving in the direction of increasing values of x.
Once the incoming waves encounter a boundary, reflection will come into play,
and the KdV-equation is no longer expected provide an accurate rendition of reality.
The problem of imposition of boundary data at the right-hand end of the domain
does not arise when the KdV-equation is posed on R* with zero initial data, say, and
input from the left-hand boundary. Indeed, the zero boundary conditions at x =+o0
implicit in the formulation may be imposed by function-class restrictions (e.g.,
u(-, 1) € Ly(R") for all relevant values of 7). This initial-boundary-value problem
fits well with laboratory studies wherein waves are generated by a wavemaker at
the left-hand end and these are monitored as they propagate down the channel, with
the experiment ceasing as soon as the waves reach the other end of the channel and
reflected components intrude (see Bona et al., 1981; Hammack, 1973; Hammack and
Segur, 1974; Zabusky and Galvin, 1971). Similarly, when modeling surface waves
arriving from deep water into near-shore zones or large-scale internal
waves propagating from the deep ocean onto the continental shelf, reflection may
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sometimes be safely ignored and one encounters a variable-coefficient version of
Eq. (1.1) posed on Rt x (0, T') with a time-dependent Dirichlet boundary condition
at x =0 (see Boczar-Karakiewicz et al., 1991; Boczar-Karakiewicz et al., (submitted)
for example). The quarter-plane problem just outlined has been considered recently
by the present authors (see Bona et al., 2001) and by several others (see the references
in the last-quoted article) and there is a satisfactory theory of well-posedness for
this problem.

However, if one is interested in implementing a numerical scheme to approx-
imate solutions of the quarter-plane problem, there arises the issue of cutting off the
spatial domain. Once this is done, two more boundary conditions are needed to
specify the solution completely. Because the model cannot countenance waves
moving to the left, it is usual, as suggested above, to apply the model only on a
time scale T short enough that significant wave motion has not reached the right-
hand boundary. If the right-hand boundary is located at x =r, say, then it is there-
fore natural in regard to the physical problem to impose w(r, #) = u,(r,#) =0 for
0 <t < T to obtain a complete set of boundary conditions. Of course, one might
also imagine imposing u,(0, f) rather than u,(r, f), but in practical situations, one does
not normally have information that warrants the imposition of a second boundary
condition at the left-hand, or wavemaker end of the medium of propagation. As far
as mathematical analysis is concerned, it makes relatively little difference whether or
not the boundary conditions are homogeneous. In consequence, consideration is
given here to (1.1)+(1.2) completed by the general nonhomogeneous boundary con-
ditions

u(0, 1) = (), u(r, 1) = hy(1), u(r,t) = hy(t), fort>0, (1.3)

where the initial value ¢ and the boundary data h;, j=1, 2, 3 are given functions. The
principal concern of the present essay is the well-posedness of the initial-boundary-
value problem (IBVP henceforth) (1.1)~«(1.3). That is, we aim to establish
existence, uniqueness, and persistence properties of solutions corresponding to
reasonable auxiliary data, together with continuous dependence of the solution
upon the auxiliary data. A brief review of the mathematical theory currently
available is now presented. The pure initial-value problem (IVP) for (1.1) and its
relatives where the initial datum ¢ is specified on the entire real axis R has received a
lot of attention in the last three decades, both in case ¢ lies in an Ly(R)-based
Sobolev space and in case ¢ is periodic (see Bona and Scott, 1976; Bona and
Smith, 1978; Bourgain, 1993a; Bourgain, 1993b; Constantin and Saut, 1988;
Hammack, 1973; Hammack and Segur, 1974, Kato, 1975; Kato, 1979; Kato,
1983; Kenig et al.,, 1991a; Kenig et al., 1991b; Kenig et al., 1993a; Kenig et al.,
1993b; Kenig et al., 1996, Lax, 1968; Miura, 1976; Russell and Zhang, 1993;
Russell and Zhang, 1995; Russell and Zhang, 1996; Saut and Temam, 1976; Sun,
1996; Temam, 1969; Zhang, 1995a, 1995b, 1995c). In particular, various smoothing
properties have been discovered for solutions of the (1.1) when posed on the whole
line R or on a periodic domain S (e.g., the unit circle in the plane). It is those
smoothing properties that enable one to prove that the IVP (1.1)<(1.2) is well-
posed in the space H(R) for s > —3/4 when posed on R and is well-posed in the
space H’(S) for s > —1/2 when posed on the periodic domain § (Bourgain, 1993a;
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Bourgain, 1993b; Kenig et al., 1993b; Kenig et al., 1996). By contrast, the study of
the KdV-equation posed on the half line R* or on a finite interval has received much
less attention and the results available thus far appear to be not as sharp as those for
the IVP on R. For the initial-boundary-value problem (IBVP henceforth) for the
KdV-equation posed on the half line R™,

U+ Uy + uny + Uy, =0, u(x,0) = ¢(x),] 1.4)

u(0, 1) = h(r),

for x, t € R*, we have provided a review in our recent article Bona et al., (2001) (see
the earlier work of Bona and Dougalis, 1980; Bona and Scott, 1974; Bona and
Winther, 1989; the related article of Benjamin et al., 1972, on the BBM equation,
and the recent article by Colliander and Kenig, 2002). In Bona et al. (2001), we
pointed out that for the linear problem obtained from (1.4) by omitting the quadratic
term, there are smoothing properties similar to those established by Kenig et al.
(1991b) for (1.1)«(1.2) posed on all of R. Consequently, we were able to show the
IBVP (1.4) to be well-posed in the space C([0, T]; H*(R")) for any s > 3/4 provided
the data (¢, h) is drawn from H*(R") x H**D3(0, T), by applying the contraction-
mapping principle. The corresponding solution map was shown to be analytic. In
their recent work, Colliander and Kenig (2002) showed that (1.4) is well-posed for
5>0.

For the KdV-equation posed on a finite interval, Bubnov (1979, 1980) studied
the general two-point boundary-value problem

Uy Uy + Uyyy =f(xa t), u(x’ 0) =0,

210, £ + 30,0, ) + a3u(0, )

.Bluxx(l’ t) + ﬁ2ux(1, t) + ﬂ3u(1, =0
Slux(la t) + §2u(1, t) = 0’

(1.5)

0
Vs
’

posed on the interval (0, 1) (see also the related work Bona and Dougalis (1980) on
the BBM-equation). Here, oy, 8,6 € R, i=1,2,3, j=1,2 are real constants and
assumptions are imposed so that the L,—norm of the solutions of the linear version
of (1.5) (obtained by dropping the nonlinear term uu,) is decreasing. It was shown in
Bubnov (1979) that for given T > 0 and /' € H'([0, T]; L,(0, 1)), there exists a T* > 0
depending on || fll g1(j0, 77 1,0, 1)) Such that (1.5) admits a unique solution

e Ly([0,T* L H(0,1), w4y € Loo([0, T*1; Ly(0, 1)) N Ly([0, T* J; H' (0, 1)).

In Zhang (1994), Zhang considered boundary control of the KdV-equation posed on
a finite interval (0, 1) with Dirichlet boundary conditions. A feedback control law
was introduced to stabilize the system, leading to the initial-boundary-value problem

(1.6)

Uy + uny + ey, = 0, u(x,0) = ¢(x), xe€(0,1),z>0,
u0,0)=0, u(l,5)=0, u (1,9 = yu 0,0, t=0,
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with 0 < |y| < 1. Note that when y =0, the system (1.6) is (1.1)<(1.3) with homo-
geneous boundary conditions. It was shown in Zhang (1994) that Eq. (1.6) is globally
well-posed in the space H**1(0,1) for k=0,1,.... In a recent article Colin and
Ghidaglia (2001), the authors considered the following initial-boundary value
problem

Uy + uuy, + Uy =0, u(x,0) =¢(x), xe(,1), >0,
w©,0) =h (D), u(1,)=h(), ux(1,0="h), t=0,

and showed it to be locally well-posed in the space H'(0,1) with the initial data ¢
drawn from H'(0, 1) and the boundary data (&, h,, h3) taken from the product space
C'[0,T) x C'[0,T) x C'[0,T). In addition, Rosier (1997) studied the control
problem for the system

Up + Uy + Uyyy = 0, u(x, 0) e ¢(X), X € (0’ 1), t>0,
w0,0=0, u(1,)=0 u,(1,0)=n{r), t=0,

where the boundary function 4 is considered as a control input. Rosier showed the
system is (locally) exactly controllable in the space L,(0,1). A similar problem was
also considered by Zhang (1999) for the system (1.1)—(1.3) where the boundary
value functions (f), j=1,2,3 are all taken to be control inputs. This system is
shown to be exactly controllable in the space H*(0, 1) for any s > 0 in a neighborhood
of any smooth solution of the KdV-equation. (Exact controllability means, roughly,
that for a given time 7 > 0 and a given pair of functions ¢ and ¥ in the space
H°(0, 1), there exist appropriate controls such that the corresponding system
possesses a solution u which exactly equals ¢ at =0 and equals ¥ at ¢t = T. Put
colloquially, given two states ¢ and v, there is a control 4 that will drive the system
from ¢ to ¢ in time T. Of course, there are obvious approximate controllability
analogs of this concept. Readers who are interested in control issues are referred
to the excellent review article of Russell (1978) for commentary on controllability
and stabilizability of linear partial differential equations and to Russell and
Zhang (1993, 1995, 1996) for theory of controllability and stabilizability of the
KdV-equation.

In this article, the nonhomogeneous boundary-value problem (1.1)—(1.3) is
considered. The aim is to establish the well-posedness of (1.1)—(1.3) in the space
H®%0,r) when the initial data is drawn from H*(©0,r) and the boundary data
(h1, ha, h3,) lies in the product space H" (0,T)x H™0,T)x H™*0,T) for some
appropriate indices 5y, s, and s; that depend on s. As we will see later, the natural
choices of 51, 5, and s3 are sy = s, =(s+1)/3 and 53 =s/3. For convenience of writing,
we take the underlying spatial domain (0, r) to be (0, 1) throughout. This is a restric-
tion of no consequence as far as the theory is concerned. The well-posedness result
for the IBVP (1.1)(1.3) we establish in this article appears to require some compat-
ibility conditions relating the initial datum ¢(x) and the boundary data h; (%),
j=1,2,3. A simple computation shows that if ¥ is a C*°-smooth solution of the
IBVP (1.1)—(1.3), then its initial data u(x,0) = ¢(x) and its boundary values #;(?),
j=1,2,3 must satisfy the following compatibility conditions:

$c(0) = KP©), d(1) =HP©0), k(1) = A(0) (1.7)
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fork=0,1,..., where hj(.k)(t) is the kth order derivative of 4; and

{¢o(x) $(x) (1.8)
Sr(x) = — (P 1(x) + g1 (x) + Z,_o (6/()rej— 1(x)) ) '

for k=1,2,.... When the well-posedness of (1.1)~(1.3) is considered in the space
H*(0,1) for some finite value s>0, the following s-compatibility conditions thus
arise naturally.

Definition 1.1. (s-compatibility) Let 77> 0 and s>0 be given. A four-tuple
(@, h) = (¢, hy, by, hy) € HY0, 1) x HETVB©, T) x HOTVAQ, Ty x B30, T) s
said to be s-compatible if

00 = KP0),  ¢e(1) = KP(0) (1.9)
holds for k=0,1,...,[s/3]—1 when s—3[s/3]<1/2, or (1.9) holds for
k=0,1,...,[s/3] when 1/2 < 5 — 3[s/3] < 3/2 and

@ =120,  HD) =k,  #@1) =H©0)

holds for k=0, 1,...,[s/3] when s — 3[s/3] > 3/2. We adopt the convention that
Eq. (1.9) is vacuous if [s/3] — 1 < 0.

With this compatibility notation, we may state the following two theorems,
which comprise the main results of this article.

Theorem 1.2. (Local well-posedness) Let T > 0 and s> 0 be given. Suppose that

(A L\ ~ 0o . S+1)/3m N o rrsHD/ 3 ey ns/3m fe 2"
\w,ll}cll\,}l\‘l 1}/\11 U }A \ }

is s-compatible. Then there exists a T* € (0, T] depending only on the norm of (¢, h)
in the space H*(0,1) x H*DB0, T) x HDA0, T) x H*(0, T) such that Egs.
(1.1)«1.3) admits a unique solution

ue C([0, T*]; H5(0, 1)) N Ly ([0, T*]; H*1(0, 1)).

Moreover, the solution depends continuously in this latter space on variations of the
auxiliary data in their respective function classes.

Theorem 1.3. (Global well-posedness) Let T > 0 be arbitrary and s>0. For any
s-compatible

(@, h) € H'(0,1) x H*O0, T) x H*0, T) x H*9(0, T),

where
© = e+(5s+9)/18 if0<s<3,
’“s‘{@+nﬁ 523
()_[e+(5s+3)/18 if0<s<3,
#AT =153 if 5> 3
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and € is any positive constant, the IBVP (1.1)«1.3) admits a unique solution
u € C([0, TJ; H°(0, 1)) N Ly([0, TT; H™+'(0, 1)).

Moreover, the solution depends continuously on variations of the auxiliary data in their
respective function classes.

Remark 1.4. The global well-posedness result presented in Theorem 1.3 requires
slightly stronger regularity of the boundary values 4, j=1,2,3 in case 0 <5 <3
when compared with the local well-posedness result in Theorem 1.2. The same
situation appears in the global well-posedness theory for the KdV-equation posed
in a quarter plane in Bona et al. (2001).

The proof of our well-posedness result for (1.1)—(1.3) relies on the smoothing
properties of the associated linear problem

U+ Uy + Uy =, u(x,0) = ¢(x), ] (1.10)

u©0,)=m@®), wl,)=mn(), ud,n)=>h).

There are three types of smoothing associated with solving (1.10); these are the
smoothing effects of the solution u with respect to the forcing f, the initial value ¢
and the boundary data h; =0, j = 1,2, 3, respectively. It will be demonstrated that

(@ For ¢ € L,(0,1) with f =0,k =0, j=1,2,3, the solution u of (1.10)
belongs to the space C(R"; L,(0, 1)) N Ly(R*; H'(0,1)) and u, € C([0,1],
Ly, (R"));

(i) For f e Ly(R*; Ly(0,1)) with ¢ =0,h; =0, j=1,2,3, the solution u of
Eq. (1.10) belongs to the space C(R"; L,(0,1))N Ly(RT; H'(0,1))
and u, € C([0,1], L, (RD));

(iii) For hy, hy € H,tf(R“L), hy € Ly 10e(RT) with f=0 and ¢ = 0, the solution u
of (1.10) belongs to the space C(R"; Ly(0, 1))ﬂL2,IOC(R"';H1(O, 1)) and
x € C([0,1], Ly, (R*).

Various other related linear estimates will also be derived. Once these linear
estimates are in hand, a local well-posedness result for (1.1)—(1.3) may be established
using the contraction-mapping principle. The long-time results are obtained by finding
global a priori estimates for smooth solutions of (1.1)—-(1.3). It is interesting to note
that while an L,-estimate of solutions is relatively straightforward to establish, the
global H'- and H?-bounds on solutions seem difficult to obtain by the usual energy-
type methods. The approach used here is to obtain an Ly-estimate of the time deriva-
tive u, of solutions, which, in turn, provides a global H*-estimate. Nonlinear inter-
polation theory (Bona and Scott, 1976; Tartar, 1972) is then used to obtain the global
H*-estimates for 0 < s < 3. Global a priori H®-estimates for s > 3 are established by
obtaining a priori bounds on a’fu fork=1,2,...,[s/3].

Because of its well-posedness, the IBVP (1.1)(1.3) defines a continuous non-
linear map K 7 from the space

X, 7= H*0,1) x HY30, T) x HEYV3(0,T) x H(0,T) (1.11)
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to the space C([0, TT;, H*(0, 1)) N Ly([0, T]; H**'(0,1)) for given T > 0 and s> 0.
It follows readily from the proof presented here that K 7 is locally Lipschitz con-
tinuous. In fact, the map K; 7 is much smoother than just Lipschitz. According to
the local existence theory, for a given (¢,/4) € X;r which is s-compatible,
h = (hy, hy, hy), there is a unique local solution u of (1.1)—<(1.3). Of course, the exist-
ence time 7™ for this solution need not be T. Let D(K; r) connote those elements of
X, r for which the solution exists on [0, ). As will appear from our detailed theory,
D(Ks, 1) is an open neighborhood of the zero element in X; r if 0 < s < 7/2. In this
case, the mapping K,r is analytic from D(K,;r) to the space
C([0, T]; H (0, 1)) N Ly([0, T7]; H”l(O 1)). That is to say, for given (¢,h) in
D(ICS T)s there exists a §>0 such that for any (¢1,h1) €X,r with
@ 1)+ (1. /1) € D(Ky,7) and @1, ), =6, then K r(@+ 1,5+ ) has a
Taylor series expansion which is umformly convergent in the space
C([0, T1; H*(0, 1)) N Ly([0, T]; H**1(0,1)). Each term in the Taylor series is deter-
mined by the solution of a forced linear KdV-equation. Thus one obtains the attrac-
tive result that solutions of the nonlinear problem (1.1)~(1.3) can be obtained by
solving an infinite sequence of linear problems. When s > 7/2, because of the com-
patibility conditions, D(K;, ) is no longer a neighborhood of zero in X r. However,
we can view solutions of the IBVP (1.1)—<(1.3) as a special class of solutions of IBVP’s
for a system of nonlinear equations. Viewed this way, it may be shown that the IBVP
for this nonlinear system is well-posed and the corresponding nonlinear map is again
analytic.

The approach developed in this article can also be used to obtain similar results
for the following general nonhomogeneous boundary-value problem for the KdV-
equation:

i w+ uy + uy + Uy = J(x, i), u(x,0) = ¢(x), ihe
oy Uy (0, 1) + 091, (0, £) + a3u(0, £) = b (0),
B uxx(l’ t) =+ ﬂ2ux(1s t) + ﬁ3u(1’ t) = h2(t),
E1ux(1,0) + &u(l, 1) = M (D),

(1.12)

with x € (0,1) and ¢ > 0 (cf. Bubnov, 1979, 1980). Roughly speaking, if the param-
eters oy, B;, and &;, j=1,2,3, are chosen such that the solution u of the associated
homogeneous linear problem (obtained by dropping uu, and setting f=0 and #;=0
for j=1,2,3 in (1.12)) satisfies

1
1/ lu(x, )?dx < 0 (1.13)
dt J,

for any ¢ > 0, the detailed techniques developed in the remainder of the article apply
and one may establish that the IBVP (1.12) is well-posed in the space H°(0, 1) for any
5§>0. In case (1.13) is not valid, the issue of local well-posedness may be more
challenging. As far as global existence is concerned, we can give conditions on
(1.12) for this to hold. Indeed, because of the strong smoothing resulting
from the boundedness of the domain, all that is required is to keep the L,(0,1)—
norm bounded on bounded time intervals. We will not enter into the details of this
development here.
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With global well-posedness results in hand, a natural further question arises
about the solutions of the IBVP (1.1)—(1.3), namely their long time, asymptotic
behavior. Because the imposition of boundary conditions may exert a weak
dissipative mechanism, it is expected that the solutions of the nonlinear system
(1.1)«(1.3) will decay as t— +oo, at least in case the initial value ¢ is small and
the boundary data h(f), j = 1,2, 3 decay to zero as t — co. A special situation occurs
when the boundary data are all periodic of some period 7, say. Experiments Bona et
al., (1981) suggest that in this case the solution will eventually become time periodic
of period 7. This has been rigorously established in Bona et al., (2003) for the
quarter-plane problem (1.4) with a damping term included. It would be interesting
and useful to have similar results for the finite domain problem considered here. A
related question is whether the (1.1) possesses a strictly time-periodic solution if its
boundary forcing h;, hy, and h; are time-periodic functions defined on all of R
(cf. Bona et al., 2003; Wayne, 1990, 1997). Those issues will be addressed in our
subsequent articles.

The article is organized as follows. In Sec. 2, several estimates pertaining to
solutions of the linear problem (1.10) are established which display the smoothing
properties mentioned earlier. In Sec. 3, the linear estimates are used to prove that
(1.1)«(1.3) is locally well-posed. The global well-posedness of (1.1)(1.3) is established
in Sec. 4. Analyticity of the nonlinear map K, - defined by the IBVP (1.1)«(1.3) is
discussed in Sec. 5.

2. LINEAR ESTIMATES AND SMOOTHING PROPERTIES

In this section, various smoothing properties that accrue to the linear system
Eq. (1.10) will be discussed. As (1.10) is linear, it is convenient to break up the
analysis. Considered first is the problem

Uyt Uy Uy = 0, u(x9 0)= ¢(x), ]

Q.1
u0,)=0, uw(l,0)=0, u(l,H)=0

with homogeneous boundary conditions and no forcing. Then we will consider
problem (1.10) with non-trivial forcing f but with all three boundary conditions
set to zero. The outcome of the analysis of these problems are recorded in
Propositions 2.1 and 2.4. Next, problem (1.10) with zero forcing, but non-trivial
boundary conditions is taken up. We use the Laplace transform in ¢ to obtain a
solution formula. Whilst a little complicated, the representation formulas (2.14) and
following are completely explicit. Consequently, their analysis may be carried out in
detail. The outcome is recorded in a sequence of propositions that conclude the

section.
Let A be the linear operator defined by
Af - _fll/ _fl

Consider 4 as an unbounded operator on L,(0, 1) with the domain

D) ={f € HO,1), f(0) =f(1) =f'(1) = 0}.
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The IBVP (2.1) can be written as the initial-value problem of an abstract
evolution equation in the space L»(0,1), viz
du
dt
where the spatial variable is suppressed. It is easily verified that both A4 and its
adjoint 4™ are dissipative, which is to say

(Af ./ V0, 20, (A"g,8) 10,1y < 0

for any f € D(A4) and g € D(4*), where A*g = g” + g’ and

D(A*) = {f € H(0,1); f(0)=f(0)=£(1) = 0}.

Thus the operator A is the infinitesimal generator of a Cy-semigroup Wy(?) in the
space Ly(0, 1) (see Pazy, 1983). By standard semigroup theory applied in the overlying
space L,(0, 1), for any ¢ € L,(0, 1),

u(t) = Wy(t)o

belongs to the space Cy(R*; Ly(0, 1)). The function u thus defined is called a mild
solution of (2.1). Such solutions certainly solve (2.1) in the sense of distributions (cf.
Bona and Winther (1983), Sec. 2). If ¢ € D(A), then u(f) = Wy(£)¢ belongs to the
much smaller space C(0,o00; H(0,1)) N C'(0, 00; L,(0,1)) and u(t) € D(A) for all
t>0. Moreover, the equation is satisfied in the sense of C(0, oc; L,(0,1)), and in
particular, pointwise almost everywhere. Such solutions are called strong solutions.
For strong solutions, the boundary values are taken on pointwise. In what follows, a
solution of (2.1) is either a mild solution or strong solution in the semigroup context.

= Au, u(0) = ¢, 2.2)

Proposition 2.1. For any ¢ € L,(0,1), u(t) = Wy(t)¢ satisfies

!
I, D00+ [ 00,1 de = 16l 0. @3)
and
1 t pl 1
/ x1?(x, 1) dx + 3 / f W (x, t)dxdr < (1+19) / $*(x) dx 2.4
0 0 JO 0
Sfor any t>0.

Remark 2.2. The relation (2.3) provides a trace result at x=0 which reveals a
boundary smoothing effect of the system (2.1).

Remark 2.3. Combining inequalities (2.3) and (2.4) gives

el L0, 70,1y < C(L + t)1/2”¢”L2(0, 1 (2.5

which is a Kato-type smoothing effect. Note that the original Kato smoothing effect
for solutions of (1.1)«(1.2) posed on the whole real line R is local, which is to say,
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® € L,(R) implies that u € L,(0, T; H},.(R)). In contrast, the smoothing effect (2.5) is
global. As will be seen later, this global Kato-smoothing effect alone is enough to
establish the well-posedness of (1.1)~(1.3) in the space H*(0, 1) for s> 0. This is in
sharp contrast to the problem (1.1)~(1.2) posed on the unbounded domain R or the
IBVP (1.4) posed on the unbounded domain R™, where both the Kato smoothing
and the Strichartz smoothing or the Bourgain smoothing are used to establish their
well-posedness in weak spaces.

Proof. Assume first that ¢ € D(4). Then u(f) € D(4) for any t>0 and
u € C1(0,00; L,(0,1)). To obtain (2.3), multiply both sides of the differential
equation in (2.1) by 2u and integrate over (0,1) with respect to x and over
(0,7) with respect to . Integration by parts then leads to (2.3). For inequality
(2.4), multiply both sides of the equation in (2.1) by 2xu, integrate the result over
[0,1] x [0, 1], and integrate by parts to reach the relation

/01xuz(x,t)dx+3[.‘t‘/0‘1 ui(x,t)dxd-c:/: X¢2(x)dx+‘/:/01 2(x,7) dx d

from which (2.4) follows on account of (2.3). If, instead, ¢ € L,(0,1), choose a
sequence {¢,} from D(A4) such that ¢, converges to ¢ in L,(0,1) as n— 0o. Define
U, to be

U, = WO(t)¢na n=12,....

As we have just shown, both (2.3) and (2.1) hold with u replaced by u, and ¢ replaced
by ¢,. Let T>0 be fixed. Then the sequence {u,} is bounded in the spaces
C([0, TY; Ly(0, 1)), Ly(0, T; H'(0,1)) and C([0, T; Ly(0, 1; xdx)). Here L,(0, 1; xdx)
is the weighted L,-space with the weight x. Moreover u, ,(0,1) = 8,u,(0,?) is
a bounded sequence in the space L,(0, 7). Thus there exists a subsequence {u,,}
of {u,} and a

w* € Ly(0, T; H'(0,1)) N Leo(0, T; Ly(0, 1)) N Lo (0, T Ly(0, 1; xdx))

with 13(0, £) € L,(0, T') such that {u, } is convergent to u* weakly in L,(0, T; H 10,1)
and weak-star in both spaces L, (0,T; L,(0,1)) and L, (0,T; Ly(0,1; xdx)).
Furthermore, {3,u, (0, )} is weakly convergent to 15(0, ¢) in the space L,(0,T). On
account of the lower semi-continuity of the various norms with regard to weak
convergence, it is adduced that (2.3) and (2.4) hold for u*. On the other hand u,
converges strongly to u = Wy(f)¢ in L0, T; L,(0, 1)). We conclude that

u e Ly0, T; H'(0,1)) N Lo (0, T; Ly(0,1)) N Loo(0, T; Ly(0, 1; xdx)),
1,(0,7) € L,(0, T) and (2.3) and (2.4) hold for u. Il

Next, attention is turned to the inhomogeneous linear problem

Uy + Uy T Uneyx =f(xs t)’ u(x, 0) =0, ]

2.6)
u(0,)=0, u(l,H)=0, u,(l,H=0.
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In terms of the operator A defined above, one may write (2.6) as an initial-value
problem for an abstract nonhomogeneous evolution equation, viz.

% =du+f, w0)=0. @

By standard semigroup theory (see again Pazy, 1983), for any f € Ll‘loc(R“L; L,(0, 1)),

u(t) = /0 Wo(t — ) f(r) dr 2.8)

belongs to the space C(R™; L,(0, 1)) and is called a mild solution of (2.7). It is a weak
solution of (2.6) in the sense of distribution. In addition, if f(¢) € D(4) for ¢t > 0 and
Af € Ly j0e(R"; Ly(0, 1)), then u(f) given by (2.8) solves (2.7) a.e. on [0,T) and is
called a strong solution of (2.7).

Proposition 2.4. There exists a constant C such that for any f € Ll,loc(RJ“; 1,(0,1)),
the solution u of Eq. (2.6) satisfies

lee-, Dl £y0,13) + 12200, )l Ly00,0 = CHS N 2,0, 1000, 13) (2.9
and
1 t pl )
[ wtenax+ [ [ deindsar <20+ 01 om0 2.10)
Jor any t=>0.

Proof. Without loss of generality, we assume that u is a strong solution. The general
case follows using a limiting procedure similar to that appearing in the proof of
Proposition 2.1. Multiply the equation in (2.6) by 2u and integrate over (0, 1) with
respect to x. Integration by parts leads to

d 1
G | 860 +120.0 < 207¢. 0. p M0

from which (2.9) follows. To prove (2.10), multiply both sides of the equation in (2.6)
by 2xu and integrate over the rectangle (0, 1) x (0, ?) in space-time. After integrations
by parts, it is seen that

Alxu2(x,t)dx+3f0[A1 uﬁ(x,r)dxdt
=2/0"/:xf(x,1:)u(x,1:)a'xd1:+‘/:/01 WA (x, 1) dx dt

! 13 1
< fo 21C, D)y, 120G, Dl 0,1 T + fo /0 W, 7) dx d
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1 t 1
< sup 1x2u(, Dl /0 121G Dl gy, A + fo /0 P, 7) dxde

O=r=t

O=t=<t

t ol
+ / f uz(x, 1) dx dt,
0 Jo

which yields the inequality (2.10). ]

I 1/ 2
<5 sup x"u(, r)||iz(o,1)+§< /0 ||x"2f(-,r)||L2<o,1)dr)

Next, consider the non-homogeneous boundary-value problem

U + Uy + Uy =0, u(x,0)=0,

u©0,0) =m(), ul,)=mh@), u(l,)= hs(t)-]
A common approach to (2.11) is to render its boundary conditions homogeneous as
follows. The solution u of (2.11) can be written as

u(x, t) = w(x, £) + v(x, f)
with

(x, ) = (1 — x)hi (D) + xhy(2) + x(1 — x)(h3(2) — hy(2) + (D)

@.11)

and w satisfying
Wi+ Wy + Wy = =V, — Vy, w(x,0) =0,
w0,)=0, w(l,)=0, we(l,)=0.

Thus to solve (2.11), one only need solve (2.12), which can be done by applying
Proposition 2.2. Here we assume /;(0) = 0 for j = 1,2, 3. However there is a serious
drawback to this approach; it is requlred that i} € LI(R) forj=1,2,3t0 obtam even
a mild solution u of (2.12) in the space C,,(O T; Ly(0, D) N L, (0, T; H'(0, 1)).
Furthermore, for such a mild solution u, although both 4(0, ¢) and u(1, ) are defined
thanks to the Kato smoothing, it seems that the trace of u,(x, ) at x =1 does not
make sense since u, is only known to be in the space L,(0, T'; Ly(0, 1)). This suggests
that a stronger boundary smoothing property of (2.11) is needed if one wants to
solve (2.11) in the space Cj(0, T; Ly(0, 1)) N L,(0, T; H' (0, 1)).

Our approach to solve (2.11) is to seek an explicit solution formula in terms of its
boundary values via the Laplace transform as we did in Bona et al., (2001) for the
KdV-equation in a quarter plane.

Applying the Laplace transform with respect to ¢, (2.11) is converted to

(2.12)

sti(x, ) + i, (x, 8) + fl 0 (x,5) = 0,
12(0, S) == hl(s)a ﬁ(l,S) = hz(S), ﬁx(l,S) = h3(S),
where

00
i(x,s) = ﬁ e tu(x, Hdt

and

(2.13)
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= +00
hj(s) = [; e_“hj(t) da, j=1,2,3.

The solution #(x, s) of (2.13) can be written in the form

3
i(x,s) = Z cj(s)e'”f(s)x,

=
where A;(s), j =1,2,3, are the three solutions of the characteristic equation
s+A+2’=0
and ¢; = ¢i(s), j = 1,2, 3, solve the linear system

Ci+eytey= }:A|(s),
o M + Czelz(-fl i c3e}‘3(“) . ;;2(3],

MDD + eady(9)e7 + e3aa(5)e™Y = s s).

Let A(s) be the determinant of the coefficient matrix and A;(s) the determinants of
the matrices that are obtained by replacing the ith-column of A(s) by the column
vector (/;(s), hy(s), hx(s))7, i = 1,2, 3. Cramer’s rule implies that

A
o= 1=123

Taking the inverse Laplace transform of # yields

r-+-ioa rio0

1 8l Ai(s)
y 1) = =— St ds = - st ZINT A(8)x d.
u(x, 1) i e"ii(x, s)ds j§=1: 5 f e ) e s

r—ioo r—ioo A(s
for any r > 0. The solution u of (2.11) may also be written in the form
u(x5 t) = Uy (x: t) + u2(xa t) + u3(x9 t)

where u,(x, £) solves (2.11) with #; =0 when j # m, m,j = 1,2,3; thus u,, has the
representation

3 F-i00
U (6, 1) = :i " ot 2m® ox (s)ds = W, (t)h (2.14)
m\s = i - A(S) m ="m m 8

form = 1,2,3. Here A, ,,(s) is obtained from A(s) by letting i:m(t) =1land () =0
for k £m, k,m=1,2,3. It is straightforward to determine that in the last two
formulas, the right-hand sides are continuous with respect to r for r>0. As the
left-hand sides do not depend on r, it follows that we may take r=0 in these
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formulas and in those appearing below. Write u,, in the form

um(x, t) — i_Lf+iwe S, m] m( ) A(s)xﬁm(s) ds
o 2mi 0 A( )

m(s) Sx i

= m(x, t) + Iy (x, 1),
form=1,2,3. Letting s = i( 0> — p)with 1 < p < +oo in the characteristic equation
s+r+r’ =0, (2.15)

the three roots are given in terms of p by

, 3 —4—ip —/3p*—4—i
Mo =ip, (=YL ""2 (="

and thus I,,(x, ) and I1,,(x, ) may be written in the form

: 1 oo ¢ t AF(p)x m(p)
Im=22—/1 i(6’~p) o) AJ'{ }( l)h (p)dp

3
Zif ey ox 20 2 gy ap
A(p)

where A (p) = (1{ P’ — p), AT( p) and .ﬁj m( p) are obtained from A(s) and A, ,,(s),
respectively, by replacing s with z(p — p) and A;(s) with l"( M, forj=1,2,3. Notlu.
that, w1th an obv1ous notation, A7 (p) = A+( 0) and A m(p) = Af m( p)forj=1,2,3,
and fi( p) = B p).

The next result is a technical lemma that will find frequent use in this section.
It plays the same role in dealing with the finite-interval problem as does Plancherel’s
theorem for the pure initial-value problem posed on the line.

Lemma 2.5. For any f € L,(0 + 00), let Kf be the function defined by

+60
Kf(x) = f[ P (1) d

where y(u) is a continuous complex-valued function defined on (0, 00) satisfying the
Jfollowing two conditions:
(i) There exist § > 0 and b > 0 such that

O<p<d w
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(@) There exists a complex number « + if such that

lim M =a+iB.
u—>+o0 (L

Then there exists a constant C such that for all f € L,(0, 00),

IKf z,0,1y < CUER "L Ol yirty + 1 Ollz,zey)-

Proof. Observe that

1 +00 00
IKF 1,01 < [ f ROV £()) d f ReOOM)| £(3)| dy dx
0 0 0

+00 00 1
= [T [ v a s nasay
0 0 [4]
+00  p+00
Re (7(s)-+7() | F()f ()
< /0 /0 (e YY) | 1) ds dy

IRe(¥(s) + v(»)
o0 el{er(s)l f(‘i)l ds )
/: [Re(p(s) + y(») lle FON L,z

Ly(R)
/‘+°° [/ (s)| ds
o IRe(y(s) +¥(»)l

+

£ Nl 2y (ry-
Ly(R*)

Notice also that
I oRe y(uy)f( )l L@y < ,[1/ 2 ||eR° y(')f(')||L2(R+)

and for any y € (0, + 00),

y < ¢
IRe(y(upy) +¥(¥) —u+1"

Using the integral version of Minkowski’s inequality yields

/+°°w | TP f(uy)ly dys

b IRe(v(s) + y(»)) B o IRe( ) + v L(RY)
B /+°° e T\ f(uy)y
“Jo |Re(rwy) + YO, ey

+00
=€) Zm+w

< Cle®*"f |l ey

dplle®* 0L Ollzn)
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for some absolute constant C. The same argument also gives

/+°° |/ () ds
o IRe(y(s)+ ¥(»)

The proof is complete. (]

< Clf lLyerty-
Ly(RY)

Lemma 2.6. Let a > 0 be given. For any f € L,(0, a), let Gf be the function defined by
61 = [ ¢y
0

where & is a continuous real-valued function defined on the interval |0, al which is C ! on
the open interval (0, a) and such that there is a constant Cy for which (1/|£'(u)|) < C4
Jor 0 < p < a. Then there exists a constant C such that for all f € L5(0, a),

1G 0,1 < CllSf Nly0,0)-

Proof. Let w = &(u). Since £(u) # 0 for u € (0, @), £ is strictly monotone and so is
invertible. Let u = S‘l(w) denote its inverse. Note that dw = £ (u)du and so by a
change of variables, we may write Gf in terms of w thusly:

{a)
Gf(x)=f eUf (s ())-‘E’(E {))

It follows from Plancherel’s theorem that

£(a) 2
190 = 57 [ U6 (w)) (emw) =
= ﬂ_/(; lf(/"')l |§/(N)| du

s%/:lf(u)lzdu

which is the advertised inequality. O

The following three propositions provide estimates for u;, u,, and u;, respectively.
They show clearly various smoothing properties that accrue through implementation
of the boundary conditions for the linear system (2.7) (cf. Remark 2.3).

Proposition 2.7. There exists a constant C such that

w1l yrt o,y + SUP Ny (5 Dll,0,1) < Cllagll ey (2.16)
0<t<+o00

and d,u; € Cy([0, 1]; Ly(RY)) with
sup |19,11(x, Mr,rey < Clibll gisges (2.17)
xe(0,1)

for all hy € H3(RM).
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Proof. Since
A1(8) + Aa(s) + A3(s) = 0,
it is readily seen that
A1) = (A3(s) = Ma(s)e ™M,

B2,1(8) = (A1) = Aa(s))e ™2,
As,1(5) = (a(8) — Ay (s))e ™

and thus
A(S) = (A3(8) — A(s)e ™ + (A1(5) — A3(9))e™9 + (Aa(s) — Ay(s))e ™.

In consequence, it follows readily that as a function of the variable p introduced
above and defined by the relation s = i( ,o3 - 0),

A?r.l(ﬂ)Ne:zép A;:l(P)Ne_ﬁp A3+.1(P)~1
A (p) ] At(p) 2 A*(p)

as p — +o00. An application of Lemma 2.5 produces a constant C such that

MG D10 < Z f

+ A~
<C f (oG — 1 dp
1

_,ll(p)

Reﬁ(p) Srte 2 1y[2
iy (EHO+1) i (3 - DI dp

2z

+00 +00
<C f aQ+wp?? / e " h(v)dt
0 0

dp < Cllhr s ey

The same argument applied to I7;(x, f) gives
IG5 Dllzy0,1) < Cllay g (gty-

Thus (2.16) holds. To prove (2.17), observe that

3 +00 +
1 i 0P — + xA (p) ~
A f1 PN (p)eT T2 (30 — DA (o) dp
j=1

At(p)
3
_ i it A OW)x I( (1)) ~
- [ ety w2

where 6(u) is the real solution of w=p’ —p for p>1. Using the Plancherel
Theorem (with respect to f) yields that for any x € (0, 1),

3 —+00
1
2
1816 Myrry < D5 /0

=1

A 0G|

Ao

i
A (6(uyed
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Thus, one finds there is a constant C such that

1
/0 18,135, Y2, ey

< mup 181 Cx, M3 %)

xe(0,1
2

AT (6 R
L@ - o du

3 +00
2 Y 2
<C [ hrer s T R

i oo n
<C) [+ W i dis < U o
=

The following estimates were used in obtaining the last inequality:

sup |eMP*2 < sup |P% 2 < C(e‘/i” —+ 1),
x€(0,1) x€(0,1)

sup |92 < Cp_l(e—‘/ip +1).
x€(0,1)

To see 8,1, is continuous from [0, 1] to the space L,(R"), choose any x, € [0, 1] and
x € (0, 1) and observe that

axII (x, t) - axII (XO, t)

3 +00 +
1 / inty + A HO)) Aoy D 10W)) ~
= P e AT (o ehi X o 0y L T hGuwdu.
;271 0 i G )A+(0(p,)) 1) dp

Using the Plancherel theorem with respect to ¢ as above yields

18,11 (x, -) — 8,11(xo, ')||%Q(R+)
3 1 +00

<C23: +°o(1+ 2 \hy ) d
< | w7 1h G|~ dp.
j=1

AL O

w5
ATE0) lh Gu)l* du

AT (B(u))(e @ _ A iy

IA

An application of Fatou’s lemma gives

lim 9,11 (x, ) — 8Ty (%0, )17 ()
X—>Xg
3 +00 + 2
=2

2 i)t d
ATOW) [hy ()™ du

A (O(u)) lim (el,-* ©Go)x _ eA,-*(e(u»xo)
X—>Xg

Il
=
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Similar considerations establish that

1
/0 18, L2(x, F oy < SUP I8 La(%, T 4y < C||h1||H|,;(R+)

xE 5
and I,(x,-) € Cy([0, 1]; Ly(R™)). The proof is complete. O
Proposition 2.8. There exists a constant C such that

ol me; 0,1y + sUP N, Dlizy0,1y = Cllhall gragrey (2.18)
0<t<+00

and d,uy € Cy([0,1]; Ly (R)) with

sup [|8xuz(x, I, mry < Clallgnngrry 2.19)

xe(0,1)

for all by € H'3(Rh).

Proof. Let uy(x, t) = L(x, ) + IL(x, {) with

3 .
_ 1 o0 & AJ’ 2(5.) A ()X 1)
L(x,0) = j§=1 I ’0 AGS) hy(s) ds

and

mo0=3 o [ iy i

As in the proof of Proposition 2.7, one has

3,1 [t r +ppx BF2(P)
L(x, t):ZIE/I' i(0* o)t A () Ajf( )( — DA p)dp
J=

where h2 (p)= hz(l(p —p)) and A 2(,0) = Aj (i p® — p)) for j = 1,2, 3. Note that

Apo(s) = e’ —A3e™,  Agy(s) = Aze™ — MM,
Aj o(s) = MM — Aze.

One readily obtains that, as o — +o00,

Ala(p) D) A AL
At(p) 7 AT(p) ’ A*(p)

Using Lemma 2.5, it is adduced that there is a constant C for which

LG, DI 0,1y < Z/

<c f i (030" = D2 dp < CllhalZnes

+00

A,t 2(9)

(R4 P 1 1big)?|hf (0)30% - 1)’ d
A o) 2)* |k (0)(3p° = 1)| dp
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The same estimate holds for II,(x, £). To prove (2.19), note that

1 [+ s ve oe A7 2(P)
9, (x, 1) = Z%[ e(p3 p)tk‘;i-( p)ekf'(l)) &f 2 (3p _ 1)h+(p) dp

2 (0
1 SE + o D.20() ~
- Z% /0 P A;“(G( M))ek, () ‘&’4_2(9( ) hz(zu) du.

Using the Plancherel theorem (with respect to f),

3
1 [t
2
19, T2 (%, MLy < j§=1 E/(;

from which follows

Ay Ow)|

A.}_"— (0(;;))e}"f+ e ATO(w))

ks G)Pdp,

0,1 (x, t)"iz(o 1;Ly(RY)
=< sup) |85 11 (x, )|lL2(R+)

x€(0,

A O)|

.
Ay | G dn

B +o00
<C Areeun? MWHOG)x |2
< ;[o HCD) x:g?l)lef |

3 +00 R
<Cy | +w ik’ du < Cllkalznge.
— JO

The same estimate holds for II,(x, f). Moreover, a similar argument as that used
in the proof of Proposition 2.7 shows that both I, and II, are continuous from [0, 1]
to the space L,(R"). The proof is complete. O

Proposition 2.9. There exists a constant C such that
luall L,cr+; 100, 1) + SUP s (-, Ol L,0,1) < ClihallLyrry (2.20)

and d,uy € Cy([0, 1); L2(R+)) with

sup) l8xu3(x, Il Lrty < Cllhall,rty (2.21)

xe(0, 1

for all hy € L,(R™).
Proof. The function u;(x, £) can be written in the form u;(x, £) = L(x, ) + II3(x, {) with

3 1 +ico
13(x, [) B Z]z_mf est 3‘(3(;') )»(s)xh (S) ds
J=

and

IL(x, 1) = Z — /0 e iz()S) A% (5) ds.

—100
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As in the proof of Proposition 2.7, one has

3 —+00 4

1 S —on st o D a(P) A

L(x,f) = ZI:E /1 PP A (p)x —;j( 5 (B3> — Dhi(p)dp
J:

where A1 ( p) = hy(i(p° — p)) and At3(p) = A} 3(i(6° — p))s j = 1,2,3. Since
A s(s) =0 =D, A, () = — A0
and

Az 3(s) = elz(s) _ ell(s)’

it follows that

AI 3(p) » p-] A}{;( p) - p_le_(ﬁ/z)p A:{z( p) o =1
A*(p) ’ A*(p) ’ A*(p)
as p — +o00. The remainder of the proof follows the lines developed above. [

Let E(t) = (hy(2), hy(9), ho(1)) and write the solution u of (2.11) as
3
w(t) = Wy(Oh =Y Wik (2.22)
Jj=1
where the spatial variable x is suppressed and the W; are as defined in (2.14). For
s>0and T > 0, let
Hy r = HEVB0, T) x HOB(©0, T) x H(0, T).

For any he Hs 75

7 2 2 1/2
Wllpg, , = (Wealgerino, 7y + Wzl gesinsco, 7y + 1Al 2pno 1) 72

If T = o0, denote H, r by H;. Combining Propositions 2.7-2.9 yields the following
theorem about the linear IBVP (2.11).

Theorem 2.10. For any he Hy, the IBVP Eq. (2.11) admits a unique solution

u(x, 1) = [Wy(Dh(D](x)
which belongs to the space Cy(RT; L,(0,1)) N Ly(RT; H'(0,1)) with u, € Cy([0,1];
Ly(RY)). Moreover there exists a constant C such that

Null .m0,y + SUP  HuC, Dllzy0,1y < Cliklly, (2.23)
0<t<+o0
and
sup flux(x, I,y < Clihlly, (2.24)
x€(0, 1)

Sfor all he Ho.
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Remark 2.11. The estimate (2.23) reveals a Kato-type smoothing effect of the system
(2.11) while (2.24) shows that the system (2.11) possesses a stronger smoothing effect,
the so-called sharp Kato smoothing (see Kato (1983), Kenig et al. (1991a); Vega
(1988)). It is this smoothing property that provides the rationale for being able to
impose in a strong sense the boundary condition u,(1, #) = A3(f) in (2.11).

Remark 2.12. The condition imposed on 7 in Theorem 2.10 appears to be sharp in
the context of our approach to the analysis. From the explicit solution formula for
(2.11), using arguments similar to those appearing in the proof of Propositions 2.7—
2.9, one shows that u € C,([0, 1]; H)*(R")) and

sup [uCx, Y gscgey < Cllillzg-
x€(0,1)

Of course, this does not mean that results with s < 0 are not possible, mearly that the
present argument would not be adequate to the task.

Finally we return to the homogeneous IBVP (2.1) to show that it possesses the
sharp Kato-smoothing property. Let a function ¢ be defined on the interval (0, 1)
and let ¢* be its extension by zero to the whole line R. Assume that v = v(x, f) is the
solution of

Vit Vit Ve =0, ¥(x,0) = ¢*(x)
for xe R,t > 0. If

&) =v0,0), &@O=v11, g =rl1),
then in terms of W,(¢) defined in (2.22),

v = vg(x, 1) = Wy(Dg

is the corresponding solution of the nonhomogeneous boundary-value problem
Eq. (2.1) with boundary conditions 4;(t) = g,(1), j = 1,2, 3, for > 0. It is clear that
for x € (0,1), the function v(x, £) — v(x, ?) solves the IBVP (2.1), and this in turn
leads to a representation of the semigroup Wy(¢) in terms of Wy(f) and Wiy(1),
where Wg(1) is the Cy-semigroup in the space L,(R) generated by the operator 4,
defined by

Arf=—f"-f"
with domain D(4g) = H(R) and v(x, ) = Wg(t)¢* (x).

Proposition 2.13. For any ¢ € L,(0, 1), if ¢" is its zero-extension to R, then Wy(#)¢ may
be written in the form

Wo()p = Wr(t)p" — Wy()g
for any x € (0,1), t > 0, where g = (g1, 82,83),

g1() =v0,0), £O=v(1,0, &)=,
with v = Wgr(f)¢".
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Remark 2.14. Of course, g depends upon the particular extension ¢* of ¢ chosen
here. However, the intrusion of ¢* is simply as an intermediary for obtaining the
trace estimate in Proposition 2.16 below. It plays no other role in the theory.

To have appropriate estimates of W(¢)¢, the following trace result related to the
semi-group Wg() is needed.

Lemma 2.15. There exists a constant C such that for any ¢ € Ly(R), v(x,{) =
Wr(DW(x) satisfies

sup ||[v(x, M gy < ClYllLw)-
xeR
Moreover, v, € Cyp(R; Ly(R)) and

sup [[vx(x, )l ,r) < CllYllLyr)-
X€R

Proof. This lemma follows as a special case of Lemma 2.1 in Kenig et al., (1991b)
except the continuity of v,(x, -) from R to the space L,(R), which can be verified using
Fatou’s lemma and the argument that appears in the proof of Proposition 2.7. [

The following estimate for W(t) follows from Proposition 2.13, Lemma 2.15,
and the estimates of W;(¢) established earlier in Theorem 2.10.

Proposition 2.16. For any ¢ € L,(0, 1), u = Wy(t)¢ has the property
u, € Cy([0,1]; Ly, (RY))
and there exists a constant C such that

sup lux(x, Mz, r+y < ClldllLy0,1)-

xe(0,1)

We conclude this section with the following proposition which, like the foregoing
results, will be needed later (see Proposition 3.2).

Proposition 2.17. Let T > 0 be given and

u(x,t) = /(; Wy(t — 1) f(-, 1) dr.
Then

T
sup |lu(x, ')||L2(o,r) = C/(; "f('af)"y(o, 1) dr.

xe(0, 1
Proof. Observe that

t T
wy(x, ) = /0 8, (Wot — )f (7)) dr = /0 §0.5(DWolt — 0)f (2 1) d
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Korteweg—de Vries Equation on Finite Domain 1415
where
1 if t€(0,0);
T) = )
50,0 {0 if 7>t

Using the Minkowski’s integral inequality gives us

1/2

T, oT s
loax (x, 220, 7y < &0, n(D)3(Wo(t — D) f (., ) dt) dt
o \Jo

= /OT(/TT|3,,(WO(: —9f ) dt)m dr.

Thus, invoking Proposition 2.16 (with the initial time t) gives us
T T ) 172
sup |[lu.(x, )l 20, 7) S/ sup (/ |0:(Wo(t — ) /(- D)) dt) dz
xe(0,1) 0 xe(0,D\Jz

T
< C/o. £ D2, 1y d7-

The proof is complete. O

Remark 2.18. It is worth highlighting the crucial role played by the formulas (2.14)
and following, which provided an explicit representation of solutions directly in
terms of the boundary data. Our theory devolves in large part on the efficacy of
these formulas.

3. LOCAL WELL-POSEDNESS

In this section, attention will be given to the full nonlinear IBVP

u, +u, +uu, +u,,, =0, u(x, 0) = ¢(x),
w0, =m(@), u(l,0)=h(@), u(l,1)=h2)
introduced at the outset of our discussion.

For any T > 0 and 5> 0, let X r be as defined in (1.11) with its usual product
topology and let ¥, r be the collection of

v e C([0, TT; H*(0, 1)) N Ly([0, T); H**'(0, 1))
with v, € C([0, 1]; L,(0, T)). A norm || - ||y, ., on the space Y, r is defined by

(3.1)

2 2 1/2
Ivlly, , = (W10, 350, 1)) + VN0, 70410, 13 + 1 llet0, 112200, )
for v € Y, r.* The space Y, r possesses the following helpful property.

*The reader may notice that the space ¥,y need not include the finiteness of ||vy||¢(o,1):L,(0,7))
for the arguments that follow to be valid, and hence for proving well-posedness of the IBVP
Eq. (3.1) in the space H*(0,1). However, by keeping this term, we are able to determine at a
stroke that solutions of Eq. (3.1) possess the sharp Kato smoothing effect.
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Lemma 3.1. Let s > 0 be given. There exists a constant C such that for any T > 0 and
u,ve Y, p,

T
fo G, G )il oo, 1y dt < C(TY? + T ) ully, vy, - (3.2)

Proof. The proof is given for 0 < s < 1. The proof for other values of s is similar.
Notice first that

T T T
fo N, (- D)l 0,1 dtS/; lleax (-, OV(, DNl 0,1 dt+/(; N, )y (-, Ol Lyg0,1 At
Using the Poincare inequality, there obtains

ll2eC-s )y (s Dl 0,1y = NG Dl 0, 1V C5 Dl 200, 1)
1/2 1/2
< C(l1uC, Ol g0, 1y + NG DU Lo, 1 N1t C D Lo ) IVaC Dl y0,1)-

These two terms, when integrated with respect to z, are bounded thusly:
T T
/ G-, Dl Ly 0,y 1V Dl £y0,1y B < sup [|ul-, Dl 0,1 / V(> Ol 2, 0,1y @2
0 0<t<T 0

T 172
<T'? sup ||u(',l)||L2(0,1)<[ ”vx('st)”%q((),l)dt)
0<t<T 0
<CT"|luly,, I¥lv,,

and
T 172 1,2
/0 flud:, t)”Lz(O, 1)”“::(': t)"L/z(O, 1)||Vx(', t)”Lz(O, 1) dt

T 1/4 T
1/2 2 4/3
< sup |lu(,t u, (-, ¢t dt / v,(-, t dt
05t£T ” ( )llh(O,l)(L " x( )||L2(0,1) ) ( . ” x( )”L2(0,1) )

1/3
< CTP|ully, , IVly, ,-

3/4

The last three inequalities combine to establish that

T
/0 -, vy Dz, 0,1y 2 < CTY? + T P)lully, , IVl -

Similarly, one sees that

T
| 006 Dl < €TV Ty, o,
0

In consequence, estimate (3.2) holds with s = 0. To see that (3.2) is true for s =1,
argue as follows. Observe that

(- OV Dm0, 1y = N@C, OVC, D)l Ly0, 1y + 1@, OVC D)nell Ly0,1)
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Korteweg—de Vries Equation on Finite Domain 1417
and that
G, OC D)yl L0, 1) < NCRC, OVCL D)yl L0, 1y F 1 Cs V(s D)l 100, 1)-

The inequality (3.2) with s = 0, just established, gives

T
/0 1GC- OVC, el ygo,1y B < CT? + T (llugll v, IVl 5 + Ntlly, 104y, )

< T+ T¥Nully, V1, ,

which together with (3.2) (again with s = 0) yields

T
/0 NG, VG, Dl o, 1y At < CCTV2 4+ T ully, 0]y, -

The estimate (3.2) with 0 < s <1 now follows from the nonlinear interpolation
theory developed in Bona and Scott (1976). The proof is complete. O
The next step is to show that the IBVP (3.1) is locally well-posed in the space X, 7.

Proposition 3.2. Let T > 0 be given. For any (¢, i[) € Xy, r with h= (hy, hy, hy), thereis
a T* € (0, T] depending on ||(¢, h)||x, , such that the IBVP Eq. (3.1) admits a unique
solution u € Yy r-. Moreover, for any T' < T*, there is a neighborhood U of (¢, h)
such that the IBVP Egs. (1.1)«(1.3) admits a unique solution in the space Y, 1 for
any (Y,h) € U and the corresponding solution map from U to Y, r is Lipschitz
continuous.

Proof, Write the IBVP (3.1) in its integral equation form

u(t) = Wo(0)$ + Wi — fo Wo(t — 1)uy)() d (33)

where the operator W(?) is as defined in formulas (2.14) and (2.22) in Sec. 2 and
the spatial variable is suppressed throughout. For given (¢, h) € X 7, let r > 0 and
6 > 0 be constants to be determined. Let

Se,» =1{v € Yo IVlly,, <}

The set Sy, is a closed, convex, and bounded subset of the space Y,¢ and
therefore is a complete metric space in the topology induced from Y; 4. Define a
map I' on Sy, by

I) = Wo(t)b + Wy(t)i - ]0 Wyt — Yov,)(1) d

for v € Sy ,. The crux of the matter is the following inequality. For any v € S ,,

ITMIy,, < Gll(e, H)llxolr +C /: v, Dl Ly0,1) 47

< Goll(@, Wlix, , + C1(68"* +6)IIvii,,
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where Cp and C; are constants. As the norm on Y o has three parts, this amounts

to three inequalities, all of which follow immmediately from the linear estimates in
Sec. 2 and in Lemma 3.1. Choosing r > 0 and 6 > 0 so that

{ r=2Coll@, Wiy, ,» (3.4)

C(6"* +6")r <4,
then
TGy, <7

for any v € Sy .. Thus, with such a choice of r and 6, I' maps Sj , into Sy ,. The same
inequalities allow one to deduce that for r and 8 chosen as in (3.4),

1
IT(v) =Ty, < ||V1 —nally,,

for any v;, v, € Sp,,. In other words, the map I is a contraction mapping of S, 4. Its
fixed point # = I'(w) is the unique solution of the IBVP (1.1)«1.3) in S ,. O

Consider the forced linear problem

Uty g =f,  u(x,0) = ¢(x), ] (3.5)

w0,9) =h (), uw(l,0)=h(0), u,(1,1)=h0).

Applying the linear estimates derived in Sec. 2, for (¢,h) € X, r and f € L;(0, T;
L,(0, 1)), the corresponding soiution u of (3.5) belongs to the space ¥, r and satisfies

lully, . < CU@, W, , + 1.FllL,0,7:1,0,1)) (3.6)

for some constant C independent of ¢, 4;, j = 1,2, 3 and f. The next lemma gives an
estimate for solutions of (3.5) in the space Y, r with s in the range of 0 < s < 3.

Lemma 3.3. For given T>0 and s in the range [0,3], let there be given
e w10, T; Ly(0,1)) and (¢, h) € X, r satisfying the compatibility conditions

#(0) = 1 (0), ¢(1) = hy(0) if 1/2 <s<3/2, or 3
$0) = 1 (0), ¢(1) =hy(0), ¢ ()=hs0) if 32 <s<3. '

Then Eq. (3.5) admits a unique solution u € Y r and

lully,, < C(i(e, h)||x + 1S Mwerao, 71,00, 1)) (3.8)

Jfor some constant C > 0 independent of ¢, h, and f. Moreover, if s =3, u, € Yy 1 and

ey, , < C(ll(o, h)”,\'3 » T 1 lwsra, 7,150, 1)



MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Korteweg—de Vries Equation on Finite Domain 1419

Proof. The proof is provided for s = 3 since the result for other values of s can be
established by interpolation and (3.6). For the solution u of (3.5), let v = u,. Then the
function v is a solution of

Vot Ve Ve =S V(%,0) = £(x,0) — ¢"(x) — ¢'(x),]
V(O, I) = h’l (I)5 V(l, t) = hIZ(t)a vx(l, t) = S(t)

Applying (3.6) to v in (3.9) yields that

Iy, < CUAlL@ 70,19 + 1UC0) = ¢7() — # O H)lix, ,)-
Define

(3.9)

u(x, 1) = /O.t v(x, T)dt + ¢(x).

Then u(x, 0) = ¢(x) and
u(0,1) = /l v(0, ) dt + ¢(0)
0

N fo W) dz + $(0)
= h(#) — 7(0) + #(0) = I ().
Similarly, u(1, ) = hy(2) and u,(1, f) = hy(f). Furthermore, it is easily verified that
U (X, 1) F 1 (X, 1) + Upr(X, 1)

= v(x, 1) + fo t(vx(x, ) + Ve (%, 7)) dT + @' (X) + ¢" (%)
— ¥(x,0) + fo 6 0) = 1206 1) = Vel D) T
+ f I(vx(x, ) 4 Vi (%, 1)) dT + ¢ (x) + ¢"'(x) = 0.
0

Thus u solves the IBVP (3.5). Since
Upix = — U — Uy =f —v—u,

it follows that u € Y; r and satisfies (3.8) with s = 3. The proof is complete.
[

Here is the promised local well-posedness result for the IBVP (3.1) in X 7.

Theorem 3.4. Let T > 0 and s> 0 be given. Suppose that (¢, i;) € X, r satisfies the
s-compatibility conditions. Then there exists a T* € (0, T) depending only on
I(o, M| X, 7 such that Eq. (3.1) admits a unique solution u € Y; 1 with

J
o € Ys—3j, ™
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forj=0,1,2,...,[s/3]1 — 1,[s/3). Moreover, for any T' < T*, there is a neighborhood
U of (¢, h) such that the IBVP Eq. (3.1) admits a unique solution in the space Y 1+ for
any (Y, hy) € U and the corresponding solution map is Lipschitz continuous.

Proof. For given s-compatible (¢, h) € X, r,let r >0 and 6 > 0 be given and S, ,
be the collection of functions v in the space C([0,8]; L,(0,1)) N Ly(0,6; H'(0, 1))
satisfying

djve Yy, forj=0,1,2,...,[s/31— 1 and 8"y € Y,_55/3,0,

and
; o=l
NE Wl gy + D 18Vly,, <.
Jj=0
Let
[s/3]-1
Vs,0 = Ys_3i5731,0 X 1_[ Y3,
=0

with the usual product topology. Then the set So,r may be viewed as a closed subset
of );, via the mapping v — (v,d,v, Lol ]v) =7, and therefore is a complete
metric space. For any v € §, ,, consider the system of equations

u +u® +ul, =1 20 (EJ—O Ttk yy )) u®(x,0)= ¢k(x),}

w0,0) = K00, w1, n=HKP®), w1, =rP@),

(3.10)

’

fork=0,1,2,...,[s/3], where u® = afu, WO = 3i‘v and ¢, hgk), h(zk), hgk) are defined
in (1.7) and (1.8). By Lemma 3.3, the IBVP (3.10) defines a map I from S, , to the
space ), . Moreover,

IT@G)liy,, < Cl@, Mlx,, + CE +6') I3y,
for some constant C independent of I;, ¢, and 6. Thus, the argument presented in the
proof of Proposition 3.2 shows that I' is a contraction map from S, , to S, , if r and 6
are appropriately chosen. As a result, its fixed point il € Sy, is the unique solution of
(3.5). Thus the proof is complete when s < 3. In case s > 3, the result just established
shows that

u) e C([0,6); 50, 1)) N Ly([0,6); H*(©, 1))
forj=0,1,...,[s/3]1 -1 and

W' € Y, 53,0 = C(10, 63 H 3P0, 1)) 1 Ly([0,6); BP0, 1)),
In case k =[s/3] — 1, (3.10) implies that

(ls/3]-1)

—1 3]-1 - 1 ]
ug([;:{‘:;] ) — _ug[s/ -1 _ uS‘[S/3] n_ 5ax( C[ /31-1

NON [S/3]—1—D> .

j=0
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We thereby arrive at the conclusion
B0 e ([0, 6; H 320, 1)).

It is further implied that the left-hand side of the last equation belongs to
C([0, 6, H*- R0, 1) N Ly([0, 6); H*+1~/(0, 1)).

Consequently, it must be the case that
uB3=D e c([o, 61; B3R, 1)) N Ly([0, 6], HH13(0, 1)),

Repeating this argument if necessary yields that ue C([0,6]; H°(0,1))N
L,([0,6); H*1(0, 1)) with

u e C([0,6]; HY(0, 1)) N Ly([0, 6]; H**'~¥(0, 1)
forj=1,2,...,[s/3]—1 and
8% e c(lo, 6% H'PI0, 1)) N Ly([0, 61; H*'0, 1).

The proof is complete. O

4. GLOBAL WELL-POSEDNESS

The results presented in Theorem 3.4 are local in the sense that the time interval
(0, 7%) on which the solution exists depends on ||(¢, /)|y, ,. In general, the larger
(¢, Bl x, ,» the smaller will be 7*. However, if 7* = T’ no matter what the size of
l|(#, M)l x, ,» the IBVP (3.1) is said to be globally well-posed. In this section we study
global well-posedness of the problem (3.1). First we introduce a helpful Banach
space. For given s>0 and T > 0, let

Zs r= HS(O’ 1) x H€+(55+9)/18(0’ T) x H€+(53+9)/18(0’ T) x HE+(55+3)/18(0’ T)

if 0 <s<3and
Zs,TEXs,T

if s > 3, where € is any positive constant. Of course, for s < 3, Z; r depends on ¢, but
this dependence is suppressed. The Sobolev indices when s lies in [0, 3] may look a
little odd. We feel it likely that they are an artifact of our proof. The strange indices
derive from slightly inadequate smoothing results and are the best we can do with
what is in hand. Note this inelegance ceases as soon as s > 3, and hence for the case
of classical solutions when s > 7/2. The same issue arose in Bona et al., (2001) for
the quarter-plane problem, so the issue does not necessarily devolve upon the third
boundary condition u,(1, £) = h3(%).

Theorem 4.1. Let T > 0 and s>0. For any s-compatible (¢, i?) € Z, r, the IBVP
Eq. (3.1) admits a unique solution u € Y p with 8u € Yo 57 forj=0,1,2,...,[s/3]
Moreover, the corresponding solution map of the IBVP Eq. (3.1) is Lipschitz continuous.
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Proof of Theorem 4.1. In the context of an established local well-posedness result,
it suffices to prove the following global a priori H’-estimate for smooth solutions of
the IBVP (3.1).

Proposition 4.2, For given T > 0 and s>0, there exists a continuous and non-
decreasing function v, : Rt — R such that for any smooth solution u of Eq. (3.1),

sup N, a1y < ¥l Wiz, ,)- @.1)

O=<izT

The proof of Proposition 4.3 consists of four parts. In part (i), estimate (4.1) is
shown to be true for s = 0. In part (ii), estimate (4.1) is shown to be true for s = 3.
Then, in part (iii), Tartar’s nonlinear interpolation theory is used to show that (4.1)
holds for 0 < s < 3. The validity of (4.1) for other values of s is established in part

@iv).
Part (i). For a smooth solution u of the IBVP (3.1), write ¥ = w + v, where v solves
Vit Vy Vi =0, v(x,0) = ¥(x), (4.2)
V(O, t) =l hl(t)’ V(l, t) = hZ(t): Vx(l, t) = h3(t)’ .
with
¥(x) = (1 = x)h1(0) + xhy(0) + x(1 — x)(h3(0) — ~(0) + 1 (0))
and w solves
Wy + Wy + Wy + Wyxxx = —(WV)x — Wy, W(x, 0) = ¢(x) i Mx): (4 3)
w0, =0, wl,H)=0, w,1,1)=0. )
By Lemma 3.3
lly,, < CIGE, Wi, (4.4)
for 0 < s < 3. In particular, for 3/2 <5 <3,
IVlly, . < CUMNgne, my + lh2llgsre, 7y + 13l ge-nsg@, 1) 4.5

since
¥l @, 1y < CUl Nl g, 7y + N2l gro, 7y + A3l ge-v50, 7))-

Multiply both sides of the equation in (4.3) by w and integrate over (0, 1) with respect
to x. Integration by parts leads to

d 1 1
W60 < € /0 i, W, )l dx + € /0 [95(> DV, W, D)l d.

Observe that
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1
fo 3 0 Dl = sup [ 01, D

xE ,
< Ce”v(', Ol gzeeo, Wi t)lle(o, 1
and

1
‘/0. [vi(, OVC, OW(-, )] dx < sup |Vx(x DIVC, Dl zy0, 5 IWES Dy, 1y

xe(0, 1)

< Cliv(:, t)||H3/2+E(0’ 1)”W(', t)”Lz(O, 1)

where ¢ is any fixed positive constant.
In consequence, one has that

d
allw(', Iz,0,1) = CellvC Dl garseo, W DllL,0,1) + Cellv(, t)llip/zﬂ(o,l)

for any ¢ > 0 The estimate (4.1) with s = 0 then follows by using Gronwall’s inequal-
ity and (4.5).

Part (ii). For a smooth solution u, v = u, solves

VitV + (uv)x + Vix = 0, v(x,0)= ¢*(x)
v0,0) = Hi(e), v, =K, v(1,1)="h)

where ¢*(x) = —¢/(x) — ¢'(x)p(x) — ¢”'(x). By Lemma 3.3, there exists a constant
C > 0 such that for any T’ < T,

lly, ;0 < CI@* D)llxyr + CT2 + T P)lully, IVl y, -

Choose T’ < T such that C(T'l/2 T’1/3)||u||y =1/2; with such a choice,
Ivlly, , < 2C|\(¢", h)ll A that T' only depends on |uly,,, and therefore
depends only on [|(¢, M|z, . by the estimate proved in Part (i). By a standard density
argument,

IVllv, » < Cill(@ Wiz, ,

where C; depends only on T and (¢, }_{)u P The estimate (4.1) with s =3 then
follows from

= —(uxxx +uy + uux)

by a now familiar argument.
Part (iii). Here is a précis of the (real) interpolation theory as it will be used below.

Let By and B; be two Banach spaces such that B; C B, with the inclusion map
continuous. Let /' € By and, for 1> 0, define

K(f,n= sjg;{llf —8lig, +tlgls}-

For 0 <6 <1and 1 < p < +oo, define
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+00

1/p
[Bo, Bilp,,= By, p = {f €By: | fllgp = ( KO t)”f“"’“dt) < +oo]

with the usual modification for the case p = +o00. Then By , is a Banach space with
norm |||lg,. Given two pairs of indices (6;,p;) and (6,,p;) as above, then

(61, p1) < (62, p2) means

91 < 02, or
91 = 02 and P1 > D

If (61, p1) < (62,p2) then By, ,, C By , with the inclusion map continuous.

Theorem 4.3. (Bona and Scott, 1976) Let B’ and B’ be Banach spaces such that
BJ C B’ with continuous inclusion mappings, j = 1,2. Let A and q lie in the ranges
0<i<landl <q<+00. Suppose A is a mapping such that

(@) A4: Bi,q —~ B andforf, ge B,{,q,
l4f — Agllzz < Colll fliz, + gz IS = gllgy

and
(i) A: B —aB%andforheB{

I4hllg2 < Ci(llAll gz JIlip:

where C;: R* — RY are continuous nondecreasing functions, j = 0, 1.

U0 v\~ (1 2\ A maane Bl ine
YL Z ey, A

||Af||33'p =< C(||f||31'q)||f||yg.p,
where for r > 0, C(r) = 4Cy(4r)'°C,(3r)°.

Remark 4.4. This theorem is identical with Theorem 2 of Tartar (1972) except that
Tartar makes the more restrictive assumption that the constants Cp and C; depend
only on the Bo norms of the functions in question. Theorem 4.3 was used by
Bona and Scott to give the first proof of global well-posedness of the pure initial-
value problem for the KdV-equation on the whole line in fractional order Sobolev
spaces H°(R).

To prove that estimate (4.1) holds for 7> 0 and 0 < s < 3, let

Z.r={(¢, /7) € Z, 7 satisfying s-compatibility condition}
with the inherited norm from the space Z; y. Choose
By=Zor, Bi=Zyr, Bj=C(0,T]; L0, 1), B =C([0,T]; H©,1)).

Let A4 be the solution map of the IBVP (3.1): u = A(¢, ﬁ). For given s with 0 < s < 3,
choose p =2 and 6 = s/3. Then
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B, =C(0, TLH'O, D), By, =2Z,1.

In this case, assumption (ii) of Theorem 4.3 is (4.1) with s = 3, which we have already
proved. It remains to verify assumption (i) of Theorem 4.3.

To this end, let u; = A(¢q, k), uy = A(¢y, hy), and w = u; — u,. It is seen that w
solves the variable coefficient problem

W+ wy + (ZW)X + Wyxx = 0, v(x’ 0) = ¢1(x) - ¢2(x)
w(0, ) = hy 1 (1) — by 1 (1), wx(1,8) = hy 5(8) — by 2 (), w(1, 1) = hy 3() — ha,3(2)

with z=(1/2)(u; —u). Applying Lemma 3.3 with s=0 yields that, for any
0<T'<T,

Iwlly, ;. < CUl(@1, h1) — (b2, k)l x, » + 12wl L, 0, 775 1,00,1))
< Cll(1, 1) — (@2, W)l x, , + C(T"2 + T"P)lzlly, Wl .-

Because of Part (ii), the estimate

lzlly, , < Y11, Filiz,, + 1@ Bl )
is obtained for z. If T’ is chosen such that
(T +T"3)lzlly,, = 1/2

then it follows that
Iwlly, ;. < 2CN(&1, 1) — (@2, o)l - (4.6)

Since [T " only depends on 21l y,,, which in turn only depends on ||(¢1,i71)||z”+
(@2, 2)l z, ,» by a standard extension argument, one arrives at

Wlly, , < YU@1 BNz, 5 + 182 Bl 2, M1, ) = (2. ) 3, -

Thus assumption (i) of Theorem 4.3 is satisfied. Estimate (4.1) is established for
0 < 5 < 3 by invoking Theorem 4.3.

Part (iv). We prove that (4.1) holds for 3 <s < 6. The same argument can be
invoked for s > 6. For a smooth solution u of the IBVP (3.1), v = u, solves

Vet vy + (uv)x F Vyrx = 0, v(x, 0)= ¢*(x)
V(O, t) = Il(t)a V(l, t) = hlZ(t)’ vx(I! t) - h/3(t) .

Applying Lemma 3.3 for any 0 < T’ < T gives the inequality
Wlly,, . < Cl@ Bz, + C(T"2+T"P)vlly,_, llully,_, ,

for some constant C > 0 independent of T’ and (g, }-{). Thus, if one chooses T’
such that
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(T2 + T"lully,, , = 1/2,

Y:—J, T

then

Wy, <2CI@, Dz, ,-

Because T’ only depexlds on |ully, , ., which by the estimate (4.1) proved in Part (iii)
only depends on ||(¢, )|z, one obtains

—3,7?
Vlly,s p < ¥oos(1@ Dz, @, Dz, -

Consequently,

Iy, , < Croos(1(d, Wiz, @ Bz, ,

and the proof is complete. |

5. ANALYTICITY

For given T > 0 and s >0, let X 7 be the collection of all s-compatible functions
(¢,h) € X, 7. By the definition of s-compatibility, X, r is a linear subspace of the
Banach space X; 7 if and only if 0 < s < 7/2. When 0 < 5 < 7/2, we consider X r as
a Banach space with its norm inherited from X r. By the results established in Secs. 3
and 4, the IBVP (3.1) defines a nonlinear map K; from &’; r to the space Y; r for any
s > 0. From the proofs of the resuits given in Sec. 3, the map K; is known to be
locally Lipschitz continuous from D(Kj), the domain of K;, to ¥, 7. In this section
it is shown that this nonlinear map K; is analytic. More precisely, when 0 < s < 7/2,
for any g € D(K)), there exists an n > 0 such that for any w € X r with Iwlle, , <mn,
we have g +w € X; 7 and K;(g + w) has the following Taylor series expansion:

00 K{n) "
Kig+w) = Kig) + 3 -G

n=1

where K}")(g) is the nth order Fréchet derivative of K; evaluated at g and the series
converges in the space Y7. In case s > 7/2, the Taylor series expansion does not hold
as just written since the space X', r is no longer a linear vector space. In this case, we
consider the initial-boundary value problem for a general m-nonlinear system, which
includes the IBVP (3.1) as a special case, and show that the corresponding nonlinear
solution map K; is analytic in this context.

In pursuit of this program, we present a well-posedness result for the linearized
KdV-equation with variable coefficients, viz.

U+t + (@), + ey =f(x, 1),  u(x,0) = ¢(x),]

(5.1)
u0,0) = hy(), w(l,0)=hy(0), u.l,s)=hs).
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Proposition 5.1. Let 0 <5 <3 and T > 0 be_given. Assume that a € Y, y. Then for
any [ € H'3([0,T]; H®970,1)) and (¢, h) € X, 1, Eq. (5.1) admits a unique
solution u € Y r satisfying

lully, , < C(I(P, Wx, . + 1/ e, 0, 1)
where C > 0 only depends on laly,,.-

Proof. The proof is similar to that of Theorem 3.4, and so we only provide a sketch.
For given 0 < 8 < T and r > 0, let
Spr=1{we Y5t lwly, <rh

B =

For specified ae Y, r, f € H3([0, TT; H*(0,1)) and (¢, ﬁ,f) €X;rx H3([0, T);
H3(0, 1)) with (¢, i_;) € X, r, consideramap I' : Sg, — Y, 4 defined by

u=T()
where u is the unique solution of

Uy Uy + Uyyx =f(x, - (av)x’ u(xs 0)= ¢(x)’
u(o’ )= hl(t)’ u(l, t) = hy(2), ux(l’ t) = h3(t),

for v € S ,. Applying Lemmas 3.3 and 3.1 yields

ITODly,, < CU@, b Nlix, ;xmr, 7500, 1 + CB7 + B ally, Dy, ,-
Choose 0 < 8 < T and r such that

r=2C\(¢, h, D, px s, T:570, 1) (5.2)
and

B + g Mlally, ,r < 1/2. (53)
It follows that

ITG)ly,, <r

for any v € Sg, and that for any vy, v, € Sg ,,

1
1T —TEDly,, < 5 vt =y,

Thus I' is a contraction from Sg , to Sp,,. Its unique fixed point is the desired solution
of (5.1) for 0 < ¢ < B. However, since § is chosen according to (5.2) and (5.3) which
only depends on |la| y, ., this local argument can be iterated to extend the solution to
the entire temporal interval 0 < ¢ < T. The proof is complete. O
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Formally, if K; is an analytic mapping from X, 7 to Y, g, then, for
n=01,2,..., its n-th order Fréchet derivative K( (g) at g€ X, r exists and is
the symmetric n-linear map from X r to Y, r given by

n) = i‘—‘ n
KD @iy .. w,] = [3;,:1 oo B8, & <g+ k;ngk) ]o.,.,,o

for any wy,wy,...,w, € Xy, i The homogeneous polynomial K(")(g)[w ] of degree n
induced by K(")(g) where w" = (w,w,...,w) (n components), is

KO (@w"] = {

n

it

£=0

for w = (wy, wy) € X 7. If we define y, by

¥n = KP(@)W"],

then it is formally ascertained that for0 < ¢ < T, (yy, ¥2,. .., V,) solves the system of
the equations

Oyt + 01+ 0,(up) + 83y =0,  31(x,0) = wy(), (5.4)
yl(o’ t) = Wp, (t)’ yl(la t) = W},Z(t), axyl(lr t) = Wp, (t)
and
6 1 k—1 k
OV + Oy + 3 (uy) + 33y = — 520 3x(yix J) (5.5
=

yk(x’ 0) =0, yk(o’ t) =0, yk(l’ t) =0, ayk(ls t) . ]

for 2 < k < n, where u = K;(g) and w = (wg, Wp,, Wh,, Ws,) € Xy 7.

On the other hand, for any g = (¢, #) € D(K}), let u = K;(g) and consider solving
the linear systems (5.4)(5.5). It follows from Proposition 5.1 that (5.4)<(5.5) define a
homogeneous polynomial of degree n from X, r to Y, r as described by the follow-
ing proposition.

Proposition 5.2. Let T > 0,0 <s <3, and g € X, T be given and let u = K;(g). Then
Eqs. (5.4)5.5) define a homogeneous polynomial K (g)[w | of degree n from X 1 to
Y, 1. Moreover, there exists a constant ¢ such that

||yn||Y,T = csn'”W”x - (5.6)

Jor any n = 2, where c3 = ¢3(T, |ully, ), and it may be that c; — 400 as T — +00 or
lully, , = +oo, but in any case c3 = 0 if T — 0,

Proof. The proof is a straightforward consequence of the linear estimates in Sec. 2
and Proposition 5.1 (cf. Zhang, 1995b), Proposition 3.3 for a detailed argument in
related circumstances). [l
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Define a Taylor polynomial P,(w) of degree n for w € X, r by
K [wk]
Py(w) = Z (g) =Ki(g) + Z (5.7)

k=0
and a Taylor series by

00 k)
pon) = SO L@,

= (5.8)

k=0

Proposition 5.3. Let T > 0 and 0 < 5 < 3 be given. For any g = (¢, ﬁ) € D(K}), there
exists an n > 0 depending only on | Ki(g)|ly, , such that the formal Taylor series (5.8)
is uniformly convergent in the space Y r with respect to w € X ¢ with |wl|x, . < n.
Moreover, if v= P(w), then v € Y,  solves the problem

V4 Ve W+ Vi = 0, v(x, 0) = d(x) + wy(x) (5.9)
v0,0) =hy +wy, v, =hy+wy, ve(1,8)=hy+ w, '
forO<t<T.

Proof. It is readily seen that the sequence {P,(w))je, of Taylor polynomials is
Cauchy in Y, y uniformly for w in the ball of radius n in X, 7 for suitable .
Indeed, because of Proposition 5.2, for m > n > 0,

- Z”}’k”?,: < Z nlk, .

Y. r k=n

o~ Vi
k!
=n

I1Ps(W) — Pu(W)lly, , =

If n is chosen so that

n < 1/Q2c3), (5.10)
then for w € X r with Iwllx,, <mn,
m
1
I1Ps(w) = Py, , < kZ?
=R
which goes to zero uniformly as n, m — co.
Since {P,(w)}, is a Cauchy sequence in the space Y| r, it makes sense to define
v=P(w) € Y, r as its limit as n— oo. It is then readily verified that v solves the
IBVP (3.1). The proof is complete. U

The following theorem is now adduced.

Theorem 5.4. (Analyticity) For any T > 0 and 0 < s < 3, the IBVP Eq. (3.1) estab-

lishes an analytic map K; from the space X 1 to the space Y 1 in the sense that for any

g € D(K)) there exists an n > 0 such that for any w € X r with iwlx,, <n the
Taylor series expansion

K (@)W

Kg+wy=) ~1—=—

!
o n!
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converges in the space Y; . Moreover, the convergence is uniform with regard to w in
the aforementioned ball in X, r.

Remark 5.5. The above theorem holds also for 3 < s < 7/2. Since the reasoning in
this case is similar to that put forward for the system discussed below, we include
analysis for this range of s in our next theorem.

Now, consider the case wherein s > 3. This situation is a little more involved
than the previous case because the compatibility conditions are no longer linear
restrictions. One could attempt to deal directly with the geometric situation implied
by the nonlinear compatibility conditions, but another approach presents itself
which is more transparent. That is to link the single equation faithfully with a
class of systems to be discussed presently.

As in the Sec. 4, for any s > 3, write s = 3m + s where m > 0 is an integer and
0 < 5§ < 3. For T > 0, define the space ) to be

Vr=Y3rxYsrx--xY3prx¥Yyr
and the space X' as
XST=X3,TXX3’TX"'XX3,TXXS"T.

Consider the system

o+ i+ (F@DD, + ez =0, ii(%,0) = $(x) ] (5:11)
#0,0 = hy, u(l,0)=hy, u(l,0)=hy
where
ﬁ (uOs u]s---sum)T, $=(¢09 ¢l’~'-,¢m)Ts
h_] ( j JERR 5hj,m)

forj=1,2,3 and

ol T
F(ii) = (—1/2)(14%, 2uguy, .. ., Z(’;;)ukum_k) ;

k=0

By Theorem 4.1, for any s-compatible (¢, &1, hy, h3) € X; r, the IBVP (3.1) has a
unique solution v € ¥ T If one deﬁ.nes ¢y by ¢9 = ¢ and let ¢ be obtained from ¢
by (3.4) with hk_*h , up=20tu for j=1,2,3 and k=0, 1,...,m, then
(¢, 1y, s, 113) € ;’c"’T and u is a solution of (5.11). In this sense, the IBVP (3.1)is a
specialization of the system (5.11).

Theorem 5.6. Let T > 0 and s > 3 be given with s = 3m + s and 0 < 5' < 3. Then for
any (¢, h) € X7, the system (5.11) admits a unique solution i € V.
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Proof. Observe that the nonlinear system (5.11) consists of initial-boundary-value
problems for m + 1 scalar equations. Among them, the first one is the IBVP (3.1)
which only involves u,. The second one involves only #; and u;. If u; is known, then
the second IBVP is a linear problem. Similar remarks apply for the rest of the
equations. Thus we can solve the nonlinear system by solving for u; from the first
equation, plugging u, into the second equation and solving the corresponding line-
arized problem to obtain u;, etc. Using Theorem 4.1 and Proposition 5.1, it is
deduced inductively that wy, € Y3 7 fork =0, 1,...,m — 1. Now the equation related
to u,, has the form

Byt + Dty + 0(@th) + D3ty =, (X, 0) = (%) ] (5.12)

um(o: t) = hl,m(t)a um(l, t) = h2,m(t)s axum(la t) = h3,m(t)

where f € C([0, T7; Hs’(O, 1)) and a € Y3 are known. Using Lemmas 4.1-4.6, the
contraction principle and arguments similar to those appearing in the proof of
Theorem 4.1, it can be shown that for any (¢, 21, m> 2, m» h3,m) € Xy, 7, (5.12)
admits a unique solution u,, € Yy 7. The proof is complete. l

The last result implies the nonlinear system (5.11) defines a nonlinear map K;
from the space X% to YT for given T > 0 and s = 3m + 5 with 0 < 5’ < 3. We claim
this map K; is analytic from X% to V7. For the purpose of establishing this conten-
tion, consider the linearized system corresponding to the nonlinear system (5.11),
namely

Db+ D + 0 (J@W) + 03 =F,  W(x,0)= $(x),]
0,0 =h(@), W0 =h@), 3W(1,10=h0)

where J is the Jacobian matrix of F at i = 4, viz.

_ OF (@)
J@ =—

(5.13)

- o
u=a

k (k
- (Z( ©) @G0 + ik _,-)))

J=0 0<k, i<m

and
= Jllls Gl =
8(”1)—{0 if i 5.

Proposition 5.7. Let T > 0 and s > 3 be given. Suppose a € Yy and
€ Fy = L0, T; H*(0, 1)) x -+ x Li(0, T; H(0, 1)) x L0, T; H* (0, 1)),

Then for any (6,51,52,53)€X§~, Eq. (5.13) admits a unique solution W € V7.
Moreover,

1l < ¥l YU o, Ba, Bs)l g, + 1 1)

where y : R¥ — R™ is a continuous nondecreasing function.
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Proof. The proof is similar to that of Proposition 5.1 and therefore omitted. O
For given # = IC,((q_S', I;)) with (tf;, l;) € X%, consider the linear systems

AP + 8:F1 + AT @) + 0351 =0, Fi(x,0) =i,

R Iy (5.14)
FOD=; (0 FiL) =0, 8Fi(L0 =i
and
atyn + 8x nt ax(J(ﬁ)yn) + 8chn Fn(j;la s ’j;n—l), j}n(xs 0) = Os] (5 15)
yn(os ) =0, yn(la =0, 3x},,(1, H=0

for 2 < n < N, where

Fn = (j;t,Oafn,ls- . -’fn,m)T

() (3

1 k
f;l, k=" 5 ax (Z
Jj=0 i
Proposition 5.8. Given T > 0, s > 3, and § = (§, h) € Vi, let ii = K, (¢, h)). Then the
systems (5.14)~(5.15) defines a homogeneous polynomial )Cg"}@)[ﬁ?'] of degree n from

X% to V. Mareaver, theve exists a constant C > O such that

n

I\
=

fork=0,1,...,m

1Pnllys, < CTrMlIWI1%;
T T

Jor any n =2, where C = C(T, ||u||ys) Here C may go to +oo when T — oo or
||u||y- —» 00, but must go to 0 if T — 0,

Proof. This follows from Proposition 5.4 by direct computation. O

Define a Taylor polynomial P,(w) of degree n for w € X% by

N g R onr
P,(#) = Z’CE' ‘f,)[“’k] K@) + k, , (5.16)
k=0
and a Taylor series by
0o y~(k) A
P(W) = Z’C(’—(f!m. (5.17)

k=0

A proof similar to that given for Proposition 5.3 yields the following
proposition.
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Proposition 5.9. Let T > 0 and s > 0 be given. For any g = ((Z, }—1'1, 1;2, }_1’3)) € X%, there
exists ann > 0 depending only on ||K;(2)|ly: such that the formal Taylor series (5.17) is
uniformly convergent in the space Yy with respect to W e X7 with ||[Wlx <.
Moreover, if v = P(W), then v € Yy solves the problem

87 + 8,5 + 8,(F(1), ) + 937 =0,  ¥(x,0) = $(x) + 3(»)
W0, 0) = @+ (0, (1D =)+, 0, 951, 0) = k() + 3 ()
(5.18)

for0<t<T.
Consequently, we have the following theorem.

Theorem 5.10. (Analyticity) For any T > 0 and s > 3, the nonlinear problem (5.11)
establishes a map K; from the space X to the space Y. The map K; is analytic from
X5 to YV in the sense that for any g§ € X%, there exists an n > 0 such that for any
W e X7 with |W|x;, < n, the Taylor series expansion

00 n vl
K@+ w) = ZL (ﬁ)[“ |

n0

converges in the space Y. Moreover, the convergence is uniform with regard to h in the
aforementioned ball in X7.
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