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ABSTRACT. The BBM or regularized long-wave equation was originally pro-
posed as an alternative to the Korteweg-de Vries equation. It was shown in the
paper of Benjamin et al. (1972) to be globally well-posed in H'(RK), the class
of square-integrable-functions whose derivative is also square-integrable. Recently,
Bona and Tzvetkov (2002) have shown that the initial-value problem

Ug + Ug + UlUg — Uggt = 0, zeRt>0, (0.1)
u(z,O) = uo(IC), z €R, ’

is globally well posed in H*(R) for any s > 0.
It is our purpose here to extend this well-posedness theory in weak spaces to some
members of a more general class of evolution equations of the form

up +uz + g(u)y + Lu, =0 (0.2)

where L is a Fourier-multiplier related to the linearized dispersion relation and g is
a smooth, real-valued function of a real variable. Results are established analogous
to those for equation (0.1), for (0.2) posed on the entire real axis. In addition, local
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36 Bona and Chen

and global well-posedness theory is established for bore-like or kink-like initial data,
wherein ug has different limits as z tends to xoo.

1 INTRODUCTION

The regularized long-wave equation or BBM-equation
U + Ug + ULy — Uggt =0 (1.1)

was put forward by Peregrine (1964, 1967) and Benjamin et al. (1972) as an alterna-
tive model to the Korteweg-de Vries equation for small-amplitude, long wavelength
surface water waves. In their paper, Benjamin and his co-workers discussed not
only (1.1), but a class of evolution equations of the more general form

wug +ug + g(u)g + Lug =0 (1.2)

where g : R — R is a smooth function (typically a polynomial in applications) and
L is a Fourier multiplier operator with symbol a, say, so that

Lu(€) = a(9)B(¢)

for all wave numbers &, where the circumflex connotes the Fourier transform (with
respect to the spatial variable z) of the function it surmounts and the symbol a of
L is related to the dispersion suffered by infinitesimal waves. Thus, if w(§) connotes
the frequency corresponding to wavenumber £ in the linearized theory, then at least
for small values of wave number £ (long waves)

__ £
14+ aé)’

As pointed out by Benjamin et al. (1972) and many others, model equations of the
form (1.2) arise in the description of waves in quite a number of physical situations.

In the analysis following the derivation of (1.1), Benjamin et al. (1972) showed
(1.1) to be globally well posed in the Sobolev class H 1(R) and in spaces such as
C{(R) N H"(R) provided r > 1. In the Appendix to their paper, they sketched
theory relating to the more general class of equations (1.2).

It is our purpose here to establish local and global well-posedness results for
(1.2) in weaker L,-based spaces for appropriate values of p. In this endeavor, we
generalize some of the recent work of Bona & Tzvetkov (2002) concerned with (1.1).
We also countenance bore-like initial data as well as Lp-based data.

The plan for the remainder of the paper is the following. In Section 2, the pure
initial-value problem is converted into an integral equation. Local existence is then
established for this integral equation by an application of the contraction-mapping
principle in appropriate Lp-spaces. For a restricted class of the equations possessing
a local well-posedness theory, an a priori bound is derived that leads to global well
posedness. Section 3 follows a similar development relative to propagation of bore-
like disturbances.

w(§)

2 NOTATION AND LOCAL WELL-POSEDNESS

We begin with a brief synopsis of our notational conventions and function-space
designations.
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2.1 Notation

For 1 <7 < o0, L, = L.(R) connotes the rth-power Lebesgue-integrable functions
with the usual modification for the case r = co. The norm of a function f € L,
is written |f|,. The Sobolev class H*(R) for s > 0 is the class of L,(IR)-functions

whose Fourier transform f has the property
1 o0
19 = 5 [ L+ EPIFOP d < +o0
-0

where f(£) = [ f(z)e™*€ d€. Note that || fllo = |f|> and we will in fact write
the Ly-norm of f unadorned as simply ||f}|. If X is any Banach space and T' > 0
given, C(0,T;X) is the class of continuous functions from [0,T] into X with its
usual norm

llulloo,r:x) = e [lu(®)]ix-

If S C X is a subset, then C(0,T; S) is the collection of elements v in C(0,T; X)
such that u(t) € § for 0 <t < T. When T = oo, C(0,00; X} is a Fréchet space
with defining set of semi-norms

palu) = o (lu(®)llx

forn = 1,2,-++ . The subspace C(0,00; X) of elements of C(0,00; X) which are
uniformly bounded is a Banach space with norm

llullco,00;x) = sup [lu(t) || x-
>0

The Banach space C1(0,T; X) is the subspace of C(0,T; X) for which the limit
w(t) = lim WEETEE) = 1H)
h—0 h
exists it C(0, T; X). It is equipped with the obvious norm. Inductively, one defines
C*(0,T; X) and, by analogy, C*(0, 00; X) and C§(0, 00; X).
2.2 Associated Integral Equations

The theory begins by converting the original initial-value problem into an associated
integral equation. For this, we operate formally and consider afterward the issue of
whether or not solutions of the integral equation are solutions of the initial-value
problem.

Write the evolution equation (1.2) posed on all of R in the form

(I + L)uy = —(u+g(w)), (2.1)

and take the Fourier transform with respect to the spatial variable x. Writing the
Fourier transform of u with respect to x as 4, there appears the formal relation

(1 + o)) = —i€(a+ g(u)).
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Dividing by 1 + a and taking the inverse Fourier transform leads to the integral
equation
u = K * (u+ g(w)) (2-2)

where the kernel K is the inverse Fourier transform of the function
K(e) = —ig/ (1 + a(8))-

Of course the convolution may have to be interpreted in the sense of tempered
distributions. A formal integration in the temporal variable then leads to the BBM-
type integral equation (Benjamin et al. 1972)

t oo
ue ) =w(@) + [ [ Ka=u)(ul.o) + o)) dyds @3
0 —o©

where ug(z) = u(z,0) is the initial data. For classes of functions v defined on
R x [0,T] to be discussed presently, let w = A(v) be the function obtained from v
by replacing u by v on the right-hand side of (2.3). The equation (2.3) then takes
the form

u = A(u). (2.4)

In terms of the integral equation, a solution is thus seen to comprise a fixed point
of the nonlinear operator A.

2.3 Local well-posedness with non-smooth initial data

To use (2.3) or (2.4) in a precise way, assumptions about the nonlinearity g and the
dispersion operator L must be made and appropriate function classes put forward.
As mentioned earlier, our goal is to work in relatively large function spaces.
Assumptions on g and the symbol a of L are now delineated.
(H1) The function g : R — R is C! and has the property that thereisa p >1
and a constant Cp such that

[1+4'(2)] < Co(l +21P7)

for all z € R. This assumption will be referred to as the assumption of polynomial
growth. Without loss of generality we take it that g(0) =g¢'(0) =0.

(H2) The symbol a of L has the property that the tempered distribution K
whose Fourier transform is —i¢/(1 + a(f)) is given by a measurable function lying
in L;(R) N L, (R) for some 7 > 1.

Ezamples: If L = —82, then
1 —III
K(z) = isgn(x)e

as one ascertains by a direct calculation using the Residue Theorem (see Benjamin
et al. 1972). Clearly, this version of K satisfies (H2) for any positive value of r.
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If L = D* with s > 1 where D/’7L(£) = |§|sﬁ(£), then

iy i€ y_ 1 T g€ 1 [ esin(xf)
K("’”)‘jr1{1+|5|»}“ﬁ/1+;5|~d£~ w) 1+¢ %
0

—0o0

where F connotes the Fourier transform in the spatial variable £ and F~! is its
inverse. It thus follows that K is odd and in particular K(0) = 0. For any = > 0,
integration by parts twice yields

_ 1 f1-(s-ng
K(z) = 7”50/ T+e)e cos(z€) d¢

1 oo{ § 1 -1 _ o 25—1
=y Londth. a +;s()“; Ol sin (z€) d€.
0

It is thereby concluded that K(z) = O(Z) as # = co. On the other hand, for
z > 0, K(x) may also be represented in the form

1 [ésin(r) , 1 [ Esin(éz)

Ke@)=-2[5a %7 Tre d

0 1

1 fésin(gx) ,  wfeosl 1 [1—(s—1)¢

oo 1+& a4 nzt(zt +1) 7z (1+&%)2 cos(a€) d
0 1

_ A 7 Esin(ér) . a'cosl  2f Tt - (s —1)y°

T on) 1+8 d mad(zt +1)  wa? / (z* +y*)? cosy dy.
o 1

It follows immediately that

C( 1‘. sz P e Y]
K@< 7 [ 155 de+a e + D).
0

Since the integrand €2 /(1 + €*) is bounded by z£%~*, it, follows that
|K ()| = O(z*"?)

as @ — 0. These considerations imply K € Ly N L, for any r < 1/(2—3s) if s <2,
and for r = o0 if s > 2. -

As for the nonlinearity, if p is an integer, p > 2, and g(z) = Z;’zg ciz? is a
polynomial of degree p, then

r
[1+g'(2) =1+ dejz ™ < Co(l+ |2)
i=2

for a suitable constant C'y depending only on the coefficients ¢z, -+, ¢p.

Here is a local existence theory based on (H1) and (H2).
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THEOREM 2.1. Consider the integral equation (2.3) and suppose the nonlinear
function g and the integral kernel K satisfy hypotheses (H1) and (H2), respectively.
Let q be such that
g > max{p, (pr —r)/(r — 1)}

where p and r, specified in the hypotheses (H1) and (H2), represent the properties
of the nonlinear function g and the integral kernel K, respectively. Then for any
initial data ug € Ly, there is a positive number T = T'(|uolq) such that (2.3) has
a unique solution u lying in the space C(0,T;L,). Moreover, the mapping ug = u
from the space Ly to C(0,T; Ly) is continuous.

Recall that, for any ry,72 > 1, if u € L,, and v € Ly, then uxv € L, and
[u*v|r < |t|r |v]r,, wherer is determined by 1= %+;12——1. With this inequality in
mind, the tool for proving the proposition is the standard version of the contraction
mapping theorem.

Proof. The remark just made implies that if w € Ly, then
K *(g(u)+u) € L,

because .
o) +ul = | [ (14 9/Gu)) dsu] < ol + o),
0

S0,
K * (9(u) +u)lg < Co(IKilulg + | Klg/q—p+n)lulf)- (2:5)

Hence, the integral operator A may be considered as a map of C(0,00; Lg) to itself.
For any B8 > 0, let Bs = {u € Lq : |ulg < B}, and for any T > 0, let X = X753 =
C(0,T; Bg). It is asserted that if 5 > 0 is chosen properly and T > 0 is sufficiently
small, then A maps X to itself and is a contraction mapping. In fact, for any u € X,

lAullx < fuolg +TCo(|Khlullx + [Kloja—psn 1ull% )

To estimate the norm of difference Au — Awv in the space X, the following sublemma
will be useful.

SUBLEMMA 2.2. If u,v € L, and |ulg,|v|y < B, then

[K* (u—v+gu) —g(v))‘

= |&x [ @+ g0+ stu =) dstu =)
0

q
q

1
< “K|*/C’o(l+|v+s(u—v)|”_1)ds|u—v|l (2.6)
q

0
1
< Go [ {1Khlu = vl + Klgsaprno + st = o)l u = vl } ds

0
< Co{|K|1 + |K|q/(q—p+l)6p_1}|u —vlq
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since |v + s(u — v)|q < B because u and v both lie in the ball of radius B about 0 in
L,.

Hence, it is straightforward to adduce the relation

|Au(a t) - AU(" t)|q

1) = (1) + g(u(, 7)) — g(o(,7)) ) dr|

q

i
= \‘O/K* (u(
< [ |5« (1) = v,) + glut,7) = 90, 0) (1) dr
0

t
<G [ {1Kly + Klayia-pr B Hul,7) = o0 7l o
0

Taking the maximum in this inequality for t € [0, T] yields

ll4u - Avllx < CoT(K N + [Klqyqopin B H)llu —vl|x. 27
It follows readily that if we choose
B=2uol, and T= : (2.8)

2C0(IKII F |1{|q/(,l_"_H)ﬁp—l)’

then the operator A maps X to X and is contractive. Since X is a complete metric
space, the contraction mapping theorem completes the proof. =

REMARK. In fact, the result of 2.1 is true if the nonlinear function g is a C-
function for some number « € (0, 1] and there is a number C; > 0 such that for any
z,y € R,

l9(z) — g()] < Collz|*=> + [y|* ™ + =P~ + [y|P )]z — y* (2.9)

Furthermore, if there is a positive integer k such that g € C*+*, and g'*) satisfies
an inequality like (2.9) in which p is replaced by p — k, then the mapping up — u
from the space L, to C(0,T; Ly) is kth-order differentiable. Here we only outline
the proof for k¥ = 1. This case amounts to the assertion that the mapping taking
ug to the associated solution u is differentiable. Write the solution with initial data
Up S U = Uy,. Fix initial data ¢ and a perturbation k in L, and let & # 0 be an
arbitrary real number. Clearly,

t
Uppgh — Uy _ ugrsh — g | 9lupisn) — glug)
2T+ / K ( == - ) dr

0

and so, by the sublemma, it is thus implied that for any T" > 0 such that ug4sn
and uy are well defined on C(0,T"; Ly),

“ Ug4-dh — U
)

R s

IC(O,T';LQ |C‘(0,T'-,Lq)
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where C'(8,¢) = Co(|K|1 + |K|q/(q_p+1))(||u¢,||’é"(g!T,;Lq) + 0(d)) and the little o
denotes terms for which lims_,o 0(§) = 0. Notice that C'T" < 1 when 6§ # 0 and T"
are chosen sufficiently small. In these circumstances, it is not hard to verify that
the difference quotient on the left-hand side of the last inequality is also Cauchy as
6 — 0, and therefore one infers existence of the limit

lim Yphih — U

5—0 o
in C(0,T"; L,). As differentiability is a local issue and the time interval is compact,
this completes the proof of the remark. The argument for this result is similar in
case k > 1. If g is analytic (e.g. if g is a polynomial), then the mapping is also
analytic.

The L,-results just established may be generalized in various directions. Here is
an aspect of further regularity corresponding to enhanced smoothness of the initial
data.

THEOREM 2.3. (Regularity 1) Let u € C(0,T; Lg) be the solution of (2.3) de-
scribed in Theorem 2.1. In addition, suppose g € C*(R) for some k > 1 and g®*)
is bounded by a polynomial with degree less than or equal to p — k. Then it follows

that ok

Ou u

. s T:-L.).

ot’ otk € 00,73 L)
Proof. Because of Theorem 2.1, u is given locally in time as the fixed point of the
operator A as in (2.3). The fixed point of this contraction mapping may be obtained

as the limit of the sequence {u,}22, generated by the iteration
up = A(0), - ,ung1 = A(un), -+, (2.10)

commencing from the starting point 6 which is the constant function equal to 0 ev-
erywhere. Thus, this iterated sequence {u,}32, is Cauchy in C(0,T'; L,). Applying
Sublemma. 2.2, it follows that for any n,m > 0,

Ountm+1(t)  Ounti1(:,t)
ot ot
< CO{|K|1 F [K|q/(q—P+1) Slél[g.)i] {|Un + S(Un+m — un)l§—1}|un+m('v t) - un('! t)|4'

(2.11)

‘q = IK * (Un+m —Up + g(un+m) _g(un))(':t)|q

Since {un}n>1 converges to u in C(0,T; Ly), max,e(o,1] {[un + $(unsm — un) Pt}
is bounded by a constant C' = C(||ullc(0,7;z,)) dependent only on u. Taking supre-
mum of this inequality for ¢ € [0, T] yields

ot ot HC(O,T;Lq)

Ou Ou 1
H Szl - < Clluntm = unlleo,T;L,)-

In consequence, the sequence {%‘L}nzl C C(0,T;Ly) is also a Cauchy sequence.
Inductively, for j = 0,1,--- ,k — 1 (where it is presumed that 8%u/8t° = u), it is

adduced that

Ol uny uy,
S = K 50 T K x (g'(un)

Buy,
at!

+---+g(j)(un)(-aau—;)j)- (212)
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Arguing as above, the sequence {Q,;—:,'—J‘r"}nx is also Cauchy in C(0,T'; Lq). The

completeness of C(0,T'; L,) implies that the sequence {%:;;5‘;&},‘21 is convergent to
some function wj+, € C(0,T;Ly), say, as n — oo. To prave wjy1 = & u/otrt!,
simply let n = o0 in (2.12) to reach the conclusion

Wil = Kxw;+ K x (gl(u)’u)j e +g(j)(u)w{).

The uniqueness of the solution implies that w, = %, and inductively, it is seen that
_ oty
Wi+l = FEFr - .

REMARKS: If a function f has the property that fe L, for some p € [1,2], then
f € Lgand |flg < |f|,,, where 1/p + 1/qg = 1. For the integral equation (2.3),
if the initial data uo has the property that @y € Lg/(q-1), which guarantees that
ug € L, then the results of Theorem 2.1 hold true, and furthermore, at least in
the case where g is a polynomial, the Fourier transform % of the solution » with
respect to the spatial variable lies in the space C(0,T; Lg/(4—1)). The proof is made

by considering the Fourier transform of (2.3), namely
-6 "
- R i " —~
U6 = T + [ o / (a6 7) + glu)(6, 7)) d.

One shows that the mapping A defined by the right-hand side of the lagt formula is
a contraction in C(0,T’; Bg) for T and § chosen appropriately, where Bg is the ball
of radius B about 0 in Lg/(,_1). For this step, we use the fact that g is a polynomial

so g(u) is a finite sum of the form ,

N
Zakﬁ*ﬁ*---ﬁ
k=2

where the kt* term features a k-fold convolution of @ with itself. One thus infers ex-
istence of a solution of the above integral equation whose Fourier transform satisfies
(2.3) and lies in C(0,T; L,).

Another point worth mention is the igloothixlg associated with a temporal deriva-
tive. Indeed, since i = o (@ + g(w)), uy is smoother than u + g(u) if o grows
super-linearly at infinity, For simplicity, let the nonlinear function g be homoge-
neous, say g(z) = zP. For the dispersion «, suppose there is a positive number
s>1+ ”;—1 such that

- a(f)
e e

Then, for any ¢ in the range [0,s — 1 — %1),

> 0.

2 2\ & =
L+ )P, t)lq/(q—x) - Izél(lﬂ:j&;a (a6 + @) ‘q/@—l)

< 8Cs )gsg-1) + 221 )lg/(a—p)
< W8 Olastay + BB gy
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where the numbers 7; and vy, are determined to be

(R DL =/(|£I(1+§2)%)”—3_1d§.

L= 1+ a(d)

cer 1+ 0a()
Thus, u; € C(0,T; W) where W4 = {u € Ly : (1+£2)5% € L,}. In particular,
for the original BBM-equation where s = 2 and p = 2, if the initial data up € Lo,
then the solution u € C(0,00; L) as proved by Bona and Tzvetkov 2001. The
above ruminations and a bootstrap argument imply that the time derivative u; lies
in C(0,00; H') and so is spatially smoother than u.

THEOREM 2.4. (Regularity 2) Let u € C(0,T; Lg) be the solution whose ezistence
is guaranteed in Theorem 2.1. Suppose in addition that uo € CFand g € gk+t
for some k > 0 and g**1) is bounded by a polynomial of degree p — k. Then
u € C(0,T; Cf NW§).

Proof. Tt is sufficient to prove that the sequence {87un /027 }n>, for j =0,1,--+ ,k
is Cauchy in C(0,To;Cy N Ly) for To > 0 sufficiently small, where {us},>1 is the
iterated sequence defined in (2.10). A straightforward analysis based on Gronwall’s
inequality allows one to extend the result to any time interval [0, T] for which the
solution u of (2.3) is known to lie in C(0,T'; Lg).

Since ug € CF and k > 0, define functions u; = u;(z,t) in C(0, 00; Cy) as follows:

t

up = ug +/K * (uo + g(uo))(~,7) dr,
0

and inductively, for n =1,2---,

t

Unt1 = Up +/K * (un + g(un))(~,7’) dr. (2.13)
0

Naturally,

Unt1 (-5 1) = un(t)
t 1
=/K * (/ (1+ g'(un—1 + s(un — Un—1)) (-, 7) ds(un — un_l)) dr
0 0

and, as in Sublemma 2.2, it follows that

s 8) = n 8
t
S/C’o(|K[1 + 1Klg/(q-p+1) srél[g?f]“”ﬂ—l + s(un — un—l)lf;‘l})
0

|un(,7) = Uno1(,7)|, d7

Since {un}n>1 is Cauchy in C(0,T; L), it follows that for any ¢ € [0,T] and s €
(0,1],
limsup [un—1 + 8(un — Un—1)( t)|g < [ul-1)g-
n—oo
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In consequence, the sequence {un}n>1 C C(0,T;C}) is Cauchy. To prove that the
limit is the solution u of (2.3), let w = lim,_,o0 un and consider the limit asn — oo
n (2.13). There obtains the relation

w(,t) =ug + /K * (w+ g(w))(-, 7) dr,
0

whence,

|w(-,t) - u(',t)loo

oo

= |/K* (w—u+ g(w) ‘9(“))("T)dT|
0
t

E 00/ (1Kl + 1K lo/q-prny (la + fulg) "™ w(:, 7) = w(:, oo dr-
0

It then follows from Gronwall’s inequality that w = u € C(0,T; Cy N Lg).
Next consider the sequence {Oun/8z}n>1. It is obvious that, for any ¢ > 0,

¢

Ou .

_6:: =uf + /K X ((1 + g'(ug))ug) dr
0

and the right-hand side of the last equation is in C(0, 00; Cp N L,) because

t

Bua (-, ¢ )

| u:a(x )lms |”6|oo+00/(|K|1+|K|q/(q—p+1)|wlf,’ ") fufloo dr
0

and
¢

Ouy (.t B
l . )\ o | 0| +C°/ (|K|1 + |K|q/(q—p+1)|u0|g 1)|u6|q dr.
0
Induction on n yields that

]
0
Igtmﬂ =”3+/K ((1+9(Un)) )( 7)dr € C(0,00;CoNLy)  (2.14)
0
because
t

‘W_vif_)‘ < |ub|., +Co/(|K|1+|K|q/(q pinyun21( ))}"“"( T)|°°df
0

and
i

Mgy (4 1) _
|2t CD) < fug, + Co [ (1K + K lasmprrtunly™ (7)) [F 55

0

Ou,, T) ‘ dr.
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Therefore, for ¢ restricted to the interval [0, Tp], where
1
200(|K|1 % ]K|q/(q——p+1)|u|’£}_((}‘T;Lq))

To = min {T,

1

the sequence {Qun+1/0z}n>1 is bounded in C(0,To;Cy N L), and in fact for ¢t €
[01 TO],

aun-l-l ('7 t) I 8’LLn+1 t) !
B e < 3
|| <oluplee amd | FEEEE| < olugl
Furthermore, for any n > 0
8un+1(-,t) _ aun('7t)
ok (ol
Oun o 8un ou
/K* un)—_g(nl) un1 t o an 1)( T)dr
t

= [ 5+ ([0 un) = ' un)]) B2 + (14 g unm) [ 2 = Z=t]) oy

0

Notice that
A;
¢ (tm) = g (1) = / 0" (tiner + 5(tn = n_1)) ds(tn — tn_1),
0

and g¢" is bounded by a polynomial of degree p — 2, then there is a positive number
C such that |g”(z)| < C(1 + |z|P~2). Thus applying Sublemma 2.2 yields

|K * (g’(un) - gl(un—l))! < CIK|* /(1 + un—1 + s(un — un—1)|p_2) ds|“n — Un-1},

S0,

IK * (g,(un('y t)) - gl(un—l('at))[oo

C(,Kll + |K|q/(q—p+2) / |un—1 + s(un - un—l)lg—z dslun('a t) - un—l(': t)|oo
0

and

Ko (14 g (un)) (G — 2=t 1)

11 0un(t)  Oun—1(:t
<Col(Kls + Klostaoprplin-a( )| 2nlet) _ Bncilsd)

Oz Oz loo'

Hence, there is a number C’ dependent only on the solution u such that

dr.

6un+1(-,t) aun /‘aun( ,T) Bun_l(-,r)\
oz oo 63: o]
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In a same fashion, it follows that

dr.

Gupi (s t) aun( t) <C//‘8“n( y7)  Bupa(7)
dx dx q

Thus, for T; > 0 chosen sufficiently small, {a—"'t}n>1 is Cauchy in C(0,T1; Cy N Ly).
To prove that the limit of this sequence as n — oo is equal to u, for ¢ restricted to
[0,T1], denote by w; = limy, 00 aa and let n — oo in (2.14) to obtain

wy = uh + /K * ((1 + g’(u))wl) dr.
0

On the other hand, taking the derivative with respect to z in (2.3) leads to

¢
Uy = up + /K * ((1 + g’(u))uz) dr, (2.15)
0

Forming the difference and estimating yields

w1 (+8) = (- D)oo < Col Kl /(1 [l o)l (1) = us oo dr.
0

Gronwall’s inequality then implies 4, = w;, which is to say, the solution u of (2.3)
lies in C(0,Ty; Cf N W}). Furthermore, (2.15) implies that

]

|uzloo < lugloo + Co /(IKll + K lg/q-prnylul TIE (', 7)loo dT
0

and
t

lum|q < l“é)lq + Co /('Kll + [Klq/(q—p+1)|u('aT)'g_l)lux('aT)lq dr.
0

Gronwall’s inequality shows that the time interval over which the solution u can be
extended is in fact the interval [0, T'] on which u(:, t) is known to lie in L4, which is to
say, u € C(0,T;C} ﬂWl) By induction, it can be shown that v € C(0,T}; C”“ﬂW")

THEOREM 2.5. In Theorem 2.1, suppose the relationship between r, the indez
appearing in (H2), and p, which governs the growth of the nonlinearity g in (Hi)

are further restricted by the relation
p+1
> — .

"=

Then the integral equation (2.8) is locally well posed in Ly N Lpi1, so, if the initial
data ug € La N Lyy1, then there is a T > 0 such that (2.3) has an unique solution
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u lying in C(0,T; Lo N Lpt1), and the mapping uo — u s Lipschitz from the space
LyN Lyyp to C(0,T; Ly N Lpyy). Moreover, its Lo-norm is bounded by

t
()P < ol +2 / SOy, )t dr,
0

where C = 2Co| K]y

Proof. The existence of the unique solution u € C(0,T;Lp+1) of (2.3) for some
T > 0 is a direct result of Theorem 2.1. Again, it is known that the sequence
{tn}n>1 defined in (2.10) lies in C(0, T} L,+1) and converges to u. We know further
that

lur (2 2)]| < lluoll + / K * (uo + g(uo)) dr

t

< ||uol] + Co/ (lK|1||u0H + [K|(2p+2)/(p+3)|U0[5+1) dr,
0

s0, u; € Ly N Lpyq. Inductively, for n > 1,

t
ltms (D] < lloll + / K % n(y7) + K % glun(, 7)) dr
0

t

< luoll + Co / (1K |1 [lun G, TN + K |22y o3 [n (5 ) [p1 ) AT
0

which means {un(,t)}n>1 C L2 N Lpy1 at least for ¢ € [0,T]. Moreover, for any
n >0,

t

s (8) = nCe Ol = || [ B+ (i = ncs + ) = gm0

0

since u,, converges to u € C(0,T; Lpt+1) as n — oo, for sufficiently large value of n,
lunllco,riL,p41) < 2||lullc(o,7;L,4,) and therefore, by Sublemma 2.2,

l|un+1(‘7t) - uﬂ('v t)“

<Co / (151 + 22 K ey a 10l 7,0,y Iin o 7) = mma (o1l
0

Thus, for To > 0 chosen small, the sequence is Cauchy in C(0, To; L»), whence,

u € C(O,To;L2 an+1).
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Moreover, the solution u is continuously dependent on the initial data wp. The
regularity result of Theorem 2.3 allows us to formally multiply the equation (2.2)
by 2u and integrate over R to reach the relations

00
SlulP = [ 2uk « (u + 9(w) do < 2G0 Kol + 2Col Ko fulf 1.
“oo
Gronwall’s inequality gives
t
llu(, I < e luol|? + 2/60“”)[“(-,7) ph d
0

for any t € [0,Tp]. The continuous dependence result allows us to conclude this
relation holds for rough data. It is thereby implied that the time interval [0, To]
where |u(-,t)|(p41)/2 stays finite can be extended to [0, T']. The theorem is complete.

a

LEMMA 2.6. Let u € C(0,T; Ly N Lpy1) be a solution of (2.3). The functional
o0
/ (F(u) + %uz) dz
—o0
is invariant with respect to the time variable t, where F is the anti-derivative F(z) =
foz g(2)dz of g.
Proof. For smooth solutions, the following calculation is decisive:

% / (F(u(z,t) + %uz(:c,t)) dx

—o0

e /(g(u) + w)ug dz

o

=— [ 6w + 0T+ D)0 (o) + ) da.

—o0

As (I + L)~'8; is skew-adjoint, the right-hand side is obviously zero. For solutions
in the advertised class, the result follows from the regularity theory, the continuous
dependence of solutions on the initial data and density of, say, D(R) in Ly N Lpy;.

u

COROLLARY 2.7. In Lemma 2.6, if there is a positive number v such that the
function F satisfies 2F (z) + 2% > y(x? + |z[P*!) for any z € R, then it follows that,
for all t > O for which the solution u of (2.8) exists,

[+ <t [ @rw ).
J, 1),
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In consequence of this a priori deduced estimate, it follows that the local ezistence
result can be iterated to produce a solution u of (2.8) which lies in C(0, 00; LaNLpy1).

The next result is a special case of Theorem 2.1 and Corollary 2.7.
COROLLARY 2.8. Let p > 1 be any integer. The generalized BBM-equation

up +ug +uP lug —Ug =0, TER, >0,

is locally well-posed in L, for any q > p. That is, if the initial data u(-,0) = ug € Ly,
then there exists a positive number T = T(|uolq) such that the above equation has
an unique solution u € C(0,T; Ly) which is continuously dependent on ug. If p >3
is an odd integer and the initial data uo € Ly N Lpy1, then the solution u lies in
Cy(0,00; Ly N Lpt1) and so is globally defined.

REMARK. Unfortunately, except p = 2, we don’t have a global result in Lo N Lp41
for p an even integer greater than 1.

3 BORE-LIKE INITIAL DATA

The theory developed in Section 2 has concentrated on initial profiles that decay to
zero at +oo, at least in a weak sense. Attention is turned now to initial data that
possesses different asymptotic states at +0o0 and —oo. In the water wave context,
this corresponds to bore propagation in field situations (see Peregrine 1964, 1967)
and hydraulic surges in laboratory configurations. In other physical systems, such
data is generated when a signal corresponding to a surge moves into an undisturbed
stretch of the medium of propagation. Theoretical work on the bore problem in the
context of the BBM-equation was initiated by Bona and Bryant (1973) (see also the
paper of Bona, Rajopadhye and Schonbek 1994, where further theory was developed
for both BBM and the Korteweg-de Vries equations).

In the present contribution, the assumptions on the initial data is weakened and
the theory extended to the broader class of models featured in (1.2).

The mathematical problem amounts to being confronted with the prospect of
solutions u = u(w, t) satisfying the boundary conditions

lim wu(z,t) =1, lim u(z,t) =0, (3.1)
Z—>—00 T—00

where [ > 0 is a constant. The question is, if the initial disturbance is bore-shaped,
will the wave evolve in a bore-like pattern? If so, how long will this pattern last?
Bona, Rajopadhye and Schonbek (1994) showed that the BBM-equation with bore-
like initial data as in (3.1) is globally well posed and that the solution maintains
the boundary behavior (3.1) for all time. In this section, the generalized BBM-type
model equations (1.2) will be discussed in the bore context.

Consider the initial-value problem

+ugz +9g(u)z + Lug =0,

Ut z g( )z t (32)
u(z,0) = uo(z),

where the operator L and nonlinear function g are as described in Section 2 and

the initial data wug satisfies the bore condition (3.1). Following the technique used

by Bona, Rajopadhye and Schonbek (1994), uo can be decomposed into the sum of
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two parts vo and ¢, say, where ¢ € C°(R) satisfies the bore condition (3.1) and its
derivative ¢' lies in H*°, and vg is a measurable function on R whose smoothness
is determined by the smoothness of ug.

Introduce a new variable v = v(z,t) by u(z,t) = v(z,t) + ¢#(z). Upon substitution
of this form into (3.2), there follows the initial-value problem

(I + Ly + vz + (9(v + 0) — 9(9)), = - (1 +9’(¢))¢'}

v(z,0) = vo (33)

for v. Inverting the operator I + L and then integrating with respect to t over [0, ],
there appears the integral equation

t
o=t + / K+ {v+g(v+6) - 9(@)}(27)dr ”
0

+tMx (1+4'(4))¢

where the integral kernels K and M are determined via their Fourier symbols, viz.

R(€) = ~i€/(1+a()) and M(€) = -1/(1 + a(f)),

respectively. The following result is the analog in the bore context of Theorem 2.1.

THEOREM 3.1. Suppose the nonlinear function g and the integral kernel K satisfy
hypotheses (H1) and (H2), respectively. Moreover, suppose that

. (3
f > -1 d liminf —= > 0.
ge©> -1 BT

(This is true for most cases encountered in practice). For any q such that
pr—r
@z

if vp € Lg, then there is a positive number T = T(|¢|co, |¢'lg) > O such that the
integral equation (3.4) has an unique solution v € C(0,T; Ly) and, moreover, the
mapping vo — v is continuous from Ly to C(0,T; L,).

Proof. For any v € C(0, 00; L), modify the definition of the operator A in Section
2 as follows:
¢
Av =y +tM * ((1 + g'(¢))¢') +/K * {v +g{v+¢) - g(¢)} dr. (3.5)

0

It is sufficient to prove that 4 has a fixed point in C(0,T'; L,) for some T > 0. Note
as before that for any v € L,

1

U+9(U+¢)—g(¢)=/(1+g'(¢+sv)) dswv.

0
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In consequenee, it follows that

K+ (v+ 90+ 9) = 9(8))lg < Col K1« (1 + (161 + 1o)"™ ) ol ),

=1y ; *
sco|K|1|v|q+coZ( . )|¢|&|K|q/<q+1_p+j)|v|s ]
i=o

Hence, it is seen that
Kx(v+g(v+9) - 9(¢)) € L.

Since ¢ € C¢°, ¢' € H®, gisa C'-function and the operator M is defined by its
Fourier symbol m where a has the decay property just described, it follows
that

M ((1+4(@)9) € H C L,

because
7 2
Jaxe)r (o (@+d@ne)) @) d

—0o0
o0

1+¢2

= [ SEislra @)@ <o

So, A maps C(0,00;L,) to itself. Let Bg be, as before, the closed ball of radius
B > 0 centered at the origin in L,. For any v,w € C(0, 00; L),

t
Av(, 1) — Aw(-,t) = /K v —w+ g(v+d) - glw+§)},7) dr,
0
hence, if v,w € C(0,00; Bg), then applying Sublemma 2.2 yields
¢
[Av(-,t) — Aw(-,t)|g < C/ (14 (I$loo + B M) 7) —w(,)lgdr  (3.6)
0

where the constant C' may be taken to be
C=0Co, max {[Kly-»}
Following the line of argument laid down in the proof of Theorem 2.1, choose
8 =2uol, +2|M = (1+0'(@)¢')|,

and

T =min {1,1/(2C(|¢|e + B)" ") }.

The operator A is then contractive on C(0,T; Bg) and the stated results follow
directly. -
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THEOREM 3.2. (Regularity 3) Let v € C(0,T;L,) be the solution in Theorem
8.1. In addition, suppose for some k > 1, the nonlinear function g € C* and g% 4s
bounded by a polynomial of degree less than or equal top—k. Then for j=1,--- ,k,

Ay
'5‘7 € C(O,T;Lq).
Proof. Define a sequence {vn}n>1 iteratively by
U = Af
, ] (3.7
=wo +tM « ((1+4'(9))¢')
where 4 is, as before, the zero-function and for n > 1,
Untl = Av,
= +tM * ((1+9'(¢))4)
(3.8)

+ [ Kot font gloa +8) = 9@}, o
Q

The solution v in Theorem 3.1 can be obtained as the limit of the sequence {vp}n>1,
so in particular, the sequence is Cauchy in C(0,T; Lq). By the Fundamental Theo-
rem of Calculus,

Buy /8t = M x ((L+¢'(9))#)

Bup41/0t = M+ ((1+9'())4') + K * {vn + g(vn + ¢) — 9(8)}.
It is straightforward to see that {Ov,/8t}n>1 C C(0,T; Lg). As before, for n > 1,

OUnt1/0t — Ovg JOL = K % (vn —Up—1 +9(d+un) —g(o+ Un_l)),
and thus, the Sublemma implies again that for sufficiently large values of n,
[Ovunt1(-,t)/0t — Bun(-,1) /8t
<G (1+ [18loo + 2olloworiza]”™" ) valt) = vams (- 1)lg

where C; = Co maxg<;j<p—1{|K|q/(4—j }- Since the sequence {vy}n>1 is Cauchy in
C(0,T; L,), so is {0v,/0t},>1. Denote its limit as n — oo by wy. The function w,
satisfies the equation

wy =M+ ((1+g'(0)4') + K x{v+gv+¢) —g(¢)},

and by a uniqueness argument as expounded previously, w1 = v;. By induction on
4, it follows that for any j with 1 < j < k, {#?vn/0t }n>1 is Cauchy in C(0,T; Ly)
and the limit as n — oo is equal to 87v/8t. "

The following further regularity result is the analog of Theorem 2.4. As the proof
is entirely similar, it is omitted.
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THEOREM 3.3. (Regularity 4) Let v € C(0,T; L) be the solution of (3.2) ob-
tained in Theorem 3.1. Suppose in addition that for some k > 1, vy € C’f—l and
g € C* and its k' derivative g*) is bounded by a polynomial of degree less than or
equal to p — k. Then v e C(0,T;CF ' nWE1).

PROPOSITION 3.4. In the above Theorem, if p=2n —1 > 1 is an odd number
and there are two positive numbers v; and v2 such that the nonlinear function
g(2) > (11 — 1)z + 2ny22%"7 1 for all z > 0, then the equation (8.4) is well-posed in
Ly N Ly, globally in time, in the sense that for any initial data vy € Ly N Loy, and
T > 0, the solution v lies in C(0,T; Ly N Lay,).

Proof. Theorem 3.1 guarantees that there is 7' > 0 such that (3.4) has a unique
solution v € C(0,T; Lay,). As in the proof of Theorem 2.4, it can be shown that v
also lies in C(0,T; L»). It is sufficient to show that the solution can be extended to
times that are arbitrarily large.

Define a function F on R by F(z) = foz g(z) dz. Because of hypothesis (H2) and
the restriction on g, it is easily deduced that F(z) > (v — 1)2% + 722" for some
positive constants v; and 2. Define a functional I by

I(v)=7

If v is a solution of (3.4), then formally

(%v2 + F(v)) dz.

%I(v) = / (v+ g(v))ur dz

-0
oo

/ (v + g@)[K * (0 + 9(v)) + M (1 + ¢'(6))'] da

—0o0

[+ gon (a5 (1+@)4) de

< CollM * (1 + g'(9))¢'llllvll + Col M * (1 + g'(6))¢'lp+11v]f11
< Cu(lwll® + [vl3,) + Co

< FI(v) + Cq,

where C; and Cs are constants dependent only on the quantities |¢|o and [|¢||1
and 7 = C1/min{371,7%}. As before, this formal calculation is justified by the
regularity theory combined with the continuous dependence result. A Gronwall-
type inequality shows that for any ¢ > 0,

I(w(-,1)) < I(ug)e™" + %(emt -1).
1

This means that on any time interval [0, 7], the Ly- and Ly,- norm of the solution
v is finite. The standard extension argument then completes the proof. =
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COROLLARY 3.5. For the generalized BBM-equation

2n—2

Ut +ug +u Uy — Uzt = 0,

where n > 2, if the initial data uo = vo + ¢ where ¢ is an infinitely smooth bore and
vo € LaNLa,, then there is a unique solution u = v+ ¢ where v € C(0,00; LaNLay,)
which depends continuously on vo.
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