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Laboratory experiments have shown that when nonlinear, dispersive waves are forced
periodically from one end of an undisturbed stretch of the medium of propagation, the
signal eventually becomes temporally periodic at each spatial point. It is our purpose
here to establish this as a fact at least in the context of a damped Korteweg-de Vries
equation. Thus, consideration is given to the initial-boundary-value problem

ut + ux + uux + uxxx + αu = 0 , x ≥ 0, t ≥ 0 ,

u(0, t) = h(t) , u(x, 0) = φ(x) .

}
(∗)

For this problem, it is shown that if the small amplitude, boundary forcing h is periodic of
period T , say, then the solution u of (∗) is eventually periodic of period T . More precisely,
we show for each x > 0, that u(x, t + T ) − u(x, t) converges to zero exponentially as
t→∞. Viewing (∗) (without the initial condition) as an infinite dimensional dynamical
system in the Hilbert space Hs(R+) for suitable values of s, we also demonstrate that for
a given, small amplitude time-periodic boundary forcing, the system (∗) admits a unique
limit cycle, or forced oscillation (a solution of (∗) without the initial condition that is
exactly periodic of period T ). Furthermore, we show that this limit cycle is globally
exponentially stable. In other words, it comprises an exponentially stable attractor for
the infinite-dimensional dynamical system described by (∗).
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1. Introduction

In this paper we consider an initial-boundary problem for the Korteweg-de Vries

equation posed in a quarter plane with a damping term appended, namely,

ut + ux + uux + uxxx + αu = 0 for x, t ≥ 0 , (1.1a)

u(x, 0) = φ(x) u(0, t) = h(t) (1.1b)

where α > 0 is a constant that is proportional to the strength of the damping effect.

Guided by the outcome of laboratory experiments, interest is given to the long term

effect of the boundary forcing h.

In the experiments of Bona, Pritchard and Scott [1], a channel partly filled

with water was mounted with a flap-type wavemaker at one end. Each experiment

commenced with the water in the channel at rest. The wavemaker was activated

and underwent periodic oscillations. The throw of the wavemaker and its frequency

of oscillation was such that the surface waves brought into existence were of small

amplitude and long wavelength, so candidates for description by Korteweg-de Vries

type or BBM-type model equations. Two points about this set of experiments are

especially relevant to the present discussion. First, it was clear from the experi-

mental outcome that damping effects must be accounted in addition to those of

nonlinearity and dispersion for good quantitative agreement with model predictions.

When suitable dissipation was added, it appeared that these long-wave models

provided an accurate description of reality for a reasonably wide range of amplitudes

and frequencies. Second, it was observed at each fixed station down the channel,

for example at a spatial point represented by x0, that the wave motion u(x0, t), say,

rapidly became periodic of the same period as the boundary forcing.

Our goal in the present paper is to consider the initial-boundary-value

problem (1.1) with boundary forcing h which is periodic of period θ and show

that the resulting solution u(x, t) is, for each fixed x, asymptotically periodic of

period θ. This program is carried out for the particular choice of damping effect

appearing in (1.1a) and aims to establish as a fact that such a model predicts the

interesting qualitative property observed in experiments and in associated numerical

simulations. In a little more detail, it will be demonstrated that if the boundary

forcing h is small, a hypothesis consistent with the use of the Korteweg-de Vries

description, and periodic of period θ, then there is what we will call a forced oscilla-

tion solution u∗(x, t) of (1.1a) that is temporally periodic of period θ and such that

u∗(0, t) = h(t) for t > 0. Moreover, it is shown that the solution u(x, t) of (1.1)

converges to u∗(x, t) in a sense to be made precise presently. If we conceive of



June 18, 2003 16:18 WSPC/152-CCM 00104

A Damped Korteweg-de Vries Equation 371

(1.1) as a dynamical system, then this result is analogous to convergence to a limit

cycle under periodic forcing. Uniqueness and stability of this limit cycle will also

be discussed.

Damped KdV-equations have been studied in the past from the point of view of

dynamical systems. Ghidaglia [9, 10] and Sell and You [14] considered the damped

forced KdV equation

ut + uux + uxxx − ηuxx + αu = f , x ∈ (0, 1), t ≥ 0

u(0, t) = u(1, t) , ux(1, t) = ux(0, t) , uxx(1, t) = uxx(0, t) ,

}
(1.2)

posed on the finite interval (0, 1) with periodic boundary conditions, where α and

η are nonnegative constants and the forcing f = f(x, t) is a function of x and t.

Assuming that η = 0, α > 0 and that the external excitation f is either time-

independent or time-periodic, Ghidaglia [9, 10] proved the existence of a global

attractor of finite fractal dimension for the infinite dimensional system described

by (1.2). Assuming η > 0 Sell and You [14] showed that (1.2) possesses an inertial

manifold in the case where the external excitation f is time-independent.

In [18], Zhang studied a damped forced KdV-equation posed on a finite interval

with homogeneous Dirichlet boundary conditions, viz.

ut + uux + uxxx − ηuxx + ux = f , x ∈ (0, 1), t ≥ 0 ,

u(0, t) = 0 , u(1, t) = 0) , ux(1, t) = 0 .

}
(1.3)

It was shown that if the external excitation f is time periodic with small amplitude,

then the system admits a unique time periodic solution which, as a limit cycle, forms

an inertial manifold for the infinite dimensional system described by (1.3). Similar

results have also been established by Zhang [19] for the damped BBM equation.

There have been many studies concerned with time-periodic solutions of partial

differential equations in the literature. Early works on this subject include, for

example, Brézis [5], Vejvoda et al. [15], Keller and Ting [7] and Rabinowitz [12, 13].

For recent theory, see Bourgain [4], Craig and Wayne [6] and Wayne [17]. In

particular, in a nicely crafted and very accessible article [16] in the Notices of

the AMS, Wayne has provided a very helpful review of theory pertaining to time-

periodic solutions of nonlinear partial differential equations. Most of the theory

extant thus far has been in the context of parabolic or hyperbolic equations.

Consideration of this issue for nonlinear dispersive equations is sparse, and

the important question of stability of periodic solutions has received very little

attention.

The paper is organized as follows. Section 2 is devoted to a brief review of

notation and the function-analytic setting together with technical lemmas from

the well-posedness theory for (1.1). The long-time behavior of solutions of (1.1)

is investigated in Sec. 3. In particular, time-independent bounds on solutions are

established, which are important for the main analysis that is developed in Sec. 4.

The outcome of our development is roughly the following. If h is a periodic function
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on the half line R+ which is small enough in the Sobolev class Hs(R+), then there is

a unique time-periodic solution u∗(x, t) of (1.1a) associated to the boundary values

h(t), which, for each t, lies in Hs(R+). Moreover, this solution is shown in Sec. 5 to

be either locally or globally exponentially stable depending on whether s ∈ (3/4, 1]

or s ≥ 1, respectively. The paper concludes with a short summary and suggestions

for related lines of inquiry.

2. Notation and Well-Posedness Results

We begin with a review of terminology and notation. For an arbitrary Banach space

X , the associated norm is denoted by ‖·‖X . If Ω = (a, b) is a bounded open interval

in R+ = (0,∞) and k a non-negative integer, we denote by Ck(Ω̄) = Ck(a, b) the

functions that, along with their first k derivatives, are continuous on [a, b] with

the norm

‖f‖Ck(Ω) = sup
x∈Ω,0≤j≤k

|f (j)(x)| . (2.1)

If Ω is an unbounded domain, Ckb (Ω̄) is defined just as when Ω is bounded except

that f, f ′, . . . , f (k) are required to be bounded as well as continuous on Ω̄. The

norm is defined as in (2.1). Similar definitions apply if Ω is an open set in RN . The

space C∞(Ω̄) = ∩jCj(Ω̄) will appear tangentially, but its Frechet-space topology

will not be needed. The space of test functions D(Ω) is the usual subspace of C∞(Ω̄)

consisting of functions with compact support in Ω. Its dual space D′Ω) is the space

of Schwartz distributions on Ω. For 1 ≤ p ≤ ∞, Lp(Ω) connotes those functions

f which are pth-power absolutely integrable on Ω with the usual modification in

case p = ∞. If k ≥ 0 is an integer and 1 ≤ p ≤ ∞, let W k
p (Ω) be the Sobolev

space consisting of those Lp(Ω)-functions whose first k generalized derivatives lie

in Lp(Ω), equipped with the usual norm

‖f‖p
Wk
p (Ω)

=

k∑
j=0

‖f (j)‖pLp(Ω) .

The case p = 2 will appear frequently in our analysis; it is written in abbreviated

form, viz. Hk(Ω) = W k
2 (Ω). If s ≥ 0 is a real number and k ≤ s < k + 1 for

some integer k, then Hs(Ω) is the standard interpolation space of Hk(Ω) and

Hk+1(Ω) as in [11]. In the analysis of the quarter-plane problem, the space Hs(Ω)

will occur often with Ω = R+ or Ω = (a, b). Because of their frequent occurrence,

it is convenient to abbreviate their norms thusly;

‖ · ‖s = ‖ · ‖Hs(R+) and | · |s,(a,b) = ‖ · ‖Hs(a,b) .

If s = 0, the subscript s will be omitted altogether, so that

‖ · ‖ = ‖ · ‖L2(R+) and | · |(a,b) = ‖ · ‖0,(a,b) .
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(Norms on a finite interval, for example (0, T ) will usually be applied in the temporal

variable, whereas norms on R+ will normally, but not universally, be applied in the

spatial variable.) For s ≥ 0, Hs
0(R+) is the closure of D(R+) in the space Hs(R+)

and Hs
loc(Ω) is the set of measurable, real-valued functions f defined on Ω such

that for each φ ∈ D(Ω), φf ∈ Hs(Ω). If X is a Banach space, T a positive real

number and 1 ≤ p ≤ ∞, denote by Lp(0, T ;X) the Banach space of all measurable

functions u : (0, T )→ X , such that t→ ‖u(t)‖X is in Lp(0, T ), with norm

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖pXdt
)1/p

, if 1 ≤ p <∞ ,

and the obvious modification if p =∞.

To discuss basic aspects of the well-posedness theory for the initial-boundary-

value problem (IBVP henceforth) (1.1), some special semi-norms and Banach spaces

will be used. We start by laying out helpful notation related to the fractional-order

Sobolev classes defined on R+. For s ≥ 0, write s = m + s′ where 0 ≤ s′ < 1

and m is a non-negative integer. Thus m = [s], the greatest integer in s. For

f ∈ C∞(R+) ∩Hm(R+), define a new function Jsxf by

Jsxf(x) =


|f (m)(x)| if s′ = 0 ,(∫ ∞

0

τ−(2s′+1)|f (m)(x+ τ) − f (m)(x)|2dτ
)1/2

if s′ > 0 ,

for any x ∈ R+. Because s′ < 1 and f (m) is smooth and an L2(R+)-function, Jsxf(x)

is finite for all x. The quantity

‖f‖2Hs(R+) = ‖f‖2 + ‖Jsxf‖2 (2.2)

defines a norm on C∞(R+)∩Hm(R+) and the completion of this space in the norm

(2.2) is another way of defining Hs(R+). (Remember, an unadorned norm is that of

L2(R+).) The space Hs
0(R+) is the completion of C∞0 (R+) in the norm defined in

(2.2). Clearly Hs
0(R+) is a closed linear subspace of Hs(R+) and as is well known,

Hs
0 (R+) = Hs(R+)

if 0 ≤ s < 1/2.

For given s ≥ 0, b > a ≥ 0 and any function

w ≡ w(x, t) : R+ × [a, b]→ R ,

define

Λ
(a,b)
1,s (w) ≡ sup

a≤t≤b
‖w(·, t)‖s ;

Λ
(a,b)
2,s (w) ≡

(
sup
x∈R+

∫ b

a

|Js+1
x w(x, t)|2dt

)1/2

,
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if s is an integer, and if s is not an integer,

Λ
(a,b)
2,s (w) ≡

(
sup
x∈R+

∫ b

a

∫ ∞
0

τ−(2s′+1)|D[s]+1
x w(x+ τ, t)−D[s]+1

x w(x, t)|2dτdt
)1/2

with Dx = ∂
∂x

and s′ = s− [s] as before;

Λ
(a,b)
3,s (w) ≡ sup

x∈R+

‖w(x, · )‖
H
s+1

3 (a,b)
+ sup
x∈R+

‖Dxw(x, · )‖
H
s
3 (a,b)

;

Λ
(a,b)
4 (w) ≡

(∫ b

a

sup
x∈R+

|Dxw(x, t)|4dt
)1/4

;

and

Λ
(a,b)
5 (w) =

(∫ ∞
0

sup
t∈[a,b]

|w(x, t)|2dx
)1/2

.

In addition, let

λs(a,b)(w) = max{Λ(a,b)
1,s (w), Λ

(a,b)
2,s (w), Λ

(a,b)
3,s (w)}

and

Γs(a,b)(w) = λs(a,b)(w) + Λ
(a,b)
4 (w) + Λ

(a,b)
5 (w) .

For any b > a ≥ 0 and s in the interval 0 ≤ s ≤ 7/2, let Y s(a,b) be the collection of

all functions u ∈ C([a, b];Hs(R+)) whose norm ‖u‖Y s
(a,b)

is finite, where

‖u‖Y s
(a,b)

=


λs(a,b)(u) if 0 ≤ s ≤ 1/2 ;

λs(a,b)(u) + Λ
(a,b)
4 (u) if 1/2 < s ≤ 3/4 ;

Γs(a,b)(u) if 3/4 < s ≤ 7/2 .

For s > 7/2, write s in the form

s = 3m+ s′

with m = [s/3] or m = [s/3]−1 and 1/2 < s′ ≤ 7/2. For a and b as above and such

a value of s, let Y s(a,b) be the collection of all functions u ∈ Cm−1([a, b];H3(R+))

with ∂mt u ∈ C([a, b];Hs′(R+)) satisfying

‖u‖Y s
(a,b)

= ‖∂mt u‖Y s′
(a,b)

+
m−1∑
k=0

‖∂kt u‖Y 3
(a,b)

< +∞ .

In addition, let Xs
(a,b) be the product Hs(R+)×H(s+1)/3(a, b). While the preceding

may seem a little complicated, these norms are needed to catch the smoothing

effects that accrue when (1.1) is solved. These weak smoothing effects are central

to the well-posedness for smaller values of s.

Attention is now turned to well-posedness results for the IBVP (1.1). First of

all, as in many initial-boundary-value problems, some compatibility conditions are
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needed between the initial data φ and the boundary value h. A simple computation

shows that if u is a C∞-smooth solution of (1.1) up to the boundary, then its initial

data u(x, 0) = φ(x) and its boundary value u(0, t) = h(t) must satisfy

φk(0) = hk(0)

for k = 0, 1, . . . , where hk(t) ≡ h(k)(t) is the k-th derivative of h,

φ0(x) = φ(x) , and

φk(x) = −(φ′′′k−1(x) + φ′k−1(x) + αφk−1(x) +
∑k−1

j=0 [φj(x)φk−j−1(x)]′)

}
for k = 1, 2, . . . .

Definition 2.1 (s-compatibility). Given T > 0 and s ≥ 0, we say that (φ, h) ∈
Xs

(0,T ) is s-compatible if

φk(0) = hk(0)

for k = 0, 1, . . . , [s/3] − 1 when s − 3[s/3] ≤ 1/2 and for k = 0, 1, . . . , [s/3] when

s− 3[s/3] > 1/2.

When α = 0, which is the equation without damping, the IBVP (1.1) has been

studied in [2] and is known to be well-posed in the space Hs(R+) for s > 3/4. In

case α > 0, let

v(x, t) = e−αtu(x, t)

where u is a solution of (1.1). It is straightforward to see that v solves the IBVP

vt + vx + eαtvvx + vxxx = 0 ,

v(x, 0) = φ(x) , v(0, t) = e−αth(t) .

}
(2.3)

The same arguments used in [2] can be applied to (2.3) with very slight modification

to obtain exactly the same well-posedness results. Consequently, the following well-

posedness results hold for the IBVP (1.1) with α > 0.

Theorem 2.1 (Local well-posedness). Let T > 0 and s > 3/4 be given. Then

for any s-compatible pair (φ, h) ∈ Xs
(0,T ), there exists a T ∗ ∈ (0, T ] depending only

on ‖(φ, h)‖Xs
(0,T )

such that (1.1) with initial data φ and boundary data h admits a

unique solution

u ∈ Y s0,T∗ ∩ C([0, T ∗];Hs(R+))

with ∂kt u ∈ C([0, T ∗];Hs−3k(R+)) for k = 0, 1, . . . , [s/3]. Moreover, the correspond-

ing solution map is analytic.

Theorem 2.2 (Global well-posedness). Let T > 0 and s ≥ 1 be given. Then

for any s-compatible (φ, h) ∈ Hs(R+) × H(7+3s)/12(0, T ) when 1 ≤ s ≤ 3 and for

any s-compatible (φ, h) ∈ Xs
(0,T ) when s > 3, the problem (1.1) admits a unique

solution u ∈ Y s(0,T ) ∩ C([0, T ];Hs(R+)) with ∂kt u ∈ C([0, T ];Hs−3k(R+)) for k =

0, 1, . . . , [s/3]. Moreover, the corresponding solution map is analytic.
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3. Preliminaries

In this section, a series of technical lemmas is developed which will find frequent

use subsequently. The following two inequalities are basic and elementary.

Lemma 3.1. (i) For any nonnegative numbers a and b,

ab ≤ εap + C(ε)bq , if
1

p
+

1

q
= 1, 1 < p, q <∞

where C(ε) = p−1
pqε1/(p−1) .

(ii) For any f ∈ H1(R+), f ∈ Cb(R+) and

‖f‖Cb(R+) ≤
√

2‖f‖1/2‖f ′‖1/2 .
Next, consideration is given to an abstract result about a sequence in a Banach

space X generated by iteration as follows:

yn+1 = Ayn + F (yn) , n = 0, 1, 2, . . . . (3.1)

Here, the linear operator A is bounded from X to X with

‖Ayn‖X ≤ γ‖yn‖X (3.2)

for some finite value γ and all n ≥ 0. The nonlinear function F mapping X to X is

such that there are constants β1 and β2 and a sequence {bn}n≥0 for which

‖F (yn)‖X ≤ β1‖yn‖X + β2‖yn‖2X + bn (3.3)

for all n ≥ 0. The following two lemmas apply to such a sequence. These lemmas

will find use in Secs. 4 and 5.

Lemma 3.2. If β2 = 0 in (3.3) and r = γ + β1 < 1, then the sequence {yn}∞n=0

defined by (3.1) satisfies

‖yn+1‖X ≤ rn+1‖y0‖X +
b∗

1− r (3.4)

for any n ≥ 1, where b∗ = supn≥0 bn.

Proof. The assumptions imply

‖yn+1‖X ≤ γ‖yn‖X + β1‖yn‖X + bn

for n ≥ 0. In particular, it follows that

‖y1‖X ≤ γ‖y0‖X + β1‖y0‖X + b0

so that

‖y2‖X ≤ γ‖y1‖X + β1‖y1‖X + b1 ≤ r2‖y0‖X + rb0 + b1 .

Proceeding inductively leads to the conclusion

‖yn+1‖X ≤ rn+1‖y0‖X +

n∑
k=0

rkbn−k

from which (3.4) follows since r < 1.
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Lemma 3.3. If β2 6= 0 in (3.3) and r = γ + β1 < 1, then there exist r1 with

0 < r1 < 1, δ1 > 0 and δ2 > 0 such that if ‖y0‖X < δ1 and bn ≤ δ2 for all n ≥ 0,

the sequence {yn}∞n=0 defined by (3.1) satisfies

‖yn+1‖X ≤ rn+1
1 ‖y0‖X +

b∗

1− r (3.5)

for any n ≥ 1, where b∗ = maxn{bn}.

Proof. Choose δ1 = 1−r
2β2

and δ2 = 1−r
2 δ1. An inductive argument shows that if

‖y0‖X ≤ δ1, then

‖yn‖X ≤ δ1 , for all n ≥ 1 .

In consequence, we have

‖yn+1‖X ≤ r‖yn‖X + β2‖yn‖2X + bn

≤ γ‖yn‖X +
1− r

2
‖yn‖X + bn

≤ 1 + r

2
‖yn‖X + bn .

From this inequality, (3.5) follows from Lemma 3.2 by choosing r1 = 1+r
2 . The proof

is complete.

Back to more concrete issues, consider the linear IBVP associated with (1.1),

vt + vx + vxxx + αv = f , for x, t ≥ 0 ,

v(x, 0) = φ(x) , v(0, t) = h(t) .

}
(3.6)

Remark 3.4. If v is a solution of (3.6), then w(x, t) = v(x, t)e−αt solves the linear

problem

wt + wx + wxxx = eαtf , for x, t ≥ 0 ,

w(x, 0) = φ(x) , w(0, t) = eαth(t) .

}
Consideration is directed to the homogeneous linear problem

ut + ux + uxxx + αu = 0 , for x, t ≥ 0 ,

u(x, 0) = φ(x) , u(0, t) = 0.

}
By semigroup theory, its solution may be obtained in the form

u(t) = Wc,α(t)φ ,

where the spatial variable is suppressed and Wc,α(t) is the C0-semigroup in the

space L2(R+) generated by the operator

Aαf = −f ′′′ − f ′ − αf
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with the domain

D(Aα) = {f ∈ H3(R+)|f(0) = 0} .

Moreover, d’Alembert’s formula allows one to formally write the solution of the

inhomogeneous linear problem

ut + ux + uxxx + αu = f , for x, t ≥ 0 ,

u(x, 0) = 0 , u(0, t) = 0,

}
in the form

u(t) =

∫ t

0

Wc,α(t− τ)f(· , τ)dτ .

According to [2] and Remark 3.4, Wc,α(t)φ has the following explicit formula:

Wc,α(t)φ(x) =
2∑
j=0

e−αt(U+
j (t)φ(x) + U+

j (t)φ(x))

for any φ ∈ L2(R+), where

U+
0 (t)φ(x) =

1

2π

∫ ∞
1

eiµ
3t−iµt

∫ ∞
0

eiµ(x−ξ)φ(ξ)dξdµ ,

U+
1 (t)φ(x) = − 1

2π

∫ ∞
1

eiµ
3t−iµte−(

iµ+
√

3µ2−4
2 )x

∫ ∞
0

e−iµξφ(ξ)dξdµ

and

U+
2 (t)φ(x) =

1

2πi

∫ ∞
0

e−µ
3t−µte−(

µ−i
√

3µ2+4
2 )x

∫ ∞
0

e−µξφ(ξ)dξdµ .

Similarly we may write the solution of the non-homogeneous boundary value

problem

ut + ux + uxxx + αu = 0 , for x, t ≥ 0 ,

u(x, 0) = 0 , u(0, t) = h(t)

}
as

u(x, t) = [Wb,α(t)h](x) = e−αt{[Ub(t)h](x) + [Ub(t)h](x)}

where, for x, t ≥ 0,

[Ub(t)h](x) =
1

2π

∫ ∞
1

eiµ
3t−iµte−(

√
3µ2−4+iµ

2 )x(3µ2−1)

∫ ∞
0

e−(µ3i−iµ)ξeαξh(ξ)dξdµ .

For Wc,α(t)φ and Wb,α(t)h, the following estimates hold (see [2]).

Lemma 3.5. For any s ∈ [0, 7/2] and any φ ∈ Hs
0(R+) if 0 ≤ s ≤ 1 or φ ∈

H1
0 (R+) ∩Hs(R+) if s > 1, there exists a constant C independent of φ such that

‖Wc,α(t)φ‖s ≤ Ce−αt‖φ‖s
for any t ≥ 0.
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Lemma 3.6. Given s ∈ [0, 7/2] and T > 0, there exists a constant C = Cs,T such

that

sup
0≤t≤T

‖[Wb,α(t)h](·)‖s ≤ C|h| s+1
3 ,(0,T )

for all h ∈ H
s+1

3

loc (R+) with h(0) = 0.

In terms of Wc,α(t) and Wb,α(t), the solution v(x, t) of (3.6) may be written in

the form

v(x, t) = Wc,α(t)(φ(x) − e−xφ(0)) +

∫ t

0

Wc,α(t− τ)(f(x, τ) + 2e−x−τh(0))dτ

+ [Wb,α(t)(h(t) − e−th(0))](x) + e−x−th(0) (3.7)

provided φ ∈ Hs(R+) and h ∈ H(s+1)/3
loc (R+) with s > 1/2. When 0 ≤ s ≤ 1/2, the

solution v(x, t) of (3.6) is simply

v(x, t) = Wc,α(t)φ(x) +

∫ t

0

Wc,α(t− τ)f(x, τ)dτ + [Wb,α(t)h(t)](x) .

The next four results are taken directly from [2]. They are central to the later

developments and are repeated here for the reader’s convenience.

Lemma 3.7. Let s ≥ 0, T > 0 and ε > 0 be given. There exists a constant C

depending only on s, T and on ε when it appears, such that

(i) for 0 ≤ s ≤ 1/2,

λs(0,T )(v) ≤ C
(
‖φ‖s + |h| s+1

3 ,(0,T ) +

∫ T

0

‖f(· , t)‖sdt
)

;

(ii) for 1/2 < s ≤ 2 and φ(0) = h(0),

λs(0,T )(v) ≤ C
(
‖φ‖s + |h| s+1

3 ,(0,T ) + |f(0, · )|(0,T ) +

∫ T

0

‖f(· , t)‖sdt
)

;

(iii) for 2 ≤ s ≤ 3 and φ(0) = h(0),

λs(0,T )(v) ≤ C
(
‖φ‖s + |h| s+1

3 ,(0,T ) + |f(0, · )| s−2
3 ,(0,T ) +

∫ T

0

‖f(· , t)‖sdt
)

;

(iv) if φ(0) = h(0), then

Λ
(0,T )
4 (v) ≤ C

(
‖φ‖ 1

2
+ ‖h‖ 1

2 ,(0,T ) +

∫ T

0

‖f(· , t)‖ 1
2
dt

)
+C(|φ(0)|+ |f(0, · )|(0,T )) ;
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(v) if φ(0) = h(0), then

Λ
(0,T )
5 (v) ≤ C

(
‖φ‖ 3

4 +ε + |h| 7
12 +ε,(0,T ) +

∫ T

0

‖f(· , t)‖ 3
4 +εdt

)
+C|f(0, · )|(0,T ) .

Lemma 3.8. Let 0 ≤ s ≤ 7/2 be given. Let f(x, t) = e−xh(t) where h ∈ L2(R+)

if 0 ≤ s ≤ 2 and h ∈ H(s−2)/3(R+) if 2 < s ≤ 7/2. Then there exists a constant C

such that the function u given by

u(x, t) =

∫ t

0

Wc,α(t− τ)f(· , τ)dτ

obeys the inequalities

sup
0≤t<∞

‖u(· , t)‖s + ( sup
x∈R+

‖Js+1
x u(x, · )‖2)1/2 +

1∑
k=0

sup
x∈R+

‖Dk
xu(x, · )‖

H
s−k+1

3 (R+)

+

(∫ ∞
0

‖Ds+1/4u(· , t)‖4L∞(R+)dt

)1/4

+

(∫ ∞
0

sup
t∈[0,T ]

|u(x, t)|2dx
)1/2

≤
{
C‖h‖ for 0 ≤ s ≤ 2 ,

C‖h‖ s−2
3

for 2 < s ≤ 7/2 .

For the space Y s(0,T ) defined in Sec. 2, the following bilinear estimates were

established in [2]. These will also find use later.

Lemma 3.9. Let T > 0 be given.

(i) If 3/4 < s ≤ 7/2 and u, v ∈ Y s(0,T ), then uvx ∈ L2(0, T ;Hs(R+)) and

‖uvx‖L2(0,T ;Hs(R+)) ≤ C‖u‖Y s(0,T)
‖v‖Y s

(0,T )

where C depends on s, but is independent of T, u and v.

(ii) If s ∈ [0, 3/4], u ∈ Y 1
(0,T ) and v ∈ Y s(0,T ), then (uv)x ∈ L2(0, T ;Hs(R+)) and

‖(uv)x‖L2(0,T ;Hs(R+)) ≤ C‖u‖Y 1
(0,T)
‖v‖Y s

(0,T )
,

where C depends on s, but is independent of T, u and v.

Finally, we consider the initial-boundary-value problem for a linearized, damped

KdV–equation, namely

ut + ux + (vu)x + uxxx + αu = g , x > 0 , t > 0 ,

u(x, 0) = φ(x) , u(0, t) = h(t)

}
(3.8)

where v(x, t) is a given function. For this linearized system, the following conclusion

is established in [2, Proposition 6.1].
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Proposition 3.10. Let T > 0 and s ∈ (3/4, 7/2] be given. Assume that v ∈ Y s(0,T ).

Then, for any s-compatible pair (φ, h) ∈ Xs
(0,T ) and g ∈ L1(0, T ;Hs(R+)), the

IBVP (3.8) admits a unique solution u ∈ Y s(0,T ) satisfying

‖u‖Y s
(0,T)
≤ µ(‖v‖Y s

(0,T )
)(‖(φ, h)‖Xs

(0,T )
+ ‖g‖L1(0,T ;Hs(R+)))

where µ : R+ → R+ is a T -dependent and continuous non-decreasing function

which is independent of (φ, h) and g.

Proposition 3.11. Let s ∈ (3/4, 7/2] be given. There exist T > 0, r > 0 and β > 0

such that if φ ∈ Hs(R+) and h ∈ H
s+1

3

loc (R+) are s-compatible and if

g ∈ L1,loc(0,∞;Hs(R+)) , v ∈ C(R+;Hs(R+))

satisfy

sup
n≥0

(‖v‖Y s
(nT,n+1)T)

+ ‖g‖L1(nT,(n+1)T ;Hs(R+))) ≤ β , (3.9)

then the solution u of (3.8) satisfies

‖u(· , t)‖s ≤ C1e
−rt‖φ‖s + C2 sup

n≥0
(|h| s+1

3 ,(nT,(n+1)T ) + ‖g‖L1(nT,(n+1)T ;Hs(R+)))

for any t ≥ 0, where C1 and C2 are constants independent of (φ, h), g and t ∈ [0, T ].

Remark 3.12. If v ∈ C(R+;H1(R+)) and (3.9) is replaced by

sup
n≥0

(‖v‖Y 1
(nT,n+1)T )

+ ‖g‖L1(nT,(n+1)T ;Hs(R+))) ≤ β ,

then Proposition 3.11 holds for 0 ≤ s ≤ 3/4. Note particularly the assumptions on

v and g are local in time whereas the conclusion about u is global in time. This is

the crux of the matter.

Proof of Proposition 3.11. Using formula (3.7), the solution u of (3.8) may be

written as

u(x, t) = Wc,α(t)φ1(x) + [Wb,α(t)h1](x) + e−x−th(0)

+

∫ t

0

Wc,α(t− τ)(f1(x, τ) + e−xf(0, τ) + 2e−x−τh(0) + g(x, τ))dτ

(3.10)

with

φ1(x) = φ(x)− e−xφ(0) , f(x, t) = −(v(x, t)u(x, t))x

and

f1(x, t) = f(x, t)− e−xf(0, t) , h1(t) = h(t)− e−th(0) .

By Lemma 3.5,

u1(x, t) ≡Wc,α(t)φ1(x)
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satisfies

‖u1(· , t)‖s ≤ Ce−αt‖φ‖s
for any t ≥ 0, where C is a constant only depending on s. Using Lemmas 3.7 and

3.8, it is adduced that there is a constant C such that if

u2(x, t) ≡
∫ t

0

Wc,α(t− τ)(f1(x, τ) + e−xf(0, τ) + 2e−x−τh(0) + g(x, τ))dτ ,

then

‖u2(· , t)‖s ≤ C

∫ T

0

‖(v(· , τ)u(· , τ))x‖sdτ +

∫ T

0

‖(g(· , τ))‖sdτ

+C|h| s+1
3 ,(0,T ) + C|q|λ(s),(0,T )

for any t ∈ (0, T ), where q(t) = ux(0, t)v(0, t) + vx(0, t)u(0, t) and

λ(s) =

{
0 if s ≤ 2 ,

(s− 2)/3 if s ≥ 2 .

For the quantity

u3(x, t) ≡ [Wb,α(t)h1](x) ,

Lemma 3.6 yields a constant C for which

‖u3(· , t)‖s ≤ C|h| s+1
3 ,(0,T )

for any t ∈ (0, T ). As for

u4(x, t) ≡ e−x−th(0) ,

it is clear that

‖u4(· , t)‖s ≤ C|h| s+1
3 ,(0,T )

for any t ∈ (0, T ). Moreover, it follows from Lemma 3.9 that∫ T

0

‖(v(· , τ)u(· , τ))x‖sdτ ≤ T 1/2‖(vu)x‖L2(0,T ;Hs(R+))

≤ CT 1/2‖u‖Y s
(0,T)
‖v‖Y s

(0,T )
.

In addition, for 3/4 < s ≤ 2, it is true that(∫ T

0

|ux(0, t)v(0, t)|2dt
)1/2

=

(∫ T

0

|ux(0, t)|2dt sup
0≤t≤T

|v(0, t)|2
)1/2

≤ C

(∫ T

0

|ux(0, t)|2dt
)1/2

sup
0≤t≤T

‖v(· , t)‖s

≤ CT 1/4‖u‖Y s
(0,T)
‖v‖Y s

(0,T )
.
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On the other hand, if 2 < s ≤ 7/2, then

|ux(0, · )v(0, · )| s−2
3 ,(0,T ) ≤ CT

5−s
6 |ux(0, · )v(0, · )| s+4

9 ,(0,T )

≤ CT
5−s

6 ‖u‖Y s
(0,T)
‖v‖Y s

(0,T )
.

Furthermore, by Proposition 3.10,

‖u‖Y s
(0,T)
≤ µ(‖v‖Y s

(0,T )
)(‖φ‖s + |h| s+1

3 ,(0,T ) + ‖g‖L1(0,T ;Hs(R+))) ,

where µ : R+ → R+. Combining the above estimates yields that for given s ∈
(3/4, 7/2] and T > 0, there exist constants Cj (j = 1, 2, 3) depending only on T

and s such that

‖u(· , T )‖s ≤ C1e
−αT ‖φ‖s + C2‖v‖Y s

(0,T )
µ(‖v‖Y s

(0,T )
)‖φ‖s

+C3(1 + µ(‖v‖Y s
(0,T )

))(|h| s+1
3 ,(0,T ) + ‖g‖L1(0,T ;Hs(R+))) .

Let yn = u(· , nT ) for n = 0, 1, 2, . . . and let w be the solution of the IBVP

wt + wx + (v1w)x + wxxx + αw = g , x ∈ R+, 0 ≤ t ≤ T ,

w(x, 0) = yn(x) , w(0, t) = h(t+ nT )

}
with v1(x, t) = v(x, t+ nT ). Then yn+1(x) = w(x, T ) by the semigroup property of

the system (3.8). Consequently, we have the following estimate for yn+1:

‖yn+1‖s ≤ C1e
−αT ‖yn‖s + C2‖v‖Y s

(nT,(n+1)T)
µ(‖v‖Y s

(nT,(n+1)T )
)‖yn‖s

+C3(1+µ(‖v‖Y s
(nT,(n+1)T)

))(|h| s+1
3 ,(nT,(n+1)T ) +‖g‖L1(nT,(n+1)T ;Hs(R+)))

for any n ≥ 0. Choose T and β such that

C1e
−αT = γ < 1

and

γ + C2β1µ(β) ≡ r < 1 .

Then

‖yn+1‖s ≤ r‖yn‖s + bn

for n ≥ 0 provided that

sup
n≥0
‖v‖Y s

(nT,(n+1)T)
≤ β

where

bn = C3(1 + µ(‖v‖Y s
(nT,(n+1)T )

))(|h| s+1
3 ,(nT,(n+1)T ) + ‖g‖L1(nT,(n+1)T ;Hs(R+))) .

It follows from Lemma 3.2 that

‖yn+1‖s ≤ rn+1‖y0‖s +
b∗

1− r
for any n ≥ 1 where b∗ = maxn{bn}. This inequality implies the conclusion of

Proposition 3.11.
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4. Asymptotic Bounds

In this section, attention is turned to the long-time behavior of solutions of (1.1).

As a first step, interest is directed to whether or not the solutions are bounded

uniformly in t in the space Hs(R+).

The well-posedness result in Theorem 2.1 for the IBVP (1.1) is temporally local

in the sense that given s-compatible auxiliary data φ and h, the corresponding

solution u is only guaranteed to exist on the time interval (0, T ∗), where T ∗ depends

on the norm of (φ, h) in the space Xs
(0,T ). Here, an alternative view of local well-

posedness for the IBVP (1.1) is presented. The idea is that for given s and T > 0,

if the norm of (φ, h) in the space Xs
(0,T ) is not too large, then the corresponding

solution is guaranteed to exist over the entire time interval (0, T ).

Proposition 4.1. Let T > 0 and s > 3/4 be given. There exists a δ = δT,s > 0

such that for any pair of s-compatible functions (φ, h) ∈ Xs
(0,T ) satisfying

‖(φ, h)‖Xs
(0,T )
≤ δ ,

the IBVP (1.1) admits a unique solution u ∈ Y s(0,T ). Moreover,

‖u‖Y s
(0,T)
≤ C‖(φ, h)‖Xs

(0,T )

where C is a constant independent of T, φ and h.

Proof. The proof is a modification of the proof of [2, Theorem 4.8]. We content

ourselves with a sketch and refer readers to [2] for more detail.

Let δ and r be two positive constants to be determined later. For any element

(φ, h) ∈ Xs
(0,T ) which is an s-compatible pair with

‖(φ, h)‖Xs
(0,T )
≤ δ ,

define the closed subset Sδ,r of Y s(0,T ) to be

Sδ,r = {w ∈ Y s(0,T ) : w(0, t) = h(t) , w(x, 0) = φ(x) , ‖w‖Y s
(0,T )
≤ r} .

According to Proposition 3.11, for any v ∈ Sδ,r, the linear problem

ut + ux + uxxx + αu = −vvx , for x, t ≥ 0 ,

u(x, 0) = φ(x) , u(0, t) = h(t)

}
has a unique solution u ∈ Y s(0,T ). Thus there is defined a map Λ from Sδ,r to

Y s(0,T ), say

u = Λ(v)

for v ∈ Sδ,r. Moreover, on account of our previous estimates,

‖Λ(v)‖Y s
(0,T )
≤ C(‖φ‖s + |h| s+1

3 ,(0,T ) + (T 1/4 + T 1/2)‖v‖2Y s
(0,T )

)
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for s > 3/4. Here C is independent of φ, h and T . Setting

r = 2C‖(φ, h)‖Xs
(0,T )

(4.1)

and choosing δ > 0 such that

2C2δ(T 1/4 + T 1/2) ≤ 1/2 , (4.2)

it is seen immediately that

‖Λ(v)‖Y s
(0,T )
≤ r for any v ∈ Sδ,r .

Thus Λ is a map from Sδ,r to Sδ,r if δ and r are chosen according to (4.1) and (4.2).

A similar argument shows that for such β and r,

‖Λ(v1)− Λ(v2)‖Y s
(0,T )
≤ 1

2
‖v1 − v2‖Y s

(0,T )

for any v1, v2 ∈ Sδ,r. Thus Λ is a contraction from Sδ,r to Sδ,r. Its unique fixed

point u is the desired solution of (1.1); it is defined on the temporal interval [0, T ]

and satisfies

‖u‖Y s
(0,T)
≤ r = 2C‖(φ, h)‖Xs

(0,T )
.

The proof is complete.

Next, it is shown that if δ is small enough, then the corresponding solution u of

(1.1) exists for any t > 0 and its norm in the space Hs(R+) is uniformly bounded.

Theorem 4.2. Let s > 3/4 be given. There exist positive constants T, βj (j = 1, 2),

r with 0 < r < 1 and Cj (j = 1, 2) such that for any s-compatible pair (φ, h) ∈
Hs(R+)×H(s+1)/3

loc (R+) with

‖φ‖s ≤ β1 and sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) ≤ β2 ,

then the solution u of the IBVP (1.1) is globally defined and belongs to the space

Cb(0,∞;Hs(R+)). Moreover,

‖u(· , t)‖s ≤ C1e
−rt‖φ‖s + C2 sup

n≥0
|h| s+1

3 ,(nT,(n+1)T )

for all t ≥ 0.

Remark 4.3. The important point here is that the assumed bound on the

boundary forcing h is only local in t whereas the conclusion is global. As in

Proposition 3.11, the damping term is crucial to the conclusion as formulated here

for spaces that are not local in space.

Proof. First, consider the case 3/4 < s ≤ 7/2 and fix an s in this range. Assume

temporarily that (φ, h) are s-compatible and that φ ∈ H7/2(R+) and h ∈ H3/2
loc (R+)

so that by Theorem 2.2 the associated solution u is globally defined in R+ × R+.

Because of this, we need not be concerned about time intervals of existence. The
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resulting bounds do not depend on the additional regularity and, therefore, the

continuous dependence result implies they are valid, so long as the solution exists,

only assuming (φ, h) ∈ Xs
(0,T ). Moreover, the bounds thereby derived, which are

those displayed in the Theorem, suffice to iterate the local existence result with a

constant time step, thereby obtaining globally defined solutions provided only that

s > 3/4.

For (φ, h) ∈ Hs(R+) × H
(s+1)/3
loc (R+) with φ(0) = h(0), the corresponding

solution u of (1.1) can be written in the form

u(x, t) = Wc,α(t)φ1(x) +

∫ t

0

Wc,α(t− τ)(f1(x, τ) + e−xf(0, τ) + 2e−x−τh(0))dτ

+ [Wb,α(t)h1](x) + e−x−th(0) (4.3)

with

φ1(x) = φ(x) − e−xφ(0) , f(x, t) = −u(x, t)ux(x, t)

and

f1(x, t) = f(x, t)− e−xf(0, t) , h1(t) = h(t)− e−th(0) .

This formula is obtained just as was (3.10) by viewing (1.1) as

ut + ux + (vu)x + αu + uxxx = g

with the associated initial- and boundary-conditions, where v = u/2 and g ≡ 0.

Estimates of the various terms in (4.3) may be made exactly as in the proof of

Proposition 3.11. The outcome of such an analysis is that given T > 0, there are

constants C1, C2 and C3 such that for 0 ≤ t ≤ T ,

‖u(· , t)‖s ≤ C1e
−αt‖φ‖s + C2‖u‖2Y s

(0,T )
+ C3|h| s+1

3 ,(0,T ) . (4.4)

Here, C1 and C2 depend only on s whilst C3 depends on s and T . Proposition 4.1

implies that there exists a δ > 0 and a constant C4 depending only on s and T such

that if

‖(φ, h)‖Xs
(0,T )
≤ δ , (4.5)

then

‖u‖Y s
(0,T)
≤ C4‖(φ, h)‖Xs

(0,T )
. (4.6)

In light of this, if (4.5) holds and (4.4) is evaluated at t = T , there obtains the

inequality

‖u(· , T )‖s ≤ C1e
−αT ‖φ‖s + C5‖φ‖2s + C5|h|2s+1

3
,(0,T )

+ C3|h| s+1
3 ,(0,T ) (4.7)

where C5 = 2C2C4, say. Posit the restrictions

‖φ‖s ≤ β1 and |h| s+1
3 ,(0,T ) ≤ β2
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where the positive parameters β1 and β2 will be specified momentarily. Choose

T > 0 so that

C1e
−αT ≤ γ < 1 .

Let ω = 1/(1− γ). With T fixed, C5 is fixed and we now choose β1 and β2 so that

β1 + β2 ≤ δ ,

and

ω[C5(β2
1 + β2

2) + C3β2] ≤ β1 .

(For example, first choose β2 = β1/(2ωC5) and then take β1 ≤ 1/(2ωC5(1 +

1/(4ω2C2
5 ))) small enough that β1 + β2 ≤ δ.) For such values of β1 and β2, we

have that

‖u(· , T )‖s < β1 , and, by assumption, |h| s+1
3 ,(T,2T ) ≤ β2 .

Hence, repeating the argument, it is determined that

sup
T≤t≤2T

‖u(· , t)‖s ≤ β1 .

Continuing inductively, it is adduced that

sup
t≥0
‖u(· , t)‖s ≤ β1 .

Let yn = u(· , nT ) for n = 0, 1, 2, . . . . Using the semigroup property of (1.1) and

arguing as in the proof of (4.4) (see Proposition 3.11), one obtains constants C1, C2

and C3 which are independent of T and positive parameters β1 and β2 such that

‖yn+1‖s ≤ C1e
−αT ‖yn‖s + C2‖yn‖2s + C3|h| s+1

3 ,(nT,(n+1)T )

for any n ≥ 1 provided ‖y0‖s ≤ β1 and

sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) ≤ β2 .

By Lemma 3.3, there exist 0 < ν < 1, β∗1 > 0 and β∗2 > 0 such that if ‖y0‖s < β∗1
and bn = C3|h|(s+1)/3,(nT,(n+1)T ) ≤ β∗2 for all n ≥ 0, then

‖yn+1‖s ≤ νn+1‖y0‖s +
b∗

1− ν

for n = 1, 2, . . . , where b∗ = maxn{bn}. This leads by standard arguments to the

conclusion of Theorem 4.2 in the case that 3/4 < s ≤ 7/2.

If 7/2 < s ≤ 13/2, note that since

uxxx = −ut − uux − ux − αu ,
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it suffices to get an Hs−3-estimate of ut to obtain an Hs-estimate of u. To bound

ut, let v = ut. Then v solves the IBVP

vt + vx + (uv)x + vxxx + αv = 0 , x > 0 , t > 0 ,

v(x, 0) = φ∗(x) , v(0, t) = h′(t)

}
(4.8)

where φ∗(x) = −φ(x)φ′(x) − αφ(x) − φ′(x) − φ′′′(x). Because s > 7/2, we know

that u ∈ Cb(0,∞;H3(R+) and there is T > 0 and δ > 0, r > 0 such that if

‖φ‖s + sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) ≤ δ ,

then

‖u(· , t)‖3 ≤ C1e
−rt‖φ‖3 + C2 sup

n≥0
|h| 4

3 ,(nT,(n+1)T )

for any t ≥ 0. By Proposition 4.1, there exists C∗ independent of n such that

‖u‖Y 3
(nT,(n+1)T)

≤ C∗‖(u(· , nT ), h)‖X3
(nT,(n+1)T)

.

Combining these yields

sup
n≥0
‖u‖Y 3

(nT,(n+1)T)
≤ C∗C1‖φ‖3 + (C∗ + C2) sup

n≥0
|h| 4

3 ,(nT,(n+1)T ) .

Applying Proposition 3.11, it is concluded that

‖v(· , t)‖s−3 ≤ C1e
−rt‖φ∗‖s−3 + C2 sup

n≥0
|h′| s−2

3 ,(nT,(n+1)T )

for t ≥ 0, or, because of the preceding remarks and the fact that v = ut,

‖u(· , t)‖s ≤ C1e
−rt‖φ‖s + C2 sup

n≥0
|h| s+1

3 ,(nT,(n+1)T )

for t ≥ 0 and s ∈ (7/2, 13/2]. Thus, the inequality stated in the Theorem holds for

s ∈ (3/4, 13/2]. An inductive argument based on the idea just enunciated to extend

s ∈ (3/4, 7/2] to s ∈ (3/4, 13/2] finishes the Proof of the Theorem.

In the last theorem, the Hs(R+)-norm of the initial value φ was required to

be small. The next task is to remove this smallness assumption. First, write the

solution u of (1.1) as

u(x, t) = v(x, t) + w(x, t)

where v solves the linear problem

vt + vx + vxxx + αv = 0 , for x, t ≥ 0 ,

v(x, 0) = φ1(x) , v(0, t) = h(t)

}
(4.9)

and w solves

wt + wx + (vw)x + wwx + wxxx + αw = −vvx , x > 0 , t > 0 ,

w(x, 0) = φ2(x) , w(0, t) = 0 .

}
(4.10)
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The auxiliary functions in (4.9) and (4.10) are φ1(x) = e−xφ(0) and φ2(x) =

φ(x) − e−xφ(0). In the following propositions, the functions φ1 and φ2 are treated

as general functions in the space Hs(R+). In this vein, the next result follows

directly from Proposition 3.11.

Proposition 4.4. Let s ∈ (3/4, 7/2] be given. There exist positive constants T and

r with 0 < r < 1 and constants C1 and C2 such that for any φ1 ∈ Hs(R+) and

h ∈ H(s+1)/3
loc (R+) satisfying h(0) = φ1(0), the solution v of (4.9) satisfies

‖v(· , t)‖s ≤ C1e
−rt‖φ1‖s + C2 sup

n≥0
|h| s+1

3 ,(nT,(n+1)T )

for any t ≥ 0.

As regards the IBVP (4.10), the following result obtains and will be useful.

Proposition 4.5. Let β = supt≥0 ‖vx(· , t)‖L∞(R+) and assume that

r = α− β > 0 .

Then the solution w of (4.10) satisfies

‖w(· , t)‖ ≤ e−rt‖φ2‖+
β

r
sup

0≤τ≤t
‖v(· , τ)‖ (4.11)

for all t ≥ 0.

Proof. Multiply both sides of the equation in (4.10) by 2w and integrate over R+

with respect to x. Integration by parts then leads to

d

dt

∫ ∞
0

w2(x, t)dx + 2α

∫ ∞
0

w2(x, t)dx + w2
x(0, t)

= −
∫ ∞

0

v(x, t)vx(x, t)w(x, t)dx −
∫ ∞

0

vx(x, t)w2(x, t)dx .

Straightforward estimates imply

d

dt
‖w(· , t)‖+ α‖w(· , t)‖ ≤ ‖vx(· , t)‖L∞(R+)‖v(· , t)‖+ ‖vx(· , t)‖L∞(R+)‖w(· , t)‖

from which (4.11) follows via Gronwall’s Lemma.

Next, we derive an H1-estimate of solutions w of (4.10).

Proposition 4.6. There exist constants β > 0 and r with 0 < r < 1 and non-

decreasing continuous function Bj : R+ → R+ (j = 1, 2) such that if

sup
t≥0
‖v(· , t)‖2 < β ,
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then the solution w of (4.10) satisfies

‖w(· , t)‖1 ≤ B1(‖φ2‖)e−rt‖φ2‖1 +B2( sup
0≤τ≤t

‖v(· , τ)‖1) sup
0≤τ≤t

‖v(· , τ)‖2 (4.12)

for any t ≥ 0.

Proof. Multiply both sides of the equation in (4.10) by 2wxx + w2 and integrate

over R+ with respect to x. Integration by parts then leads to the equation

d

dt

∫ ∞
0

w2
x(x, t)dx + 2α

∫ ∞
0

w2
x(x, t)dx + w2

x(0, t) + w2
xx(0, t)

=
1

3

d

dt

∫ ∞
0

w3(x, t)dx + α

∫ ∞
0

w3(x, t)dx +
2

3

∫ ∞
0

w3(x, t)vx(x, t)dx

− 3

∫ ∞
0

w2
x(x, t)vx(x, t)dx − 2

∫ ∞
0

wx(x, t)w(x, t)vxx(x, t)dx

+

∫ ∞
0

v(x, t)vx(x, t)w2(x, t)dx − 2v(0, t)vx(0, t)wx(0, t)

− 2

∫ ∞
0

v2
x(x, t)wx(x, t)dx − 2

∫ ∞
0

v(x, t)vxx(x, t)wx(x, t)dx .

Note that∫ ∞
0

w2
x(x, t)vx(x, t)dx ≤ ‖v(· , t)‖2‖w(· , t)‖21 ,∫ ∞

0

wx(x, t)w(x, t)vxx(x, t)dx ≤ ‖w(· , t)‖L∞(R+)‖wx(· , t)‖‖vxx(· , t)‖

≤ ‖v(· , t)‖2‖w(· , t)‖21 ,∫ ∞
0

w3(x, t)vx(x, t)dx ≤ ‖vx(· , t)‖L∞(R+)‖w(· , t)‖1‖w(· , t)‖2

≤ 1

2
‖v(· , t)‖22‖w(· , t)‖21 +

1

2
‖w(· , t)‖4 ,∫ ∞

0

v(x, t)vx(x, t)w2(x, t)dx ≤ ‖w(· , t)‖‖w(· , t)‖1‖v(· , t)‖1‖vx(· , t)‖

≤ ‖v(· , t)‖21‖w(· , t)‖21 ,

v(0, t)vx(0, t)wx(0, t) ≤ 1

2
w2
x(0, t) + ‖v(· , t)‖22 ,∫ ∞

0

v2
x(x, t)wx(x, t)dx ≤ ‖vx(· , t)‖L∞(R+)‖vx(· , t)‖‖wx(· , t)‖

≤ ‖vx(· , t)‖1/2‖vx(· , t)‖‖vxx(· , t)‖1/2‖wx(· , t)‖

≤ 1

2
‖v(· , t)‖2‖w(· , t)‖21 +

1

2
‖vx(· , t)‖3 ,
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∫ ∞
0

w3(x, t)dx ≤ ‖w(· , t)‖L∞(R+)‖w(· , t)‖2

≤ ‖wx(· , t)‖1/2‖w(· , t)‖5/2

≤ ε‖wx(· , t)‖2 + Cε‖w(· , t)‖10/3

and∫ ∞
0

v(x, t)vxx(x, t)wx(x, t)dx ≤ ‖v(· , t)‖L∞(R+)‖vxx(· , t)‖‖wx(· , t)‖

≤ ‖vx(· , t)‖1/2‖v(· , t)‖1/2‖vxx(· , t)‖‖wx(· , t)‖

≤ 1

2
‖v(· , t)‖21‖w(· , t)‖21 +

1

2
‖vxx(· , t)‖2 .

Moreover, as in the proof of Proposition 4.6, it is seen that

d

dt

∫ ∞
0

w2(x, t)dx + 2α

∫ ∞
0

w2(x, t)dx

≤ (‖vx‖L∞(R+) + ‖vx‖2L∞(R+))

∫ ∞
0

w2(x, t)dx + ‖v(· , t)‖2

for any t ≥ 0. Thus, there exist three constants Mj (j = 1, 2, 3) depending only on

the positive parameter ε such that for all t ≥ 0,

d

dt

∫ ∞
0

w2
x(x, t)dx + α(2− ε)

∫ ∞
0

w2
x(x, t)dx

≤M1(‖v(· , t)‖2 + ‖v(· , t)‖22)‖w(· , t)‖21 +M2‖v(· , t)‖22(1 + ‖v(· , t)‖1)

+M3(‖w(· , t)‖4 + ‖w(· , t)‖10/3) +
1

3

d

dt

∫ ∞
0

w3(x, t)dx .

Choose ε and β small enough that if

sup
t≥0
‖v(· , t)‖2 ≤ β ,

then

r1 = α(2− ε)− µ1 sup
t≥0

(‖v(· , t)‖2 + ‖v(· , t)‖22) > 0 .

The preceding differential inequality then implies that

d

dt

(
‖w(· , t)‖21 −

1

3

∫ ∞
0

w3(x, t)dx

)
+ r1

(
‖w(· , t)‖21 −

1

3

∫ ∞
0

w3(x, t)dx

)

≤ r1

3

∫ ∞
0

|w(x, t)|3dx+ g1(t) + g2(t)

where

g1(t) = M2‖v(· , t)‖22(1 + ‖v(· , t)‖1)
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and

g2(t) = M3(‖w(· , t)‖4 + ‖w(· , t)‖10/3) .

In consequence, it is adduced that for all t ≥ 0,

‖w(· , t)‖2H1(R+) ≤
1

3

∫ ∞
0

|w(x, t)|3dx+ e−r1t
(
‖φ2‖s +

1

3

∫ ∞
0

|φ2(x)|3dx
)

+

∫ t

0

e−r1(t−τ)

(
r1

3

∫ ∞
0

|w(x, τ)|3dx+ g1(τ) + g2(τ)

)
dτ .

For ε > 0, there is a constant Cε depending only on ε such that∫ ∞
0

w3(x, t)dx ≤ ε‖wx(· , t)‖2 + Cε‖w(· , t)‖10/3 ,

∫ t

0

e−r1(t−τ)

∫ ∞
0

|w(x, τ)|3dx ≤ ε

r1
sup

0≤τ≤t
‖wx(· , τ)‖2 +

Cε

r1
sup

0≤τ≤t
‖w(· , τ)‖10/3

and ∫ t

0

e−r1(t−τ)(g1(τ) + g2(τ))dτ ≤ 1

r1
sup

0≤τ≤t
(g1(τ) + g2(τ)) .

Combining those estimates with Proposition 4.6 yields the estimate (4.12).

The preceding propositions imply the following estimate for the solution of (1.1).

Theorem 4.7. There exist positive constants T, β∗ and r and nondecreasing

continuous functions Dj : R+ → R+ (j = 1, 2) such that if

sup
n≥0
‖h‖H1(nT,(n+1)T ) ≤ β∗ ,

then the solution u of (1.1) satisfies

‖u(· , t)‖1 ≤ D1(‖φ‖)e−rt‖φ‖1

+D2(sup
n≥0
|h| 2

3 ,(nT,(n+1)T )) sup
n≥0
|h|1,(nT,(n+1)T ) (4.13)

for all t ≥ 0.

Proof. By Proposition 4.4,

lim
t→∞
‖v(· , t)‖2 ≤ C2 sup

n≥0
|h|1,(nT,(n+1)T ) .

For any particular positive value of β in Proposition 4.6, choose β∗ = βC2. Then,

there exists t0 > 0 such that

sup
t≥t0
‖v(· , t)‖2 ≤ C2β

∗ ≤ β .
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Because of Proposition 4.6, it is adduced that for all t ≥ t0,

‖w(· , t)‖1 ≤ B1(‖φ2‖)e−rt‖w(· , t0)‖1 +B2( sup
t0≤τ≤t

v(· , τ)‖1) sup
t0≤τ≤t

‖v(· , τ)‖2 .

Consequently, we have for t ≥ t0 that

‖u(· , t)‖1 ≤ B1(‖u(· , t0)‖)e−rt‖φ‖1 +B2(sup
n≥0
|h| 2

3 ,(nT,(n+1)T )) sup
n≥0
|h|1,(nT,(n+1)T ) .

Thus (4.13) holds for appropriate choices of D1 and D2.

To conclude this section, an Hs-estimate (3 ≤ s ≤ 4) is presented for solutions

of (1.1).

Theorem 4.8. Let s = 3, or 4 be given. There exist T > 0, r > 0 and β > 0 such

that for any s-compatible (φ, h) ∈ Hs(R+)×H(s+1)/3
loc (R+) with

sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) ≤ β ,

the corresponding solution u of (1.1) satisfies

‖u(· , t)‖s ≤ C1e
−rt‖φ‖s + C2 sup

n≥0
|h| s+1

3 ,(nT,(n+1)T )

for all t ≥ 0, where C1 and C2 depend only on ‖φ‖1 and supn≥0 |h|1,(nT,(n+1)T ).

Proof. Since

uxxx = −ut − uux − ux − αu ,

it suffices to obtain an L2- or H1-estimate of ut in order to derive an H3- or H4-

estimate of u. Let v = ut. The function v solves the IBVP

vt + vx + (uv)x + vxxx + αv = 0 , x > 0 , t > 0 ,

v(x, 0) = φ∗(x) , v(0, t) = h′(t)

}
(4.14)

where φ∗(x) = −φ(x)φ′(x) − αφ(x) − φ′(x) − φ′′′(x). By Proposition 3.11, there

exist T > 0, r > 0 and β̃ > 0 such that if

sup
n≥0
‖u‖Y s−3

(nT,(n+1)T)
≤ β̃ , (4.15)

then

‖v(· , t)‖s−3 ≤ C1e
−rt‖φ∗‖s−3 + C2 sup

n≥0
|h′|(s−2)/3,(nT,(n+1)T )

for all t ≥ 0, which gives estimates of ut. However, by Proposition 4.1,

‖u‖Y s−3
(nT,(n+1)T)

≤ ‖u‖Y 1
(nT,(n+1)T)

≤ C(‖u(· , nT )‖1 + |h|1,(nT,(n+1)T ))

if ‖u(· , nT )‖1 + |h|1,(nT,(n+1)T ) ≤ δT,1. On the other hand, by Theorem 4.8, there

is a nondecreasing continuous positive function D2 : R+ → R+ such that

lim
t→∞
‖u(· , t)‖1 ≤ D2(sup

n≥0
|h| 2

3 ,(nT,(n+1)T )) sup
n≥0
|h|1,(nT,(n+1)T ) .
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Therefore, there exists a t0 > 0 such that

‖u(· , t0)‖1 ≤ 2D2(sup
n≥0
|h| 2

3 ,(nT,(n+1)T )) sup
n≥0
|h|1,(nT,(n+1)T )

for all t ≥ t0. We then consider (4.14) with the initial time taken to be t = t0
instead of t = 0. In this case the condition (4.15) is satisfied so long as the value of

β is chosen small enough. The proof is complete.

5. Forced Oscillations and Their Stability

In this section, attention is turned first to the pure boundary-value problem

ut + uux + ux + αu + uxxx = 0 , x ∈ R+, t ≥ 0 ,

u(0, t) = h(t) .

}
(5.1)

It is assumed that the boundary input h(t) is periodic with period θ so that

h(t+ θ) = h(t) for all t ≥ 0. We are concerned with whether or not this periodic

forcing generates a time-periodic solution of (5.1). Note that, because of the

dissipative term, it is not expected that the initial data will play any role in this

question of long-time asymptotics.

Theorem 5.1. Let s > 3/4 be given. There exists a β > 0 such that if h ∈
H

(s+1)/3
loc (R+) is a periodic function of period θ satisfying

|h| s+1
3 ,(0,θ) < β ,

then (5.1) admits a solution u∗ ∈ Cb(0,∞;Hs(R+)) which is a time-periodic func-

tion of period θ. Moreover, there exists a β1 > 0 such that if u∗1 ∈ Cb(0,∞;Hs(R+))

is also a time-periodic solution of (5.1) with

‖u∗1(· , 0)‖s ≤ β1 ,

then

u∗1(x, t) ≡ u∗(x, t)

for all x, t ∈ R+.

Proof. Choose φ ∈ Hs(R+) which is s-compatible with h and consider the IBVP

ut + ux + uux + uxxx + αu = 0 , for x, t ≥ 0 ,

u(x, 0) = φ(x) , u(0, t) = h(t) .

}
(5.2)

For the solution u of (5.2), let

w(x, t) = u(x, t+ θ)− u(x, t) .
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Then, the new function w solves the IBVP

wt + wx + (vw)x + wxxx + αw = 0 , x > 0 , t > 0 ,

w(x, 0) = φ∗(x) , w(0, t) = 0

}
(5.3)

where φ∗(x) = u(x, θ)−φ(x) and v(x, t) = 1
2 (u(x, t+θ)+u(x, t)). For this linearized

system, the solution w decays exponentially in time. More precisely, the following

point is put forward.

Claim. There exist T > 0, r > 0 and β > 0 such that if

‖φ‖s + sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) ≤ β ,

then the solution w of (5.3) satisfies

‖w(· , t)‖s ≤ Ce−rt‖φ∗‖s

for all t ≥ 0, where C is independent of φ∗ and t.

We only verify the claim for 3/4 < s ≤ 7/2. When s > 7/2, one may proceed

by induction using the estimates of higher-order time derivatives, wt, wtt, . . . , as in

the proof of Theorem 4.8.

By Proposition 3.11, there exist positive constants T , β1 and r such that

‖w(·, t)‖s ≤ C1e
−rt

for any t ≥ 0 in case

sup
n≥0
‖v‖Y s

(nT,(n+1)T)
≤ β1 . (5.4)

To see (5.4) is satisfied, invoke Proposition 4.1 and Theorem 4.2. There exists δ > 0

such that if

‖φ‖s + sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) < δ ,

then

‖v‖Y s
(nT,(n+1)T)

≤ C2(‖u(· , nT )‖s + |h| s+1
3 ,(nT,(n+1)T ))

≤ C(‖φ‖s + sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ))

for all n ≥ 0. Consequently, inequality (5.4) is satisfied when δ is chosen small

enough.

With this fact in hand, we show that (5.3) possesses a time-periodic solution of

the same period θ as the boundary forcing. Denote by

un ≡ u(x, nθ)
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for n ≥ 1. Write the difference un+m − un in telescoping fashion to deduce

‖un+m − un‖s =

∥∥∥∥∥
m∑
k=1

un+k − un+k−1

∥∥∥∥∥
s

≤
m∑
k=1

‖un+k − un+k−1‖s

≤
m∑
k=1

‖w(· , (n+ k − 1)θ)‖s

≤
m∑
k=1

Ce−(n+k−1)θ‖φ∗‖s (by the Claim)

≤ e−nθ

1− e−θC‖φ
∗‖s

for any m ≥ 1. Thus ‖un+m− un‖s tends to zero uniformly in m as n→∞, which

is equivalent to saying that the sequence {un} is a Cauchy sequence in Hs(R+).

Let ψ ∈ Hs(R+) be the limit of the sequence {un}, viz.

lim
n→∞

un = ψ in Hs(R+) .

By Theorem 4.8,

‖ψ‖s ≤ C sup
n≥0
|h| s+1

3 ,(nT,(n+1)T ) . (5.5)

Taking ψ as an initial data together with the boundary input h for (5.2), it is

asserted that the corresponding solution u∗ is a time-periodic solution of period θ.

To see this, note that while un(·) = u(· , nθ) converges to ψ strongly in Hs(R+), it

is also the case that u(· , nθ+ θ) converges to u∗(· , θ) strongly in the space Hs(R+)

as n→∞ because of the continuity of the associated solution map. Observing that

‖u∗(· , θ)− u∗(· , 0)‖s ≤ ‖u∗(· , θ)− u(· , nθ + θ)‖s

+ ‖u(· , nθ+ θ)− u(· , nθ)‖s + ‖u(· , nθ)− u∗(· , 0)‖s

for any n ≥ 1, it is concluded that

u∗(· , θ) = u∗(· , 0)

and therefore that u∗(x, t) is a time-periodic function of period θ.

To demonstrate uniqueness, let u1 be another time-periodic solution with the

same boundary forcing h. Let z(x, t) = u1(x, t)− u∗(x, t). Then z solves the linear

problem (5.3) with v = u1 +u∗ and φ∗(x, t) = u1(x, 0)−ψ(x). By Proposition 3.11,

there exists a δ1 > 0 and T > 0 such that if

sup
n≥0
‖v‖Y s

(nT,(n+1)T)
≤ δ1 , (5.6)
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then z decays to zero exponentially in the space Hs(R+), which in turn implies

u1(x, t) = u∗(x, t)

for all x ∈ R+ and t ≥ 0 because both of them are time-periodic functions. Remark

that

sup
n≥0
‖v‖Y s

(nT,(n+1)T )
≤ sup

n≥0
‖u1‖Y s

(nT,(n+1)T )
+ sup
n≥0
‖u∗‖Y s

(nT,(n+1)T )

≤ C sup
n≥0

(‖u1(· , nT )‖s + ‖u∗(· , nT )‖s) + C sup
n≥0
|h| s+1

3 ,(nT,(n+1)T )

≤ C(‖u1(· , 0)‖s + ‖ψ‖s + |h| s+1
3 ,(0,θ))

≤ C(δ + β) ≤ δ1

if δ and β are small enough. The proof is complete.

For a given periodic boundary forcing h of period θ, the IBVP (1.1) may

be considered as a dynamical system in the infinite-dimensional space Hs(R+).

It has just been shown that if the amplitude of h is small, (1.1a) admits a

unique time-periodic solution u∗(x, t) of period θ satisfying the boundary condition

u∗(0, t) = h(t). Maintaining the dynamical systems perspective, one may view u∗

as a limit cycle of the dynamical system. A natural further inquiry is then to study

the stability of this limit cycle.

Theorem 5.2. Under the assumptions of Theorem 5.1, the time-periodic solution

u∗ is locally exponentially stable in the space Hs(R+), which is to say, there exist

δ > 0, r > 0 and C > 0 such that for any given φ ∈ Hs(R+), which satisfies

‖φ(·)− u∗(· , 0)‖s ≤ δ

and is s-compatible with h, the corresponding solution u of (1.1) satisfies

‖u(· , t)− u∗(· , t)‖s ≤ Ce−rt

for any t ≥ 0.

Proof. Let w(x, t) = u(x, t)− u∗(x, t). Then w solves

wt + wx + (vw)x + wxxx + αw = 0 , x > 0 , t > 0 ,

w(x, 0) = φ1 , w(0, t) = 0

}
where v(x, t) = 1

2 (u(x, t) + u∗(x, t)) and φ1(x) = φ(x) − u∗(x, 0). As in the Proof

of Theorem 5.1,

sup
n≥0
‖v‖Y s

(nT,(n+1)T)
≤ sup

n≥0
‖u‖Y s

(nT,(n+1)T)
+ sup
n≥0
‖u∗‖Y s

(nT,(n+1)T )

≤ C sup
n≥0

(‖u(· , nT )‖s + ‖u∗(· , nT )‖s) + C sup
n≥0
|h| s+1

3 ,(nT,(n+1)T )
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≤ C(‖φ‖s + ‖ψ‖s + |h| s+1
3 ,(0,θ))

≤ C(‖φ− ψ‖s + 2‖ψ‖s + |h| s+1
3 ,(0,θ))

≤ C(δ + β) .

If δ and β are small enough, it follows from Proposition 3.11 that

‖w(· , t)‖s ≤ Ce−rt‖φ1‖s
for any t ≥ 0. The proof is complete.

The last two results are local: (i) uniqueness of time-periodic solutions holds

under the assumption that the initial value is small; (ii) the time-periodic solution,

considered as a limit cycle, is locally exponential stable. In a smoother space, the

next result shows that uniqueness holds without the smallness assumption and that

the unique limit cycle is, in fact, globally exponentially stable.

Theorem 5.3. Let s be given such that s = 1 or 3k ≤ s ≤ 3k+ 1 for k = 1, 2, . . . .

Then there exists a β > 0 such that if h ∈ Hξ(s)
loc (R+) is a periodic function of period

θ satisfying

|h|ξ(s),(0,θ) ≤ β ,

where

ξ(s) =

{
1 if s = 1 ,

(s+ 1)/3 if 3k ≤ s ≤ 3k + 1 for some positive interger k ,

then (1.1a) admits a unique time-periodic solution u∗ of period θ. Moreover, there

exist r > 0 and C > 0 such that for any given φ ∈ Hs(R+) which is s-compatible

with h, the corresponding solution u of (1.1) satisfies

‖u(· , t)− u∗(· , t)‖s ≤ Ce−rt

for any t ≥ 0.

Proof. By Theorem 4.8, there exist T and β2 such that if

sup
n≥0
|h|ξ(s),(nT,(n+1)T ) ≤ β2 ,

then

lim
t→∞
‖u(· , t)‖s ≤ C sup

n≥0
|h|ξ(s),(nT,(n+1)T ) .

One may choose β2 small enough such that Cβ2 is smaller than β and β1 determined

in Theorem 5.1. Thus there is a T0 > 0 such that for any t0 ≥ T0, ‖u(· , t0)‖s ≤ β2.

Moreover, let u∗ be the time-periodic solution given in Theorem 5.1. We may choose

β2 and β in Theorem 5.1 even smaller so that

‖u(· , t0)− u∗(· , 0)‖s ≤ δ
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where δ is given in Theorem 5.2. Then by Theorem 5.2

‖u(· , t+ t0)− u∗(· , t)‖s ≤ Ce−rt

for all t ≥ 0, which yields

‖u(· , t)− u∗(· , t)‖s ≤ C̃e−rt

for all t ≥ 0 since u∗ is a time-periodic function. This estimate implies both that

the time-periodic solution of (5.1) is unique and that it is globally exponentially

stable. The proof is complete.

6. Conclusion

While parts of the preceding developments are somewhat technical, the upshot is

quite simple to describe. Consider a semi-infinite medium {x : x ≥ 0} in which

wave propagation is governed by the damped Korteweg-de Vries equation

ut + ux + uux + uxxx + αu = 0 . (6.1)

Imagine this medium forced periodically from its finite end x = 0, thus imposing

upon (6.1) the boundary condition

u(0, t) = h(t) (6.2)

for t ≥ 0, where h is periodic, or asymptotically periodic. The conclusion in view is

that at least if the forcing is not too large, an assumption very much in line with

derivations of the Korteweg-de Vries equation as a model of physical phenomena,

the solution u of (6.1)–(6.2) with any initial state u(x, 0) of the medium, settles

down uniformly in x to being periodic of the same period as that of boundary

forcing h. Moreover, the solution u of the initial-boundary-value problem converges

exponentially rapidly to a solution of (6.1)–(6.2) that is exactly time periodic. This

time-periodic solution is unique and exponentially stable.

It would be interesting to have similar theory for a wider range of dissipative

mechanisms and for other equations besides the Korteweg-de Vries equation. Similar

results appear to be valid without dissipation, but of course, in the absence of

suitably strong dissipation, the convergence to periodicity is only uniform on

compact sets.
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