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Abstract

Attention is given to the question of well-posedness in Hadamard’s classical sense
for nonlinear evolution equations of the form

(;—IZ + Lu = N(u), u(0) = ¢. (0.1)
In view are various classes of nonlinear wave equations, nonlinear Schrodinger equations
and the (generalized) KAV equations. Equations of type (0.1) are often well posed in a
scale X, say, of Banach spaces, at least for s large enough. Here, increasing values of
s correspond to more regularity; thus X, C X, if r > s. For smaller values of s, some
equations of the form in (0.1) are well-posed in a conditional sense that the uniqueness
aspect depends upon the imposition of auxiliary conditions. In the latter context, it
is natural to inquire whether or not the auxiliary conditions are essential to securing
uniqueness.

It is shown here that for a conditionally well-posed Cauchy problem (0.1), the
auxiliary specification is removable if a certain persistence of regularity holds. As a
consequence, it will transpire that a conditionally well posed problem (0.1) is (uncon-
ditionally) well posed if the aforementioned persistence property holds.

These results are applied to study several recent conditional well-posedness results
for the KdV equation, nonlinear Schréodinger equations and nonlinear wave equations.
Tt is demonstrated that the auxiliary conditions used to secure the uniqueness are all
removable and the corresponding Cauchy problems are, in fact, unconditionally well-
posed as long as their classical solutions exist globally. In addition, the well-posedness
for an initial-boundary-value problem for the KdV equation posed in a quarter plane is
also considered. An affirmative answer is provided for a uniqueness question left open
in a recent paper of Colliander and Kenig [14].
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1 Introduction

This paper is concerned with well-posedness of the Cauchy problem for several classes of
nonlinear partial differential equations which include the Korteweg-de Vries equation, non-
linear Schrodinger equations and nonlinear wave equations. The Cauchy problem for these
equations may be written in the abstract form

d

ZHLlu=N@), u0)=4¢, (1.1)
where L is a linear operator, N is a possibly time-dependent nonlinear operator and the
initial datum ¢ belongs to a Banach space X, with index s € R. The scale of Banach spaces
X, has the property

.X32 C Xsl if sl S 82,

where the notation X,, C X,, means not only that X, is a subset of X, but also that
the inclusion mapping is continuous and has dense range. The following definition of well-
posedness in Hadamard’s sense is standard.

Definition 1.1 The Cauchy problem (1.1) is said to be well-posed in the space X, if for any
r > 0 there is a T = T(r) > 0 such that

(a) for any ¢ € X, with |¢|lx, < 7, (1.1) admits a unigue solution u in the space
C([0,T; X,), and

(b) the solution u depends continuously on its initial data ¢ in the sense that the mapping
¢ — u is continuous from {¢: ||¢||x, <7} to C([0,T]; Xs).

The well-posedness described by Definition 1.1 is local in character since the T' in the defi-
nition depends on r. If T can be specified independently of r in Definition 1.1, then (1.1) is
said to be globally well-posed in the space X;.

The nonlinear evolution equations to be considered in this paper are often known to
be well-posed in the space X, in the strict sense of Definition 1.1 when s is sufficiently
large. When s is not so large, it may arise that some auxiliary condition is needed to secure
uniqueness. The Cauchy problem (1.1) in this case may be well-posed in the following weaker
sense.

Definition 1.2 The Cauchy problem (1.1) is said to be well-posed in the space X if for any
r >0 there is a T = T(r) > 0 such that

(a) for any ¢ € X, with ||¢||x, < 7, (1.1) admits ezactly one solution u in the space
C(|0,T); X;) satisfying the auziliary condition

ue YT (1.2)

where YT is an auziliary metric space;



(b) the solution u depends continuously on its initial data ¢ just as in (b) of Definition
1.1.

Because of the auxiliary condition (1.2), the well-posedness of (1.1) in the sense of Definition
1.2 is here termed conditional well-posedness following Kato’s lead [18]. When contrast is
helpful, the well-posedness of (1.1) in the sense of Definition 1.1 will be called unconditional
well-posedness.

It is worth reviewing Kato’s point of view concerning this matter. This is most transpar-
ently done in a concrete setting. In the example to follow, we will need recourse to Lo(R™),
the usual Hilbert space of measurable functions defined on R™ whose square is Lebesgue
integrable there. We also need the Ly-based Sobolev classes HI(R™), j =1,2,---, which is
the subset of Ly(R™) consisting of those functions all of whose distributional derivatives up
to order j also lie in Ly(R™). Consider the Cauchy problem

u; = i(Au — F(u)), t>0, z € R™,
{ 0

u(z,0) = ¢(z), z € R™

for a nonlinear Schrédinger equation in dimension m > 1. Kato used this example in [18] to
illustrate the difference between conditional and unconditional well-posedness. To be precise,
assume the potential function F in {1.3) to be a C'—mapping of the complex plane C' to
itself which vanishes at the origin and is such that for some &k > 1,

DFE) =0(¢[*)  aslél— oo, (14)
where DF is the differential of F' viewed as a self-mapping of R2. Then the following two
theorems about (1.3) hold.

Theorem A In (1.4), assume that k < 1+ 4(m — 2) (no assumption on k if m = 1). Let
r > 0 be given. There exists a T =T(r) > 0 such that
(i) for any ¢ € H* = H'(R™) with ||¢||m <7, (1.8) admits a unique solution
u € C([0,T); HY), and

(1) the solution u has the additional properties

1 2 1
Oyu € Ly(10,T); Ly(R™)  for ~4+ =1, 11~

1
—. 1.5
g mA 2 m <2 (15)

| =

Theorem B Suppose in hypothesis (1.4) that k < 1+ 4/m. Given v > 0, there exists a
T = T(r) > 0 such that for any ¢ € Ly = Lo(R™) with ||¢||, < r, (1.8) admits one and
only one solution u with the properties



(i) u € C([0,T); Lo(R™)) and

(ii) w € Lr([0,T]; Lg(R™)) for ; + 5 =1, 3— <3 <

Q=
N[

L
m

Remark In both Theorem A and Theorem B, the solution u depends continuously on its
initial value ¢ in the corresponding spaces.

As pointed out by Kato, “in Theorem A, part (i) constitutes a self-contained theorem
by itself. Part (ii) is simply a ‘bonus’, which may or may not appear in the theorem.
For this reason, we may say that (ii) is a removable auziliary condition, and that (1.3) is
unconditionally well-posed in H'. In most such cases, auxiliary conditions (spaces) originate
as tools for constructing the solution. Whether or not to retain such removable spaces in the
theorem is largely a matter of taste. In Theorem B, the L,.([0,T]; L,) are auxiliary spaces.
Unlike in Theorem A, part (ii) is an essential part of the theorem; without such a condition
for at least a pair of (r,q), uniqueness might not hold or even make sense. In this case we
say that (1.3) is conditionally well-posed in L, with the auxiliary space L,([0,T]; Lg).” The
following remarks are also quoted from Kato [18].

Remarks

(i) Practically, conditional well-posedness is not a definitive notion; it may turn out that
an auziliary condition, so far supposed to be necessary, is in fact removable.

(i) In a conditionally well-posed case, it is possible that there is another solution with a
different auziliary space. If two auxziliary conditions lead to the same solution u, we
say that they are consistent.

These remarks of Kato lead one to ponder the following questions after having demon-
strated that a particular Cauchy problem (1.1) is conditionally well-posed.

Questions:

(1) If there are two or more different auziliary conditions (1.2), are they consistent?

(2) Is the auziliary condition (1.2) removable?

It seems important to assure that all auxiliary conditions are consistent for a conditionally
well-posed Cauchy problem (1.1). Otherwise, after proving that (1.1) is conditionally well-
posed, one is still left wondering if there are other, inconsistent auxiliary conditions. It
would often be more than a little inconvenient if such inconsistent auxiliary conditions exist,
for then the uniqueness of solutions in the space C([0,T]; X;) would be broken. For many
conditionally well-posed Cauchy problems (1.1) currently under study, it seems unlikely that



there are two inconsistent auxiliary conditions. However, it would be satisfactory if one had
theory delineating when such an event might occur.

Naturally, it would be very helpful to have a sufficient condition to guarantee the consis-
tency of any pair of auxiliary conditions for a conditionally well-posed Cauchy problem (1.1).
Such a sufficient condition will be provided in this paper. It will be shown that any two
auxiliary conditions for a conditionally well-posed Cauchy problem are consistent if both of
them possess the property of persistence of regularity (see Section 2 for a precise definition).
This sufficient condition turns out to be very general and is satisfied by many conditionally
well-posed Cauchy problems (1.1) studied in the recent literature.

The direct way to address point (2) is to establish uniqueness in C([0,T]; X;) or in a
weaker space. Indeed, this is the approach used by Kato in [18] for a class of nonlinear
Schrodinger equation and by Zhou [39] for a class of nonlinear wave equations. However,
for many conditionally well-posed Cauchy problems studied in the recent literature, it seems
difficult to establish uniqueness directly in the space C([0,T]; X,).

In this paper, we adopt an indirect approach to address Question 2. A concept of mild
solution borrowed from semigroup theory will be introduced. A sequence of steps making
use of mild solutions leads to the conclusion that a conditionally well-posed Cauchy prob-
lem having persistence of regularity is unconditionally well-posed, which is to say that the
auxiliary condition is removable.

The paper is organized as follows. Section 2, concerned with the abstract Cauchy problem
(1.1), develops the general theory just described. The remainder of the paper shows the
efficacy of the general theory in concrete contexts. Section 3 is devoted to the Korteweg-
de Vries equation. After a brief précis of the existing conditional and unconditional well-
posedness results, the theory developed in Section 2 is brought to bear. It is concluded
that the conditionally well-posed problems in the literature are in fact unconditionally well-
posed. Section 4 deals in a similar vein with Schrodinger-type equations, whilst Section
5 countenances classes of nonlinear wave equations. In Section 6, we broaden the range
of concrete problems by considering an initial-boundary-value problem for the Korteweg-
de Vries equation. Our theory is applicable even in this considerably more complicated
situation. The paper concludes with a brief retrospective.

2 Abstract evolution equations

In this section, consideration is given to the abstract Cauchy problem (1.1) described in
Section 1. Throughout this section, it is assumed that

(i) s, and s, are two real numbers with s; < s, and the Banach space X, is densely and
continuously embedded into the Banach space X, ;

(ii) the Cauchy problem (1.1) is unconditionally well-posed in the space X,;
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(iii) the Cauchy problem (1.1) is conditionally well-posed in the space X;, with auxiliary
i
spaces ;. .

We first address the issue of consistency of auxiliary conditions. For this, it is useful to have
the following concept, mentioned already, of persistence of regularity for (1.1).

Definition 2.1 (persistence of regularity) The Cauchy problem (1.1), conditionally well-
posed in the space X, with the auziliary space yg;, is said to have the property of persistence
of regularity if any solution u € C([0,T); Xs,) of (1.1) with initial data u(0) = ¢ € X, also
belongs to the space C([0,T); Xs,) if in fact ¢ € X, .

Remark: The thrust of this condition is not only that the solution u lies in C([0,T*]; X,,)
for some T* > 0, but also that T* = T. There is no reason in general why the exristence time
T* in X,, should be as large as the existence time T for X, , for ezample.

Theorem 2.2 (consistency of auxiliary conditions) Suppose (1.1) is conditionally well-
posed in the space X, with two different aumiliary spaces y}; and VVST1 If both of these
conditionally well-posed problems have the property of persistence of reqularity, then the two
auziliary conditions are consistent.

Proof: For given ¢ € X, , let T = T(||¢||x, ) be the minimum of the existence intervals
T, and T; associated with YT and WY and let u and v be the solutions of (1.1) associated
with the auxiliary spaces YT and WY, respectively. We claim that u = v in the space
C([0,T]; X,,). Toward establishing this, let {¢,} be a sequence in X, which converges to ¢
in the space Xj,. Let u, be the solution of (1.1) with u,(0) = ¢, associated with the auxiliary
space YT and v, be the solution of (1.1) with v,(0) = ¢, associated with the auxiliary space
WY for n = 1,2,---. (Without loss of generality, we may take it that (¢nlix,, < [¢lx.,
for all n so that each u, and v, exist on the time interval [0,7]. ) Then u, converges to u
and v, converges to v in the space C([0,T]; Xs,) because of continuous dependence. As a
consequence of persistence of regularity, both u, and v, belong to the space C([0,T7; X,,)
and solve (1.1) with the same initial value ¢,. Since (1.1) is unconditionally well-posed in
the space Xj,, it follows that forn =1,2,---,

un = v, in the space C([0,T]; Xs,),

which implies that
u = v in the space C([0,T}; X5, ).
The proof is complete. O

Next, attention is turned to understanding when the auxiliary condition (1.2) is remov-
able. The following definition of mild solution for (1.1) in the space C([0,T; Xy, ) is borrowed
from semigroup theory (see, for example, [31]).
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Definition 2.3 (mild solution) For given ¢ € X,,, a function v € C([0,T]; X,) is said
to be a mild solution of (1.1) if there ezists a sequence {¢n} in the space X, such that ¢y
converges to ¢ as n — oo in the space X,, and the solutions u, of (1.1) with initial value ¢y
lie in C([0,T); X,,) and converge to u in the space C([0,T}; X,,).

The proposition below provides a sufficient condition to ensure the uniqueness of mild
solutions of (1.1) in the space C([0,T]; X,,)-

Proposition 2.4 (uniqueness of mild solutions) Let {¢,} be a sequence in X,, and
suppose that T > 0 is such that the corresponding solution sequence {un} of (1.1) lies in
the space C([0,T); Xs,). In this circumstance, if {¢,} being a Cauchy sequence in X, 1m-
plies that {u,} is a Cauchy sequence in C([0,T); Xs,), then for any ¢ € X,,, (1.1) admits
at most one mild solution in the space C([0,T); X, ).

Proof: Suppose that (1.1) admits two mild solutions u and v in the space C([0,T1]; X,,) for

a given initial value ¢ € X,,. Let {u,} and {v,} be two sequences in C([0,T]; X,,)) such
that both u, and v, solve the equation in (1.1) forn =1,2,---, with

Uy — U, Up —> U, as n — 00,
in the space C([0,T]; X;,). For m =1,2,---, define

up(0)  if m = 2n,

VY, =
vm(0)  fm=2n-1

for some integer n, and
Up if m = 2n,
Wy, =
Up, ifm=2n-1

for some integer n. Then w,, € C([0,T]; X;,) solves (1.1) with the initial value ¢, € X,.
But {¢,,} is a Cauchy sequence in X, since both {u,(0)} and {v,(0)} converge to ¢ in the
space X,,. Then, by the assumption of the proposition, {w,} is a Cauchy sequence in the
space C([0,T]; X,,), and consequently, the two limit points  and v of the sequence {wy} in
the space C([0, T]; X;,) must coincide; that is v = v. The proof is complete. O

The next proposition connects solutions u of (1.1) given by conditional well-posedness in
the space X, to mild solutions.

Proposition 2.5 Suppose that the conditionally well-posed Cauchy problem (1.1) with auz-
iliary space yg; has the property of persistence of reqularity. Then all its X, —solutions are
mald solutions.



Proof: For a given ¢ € X,,, let T = T(||¢||x,,) > 0 and let u € C([0,T]; X;,) be the
corresponding solution of (1.1) satisfying the auxiliary condition

uey;f.

Since X,, is densely and continuously embedded into X, there is a sequence {¢,} in X,
such that ¢, converges to ¢ in X,,. For each n, let u, € C(]0,T]; X,,) be the solution of
(1.1) satisfying the auxiliary condition (1.2) with the initial value ¢,. (Again, without loss
of generality, it has been supposed that ||¢nllx,, < [|¢llx,, so that the existence time for
each u, is at least T'.) Because of continuous dependence, u, converges to u in the space
C([0,T]; X,,). On the other hand, the sequence {u,} also belongs to the space C([0, TT; X,)
because of persistence of regularity. The solution u is therefore a mild solution by Definition
2.3. The proof is complete. O

These simple considerations lead to the following two interesting conclusions.

Theorem 2.6 (removable auxiliary condition) The auziliary condition (1.2) is remov-
able if the corresponding conditionally well-posed Cauchy problem (1.1) has the property of
persistence of reqularity.

Proof: If the corresponding conditionally well-posed Cauchy problem (1.1) has the property
of persistence of regularity, then, by Proposition 2.5, its solutions are mild solutions whose
uniqueness is guaranteed by Proposition 2.4 because of continuous dependence. The auxiliary
condition (1.2) is therefore removable.O

Remark 2.7 If, in addition, assume that T(||¢]|x,,) > T(l|¢llx,,) for any ¢ € X,,, then auz-
iliary condition (1.2) is removable only if the corresponding conditionally well-posed Cauchy
problem (1.1) has the property of persistence of regularity.

Indeed, in this case, if a conditionally well-posed Cauchy problem (1.1) does not have
the property of persistence of regularity, then there exists a ¢ € X;, and T > 0 such that
(1.1) with initial value 1 admits two solutions u, v € C([0,T]; X,) with v € C([0,T]; X,)
and u € YT which are different. The auxiliary condition (1.2) is therefore necessary for
uniqueness.

Theorem 2.8 (unconditional well-posedness) If the Cauchy problem (1.1) is condition-
ally well-posed in X,, with auziliary space YT and it has the property of persistence of requ-
larity, then (1.1) is unconditionally well-posed in X, in the sense that for any r > 0 there
is a T = T(r) > 0 such that for any ¢ € X,, with ||¢||x,, <7, (1.1) admits a unique mild
solution u € C([0,T]; X,,) and that solution depends continuously on its initial data in the
corresponding spaces.

Proof: The uniqueness of mild solution follows from Proposition 2.4. The existence and the
continuous dependence follow from the conditional well-posedness of (1.1) in the space X,
and Proposition 2.5. O



3 The Korteweg-de Vries equation

In the section, attention is given to the Cauchy problem for the Korteweg-de Vries equation
Up + Uy + Uggy = 0, u(z,0) = ¢(z), z,t€R (3.1)

with ¢ € H*(R). The study of the problem (3.1) in the classical Sobolev spaces H*® began
with Temam [36] and Sjoberg [34] and was followed by many others. The first well-posedness
results in the sense of Definition 1.1 were given independently by Kato [15] and Bona and
Smith [1]. Kato showed (3.1) to be globally well-posed in H*(R) for s > 3 whereas Bona
and Smith [1] and Bona and Scott [2] showed it to be globally well-posed in H*(R) for
s > 2. Kato [16, 17] later improved his original result, achieving the best unconditional
well-posedness result to date, viz.

Theorem 3.1 (Kato) The Cauchy problem (8.1) is unconditionally well-posed in the space
H*(R) for any s > 3/2.

There are two types of conditional well-posedness results for the Cauchy problem (3.1).
One of them, due to Kenig, Ponce and Vega [20, 22|, is summarized as follows.

Theorem 3.2 (Kenig, Ponce and Vega) The Cauchy problem (3.1) is conditionally well-
posed in the space H*(R) for s > 3/4 with the augiliary condition that the solution u satisfies

> 1/4 - .\ 12
(/ sup |u(z, t)|4dt> + sup (/ ‘D}C“u(m, t)l dt) < 00 (3.2)
T zcR zeR \/-T

and
- 1/2
( / sup |u(a:,t)l2dcc) < oo. (3.3)
oo te(0,T)

To describe a second type of conditional well-posedness, we need to recall the definition of
the Bourgain spaces. For s, b € R, the Bourgain space X, 1s

Xpp={uecS@®); |ul

Xop < OO}
where

oo poo 1/2
lolix,o = ([ [ @+ b -0+ leh™face, nfdrde)

S'(R?) is the space of tempered distributions and 4 is the Fourier transform of u with respect
to both its variables. For given T > 0,

lull xz, == inf {||vllx,, | v=uon R x0,T]}

is the usual quotient norm. The following theorem, also due to Kenig, Ponce and Vega [23],
is the best conditional well-posedness result for (3.1) available so far in the literature.
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Theorem 3.3 (Kenig, Ponce and Vega) ! For any s > —3/4 there exists b € (3,1)
such that the Cauchy problem (8.1) is conditionally well-posed in the space H*(R) with the
auziliary condition that

the solution lies in X[ (3.4)

Remark 3.4 The b in Theorem 3.8 depends only on s and can be chosen in such a way that
b, as a function of s, is nondecreasing.

In light of the discussion in Section 2, one immediately wonders whether or not the very
different auxiliary conditions (3.4) and (3.2)-(3.3) are consistent. And, of course, one would
like to know if they are removable.

To address these issues, we first clarify the meaning of solution in the above theorems.
When s > 7/2, the solution u given by Theorem 3.1 has the property that

U, Ugy, Ug, Ugzg € C(R % [0,TY])

and the equation in (3.1) is satisfied pointwise. Such a solution is usually called classical.
When 3 < s < 7/2, the solution has the property that us;, Uzzr and uug all belong to the
space C([0,T); L2(R)). The equation (3.1) holds in this latter space and such solutions are
usually referred to as strong solutions. When s < 3 the corresponding solution of (3.1) is a
weak or generalized solution as defined now.

Definition 3.5 (generalized solution) For given T > 0 and s € R, a function u €
C([0,T); H*(R)) is said to be a generalized solution of (8.1) if

(a) u=¢ att=0
(b) u? is a well-defined distribution,
(¢c) u solves the equation in (8.1) in the sense of distributions.

Note that when s > 0, the condition (b) in the above definition is not needed as it is
automatically satisfied (cf. [39]). Obviously, a strong or a classical solution of (3.1) is a
generalized solution.

In an interesting paper, Zhou [39] established the uniqueness of generalized solutions
of the Cauchy problem (3.1) in case s > 0. His uniqueness result provides an affirmative
answer to both the questions raised above; the auxiliary conditions (3.2)-(3.3) and (3.4) are
consistent and removable when s > 0. However, his approach seems unlikely to extend to
negative values of s.

1The theorem was first established by Bourgain [9] for s = 0 with b = 1/2, then improved by Kenig,
Ponce and Vega to s > —5/8 with some b > 1/2 in [22] prior to the publication of {23].
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To address these questions for negative values of s, the concept of mild solution introduced
in Section 2 is utilized. The theory is used where X; = H*(R), s; = s and s, = max{s,4}.
Thus, as in Section 2, for some T > 0 and s given and fixed, a function v € C([0,T], H*(R))
is said to be a mild solution of (3.1) on the time interval [0, T7, if

(i) u(z,0) = ¢(z) in H*(R);

(ii) there exists a sequence ¢, € H*2(R) such that the corresponding strong solution uy, of
(3.1) (with ¢ being replaced by ¢,) satisfies

im {jun(-,t) — u(, )loqoryme(ry) = 0.

A mild solution is a strong solution when s > 4 and is a generalized solution when s > 0.
But, when s < 0, it is not clear from the definition that a mild solution is a generalized
solution since u? may not be a well-defined distribution. On the other hand, a generalized
solution might not be a mild solution either. Nevertheless, all generalized solutions given
by Theorem 3.2 and Theorem 3.3 are mild solutions. To see this is true, we show first that
the conditional well-posedness results presented in Theorem 3.1-3.3 all have the property of
persistence of regularity.

Proposition 3.6 (persistence of regularity) Suppose ¢ € H*(R).

(i) If 3/2 < s < 4 and u € C([0,T); H*(R)) s the solution of (3.1) given by Theorem 3.1
with u(z,0) = ¢(x), then u € C([0, T); H*(R)).

(i) If 3/4 < s < 3/2 and u € C([0,T); H°R)) is the solution of (8.1) given by Theorem
3.2 with u(z,0) = ¢(z), then u € C([0,T); H*(R)).

(ii) If —=3/4 < s < 3/2 and u € C([0,T]; H*R)) is the solution of (8.1) given by Theorem
8.8 with u(z,0) = ¢(z), then u € C([0,T); H*(R)).

Proof: Note at the outset that the strong solution corresponding to auxiliary data in H*(R)
is not only unique, but globally defined (see e.g. [1}, [2]). Thus, the length of the time interval
[0,T] is not in question here. Assertion (i) is obviously true because of the unconditional
well-posedness of (3.1) in the space H*(R) with s > 3/2. To see that (ii) is true, let v be
the unique solution of (3.1) with the initial value ¢ given by Theorem 3.1. Then, clearly, we
must have that for any 1" > 0,

v € C([0,T); H*(R)) N C*((0, T; H'(R)).

It follows that v also satisfies the auxiliary conditions (3.2) and (3.3). By the uniqueness
result in Theorem 3.2,
uw=wv in C([0,T]; H*(R))
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and therefore v € C([0,T); H*(R)). Finally, to show that (iii) is true, let v be the unique
solution of (3.1) with the initial value ¢ given by Theorem 3.1 and w € C([0, T]; H*(R))NXJ,
be the solution of (3.1) with the initial value ¢ given by Theorem 3.3 with s = 4. Because
of the uniqueness result in Theorem 3.1,

v(z,t) = w(z,t) for all (z,t) € R x [0,T.

On the other hand, X7, C X7, for any s € (~3/4,3/2]. Thus w also satisfies the auxiliary
condition (3.4) when s € (—3/4,3/2]. By the uniqueness portion of Theorem 3.3,

w=wu in the space C([0,T]; H*(R)).

Consequently
w=v  in the space C([0,T]; H*(R))

and u € C([0,T); H*(R)). The proof is complete. O

Proposition 3.7 Let s > —3/4 be given. Then, for any ¢ € H*(R), the corresponding
solution u of (3.1) determined by one of Theorem 3.1, Theorem 3.2 or Theorem 3.3 is a mild
solution.

Proof This follows directly from Proposition 2.5 since the conditionally well-posed Cauchy

problem (3.1) determined by all those theorems has the property of persistence of regularity.
(]

The following uniqueness result holds for mild solutions of (3.1).

Proposition 3.8 (uniqueness of mild solutions) For given s > —3/4 and ¢ € H°(R),
(3.1) admits at most one mild solution.

Proof: When s > 3/2, the uniqueness of mild solution can be established by the usual
energy method. In case s < 3/2, let {¢,}2, be a sequence in the space H*(R) which is
Cauchy in the space H*(R). Let u, € C([0,T]; H*(R)) be the strong solution of (3.1) with
un(z,0) = ¢n(z) for n = 1,2,---. By Proposition 2.4, it suffices to show that {u,};2, is a
Cauchy sequence in the space C([0,T); H*(R)). To this end, let v, € C([0,T]; H*(R)) be
the solution of (3.1) with v,(0) = ¢, determined by Theorem 3.3, for n = 1,2,---. Because
of continuous dependence, {v, }%, is a Cauchy sequence in the space C([0,T]; H*(R)). On
the other hand, by the persistence of regularity and the uniqueness of strong solutions, it
follows that
T —="Why; forn=1,2,---.

The sequence {u,}°; is therefore also a Cauchy sequence in the space C([0,T]; H*(R)). The
proof is complete.O

In consequence of these ruminations, Theorem 3.1, Theorem 3.2 and Theorem 3.3 can be
recast as the following unconditional well-posedness result.
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Theorem 3.9 (Unconditional well-posedness) Lets > —3/4 andr > 0 be given. There
erists a constant T = T(r) > 0 such that for any ¢ € H*(R) with ||¢|lgsry < 7, (3.1)
admits a unique mild solution u € C([0,T); H*(R)). The solution u depends continuously
on its initial data ¢ in the corresponding spaces. In addition, the unique mild solution
u € C([0,T]; H*(R)) has the following smoothing properties:

{ u satisfies the conditions (8.2) and (3.3) if s > 3/4,

u satisfies the conditions (3.4) if s > —3/4.

Notice that the auxiliary conditions (3.2), (3.3) and (3.4) are not needed for the well-
posedness and, in Kato’s terminology, are simply a ‘bonus’ coming from the well-posedness
result.

4 Nonlinear Schrodinger equations

Studied here is the Cauchy problem for the nonlinear Schrodinger equation (1.3). It is
shown that the auxiliary condition in Theorem B is not essential for uniqueness if (1.3) is
unconditionally globally well-posed in the space H'(R™). By Theorem 2.6, one need show
only that that the conditionally well-posed Cauchy problem (1.3) in the space Ly(R™) has
the crucial property of persistence of regularity.

Proposition 4.1 Assume that (1.3) is globally well-posed in H'(R™). For ¢ € H'(R™),
let T = T(||$|lLrmy) > 0 and u € C([0,T]; Ly(R™)) be the solution of (1.3) guaranteed by
Theorem B. Then, it is also the case that u € C([0,T]; H'(R™)).

Remark: Proposition 4.1 simply asserts persistence of regularity between Lo(R™) and
HY(R™).

Proof: Since (1.3) is globally well-posed in H'(R™) for any T > 0, we may let v €
C([0,T]; H'(R™)) be the solution starting at v(-,0) = ¢(-) whose existence is implied by
our assumption. It follows from the Sobolev Imbedding Theorem that v € C([0, T]; Ly(R™))
for any ¢ with

1 1 1 1
2 m q 2’
and hence that v € Ly([0,T]; L,(R™)) for any A > 0, and in particular for A such that
1 2
-+—=1.
qg mA

Thus, the function v is a generalized solution of (1.3), lying in C([0, T]; Ly(R™)), and satisfies
the auxiliary condition, enunciated in Theorem B. In consequence of the conditional well
posedness, it must be that v = v, whence u € C([0,T}; H'(R™)) as announced. O
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Mild solutions will again play a role in our analysis. The spaces X are H°(R™) and
s; = 0,5, = 1 in this case. Thus, for given T > 0 and ¢ € Ly(R™), a function u €
C([0,T]; Ly(R™)) is a mild solution of (1.3) with u(0) = ¢ if there exists a sequence {us}52;
in the space C([0, T|; H*(R™)) which solves (1.3) for n =1,2,---, and

lm flun (-, ) — u(, t)lloqoryLa(rmy) = 0.

In the light of Proposition 4.1, the uniqueness and existence of mild solutions is inferred
from Proposition 2.4 and Proposition 2.5. Theorem B may therefore be restated as an
unconditional well-posedness result.

Theorem 4.2 (unconditional well-posedness) Assume k < 1+ 4/m in (1.4) and, in
addition, that (1.8) is globally well-posed in the space H'(R™). Then for any r > 0, there
exists a T = T(r) > 0 such that for ¢ € Lo(R™) with ||¢llz, < 7, (1.3) admits a unique
mild solution u € C([0,T]; Ly(R™)), which depends continuously on its initial value ¢ in the
corresponding spaces. In addition, the solution u has the properties

2 1 1

d 1
u € Ly([0,T); Ly) for any q, \ such that E—l-m:l, §_E<E >

Remarks

(i) The assumption that (1.3) is globally well-posed in the space H'(R™) in the above
theorem is used to ensure that (1.3) possesses the property of persistence of regularity,
which is central to the rest of the argument.

(ii) There are many works in the literature addressing the global well-posedness of (1.3)
(cf. [11, 12, 13, 32]). Here is one of the relevant sufficient conditions, taken from [13].

Assume that
F(u) =Vu+ f(;,u() + (W * [u’)y,

where V, f and W are restricted as follows:

(a) V : R™ — R is real valued potential with V € Ly(R™) N Leo(R™) for some
p>1, p>m/2.

(b) f: R™ x [0,00) — R is measurable in z and continuous in u, and f(zx,0) = 0,
almost everywhere on R™. If m > 2, it is also presumed that there exist constants
C and a € [0, =%5) (o € [0,00) if m = 2) such that

|f(z,u) = f(z,0)] < CQ+[o|* + [v]*)|v — ul,
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for almost all z € R™ and all u, v € R.
If m =1, assume instead that for every M, there exists L(M) such that

|f(z,v) — f(z,u)| < L(M)|v —ul,

for almost all z € R™ and all u, v in R such that |u| + |v]| < M.
Extend f to R™ x C by setting

i@z)r= |z7|f(a:, |z]), forallze€ C, z#0, and almost all x € R™.

Set

l2|

F(z,z) = f(z,s)ds, forallz€ C and almost all x € R™,
0

and assume that
F(z,u) < AJul’ 1+ [u]),
where 0 < 6 < 4/m.

(¢c) W: R™ — R is an even, real-valued potential such that W € L,(R™) N Loo(R™),
for some q > 1, q > n/4. Assume also that

Wt e L,(R™) N Lo(R™),
for some o >1, 0 >m/2 (and o > 1 if m = 2).

The reader is referred to Bourgain’s recent lecture notes [11] for more results on this
aspect.

(i) If (1.3) is not globally well-posed in H'(R™), its solution may blow up in finite time.
However, in this case there may exists a positive number § > 0 such that for given
¢ € HY(R™) with

16]| orm) < B

the corresponding solution u of (1.3) belongs to the space C([0,T]; H'(R™)). In this
situation, Theorem 4.2 still holds for those initial data having L;—norm less than (3.

There is another more general conditional well-posedness result that was provided by

Kato [18] for the Cauchy problem (1.3). For s > 0, assume that F'(u) in (1.3) satisfies the
following two assumptions.

F1 (smoothness) F € CF(C,C), with F(0) = 0, where [s] denotes the smallest positive
integer > s, and
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F2 (growth rate) if s > m/2, no further assumption is made, but if s < m/2 and if
F(¢) is a polynomial in ¢ and ¢, then degree(F') = k < x(s), where x is an extended
real-valued function given by

x(o) =1+4/(m — 20), —o0 <o <m/2, (x(=00) =1, x(m/2) = oco)
with inverse
X(k)=m/2-2/(k—=1), 1<k<oo (x7'(1)=-o0, x ' (00) =m/2);
if s <m/2 and if F is not a polynomial, then
Dq'F(C) :O(lqk_i)a ’iZO,l,"',[S], as |<|_>007
where k is such that
[s] < k& < x(s).
Theorem 4.3 (Kato) Assume that the potential function F satisfies conditions (F1) and
(F2) as described above. The Cauchy problem (1.3) is conditionally well-posed in the space
H*(R™) for s > 0 with the auwiliary condition that
the solution lies in the space YT (4.1)
where

1 2 1 il
VI = D\{L,\([O,T];LZ(RT”)) . where ¢, \ are such that p t =5 A > —}

and L$(R™) = (1 — A)™*?L,(R™) is the standard Lebesgue space.

By directly showing uniqueness in a weaker function space (see [18] for details), Kato proved
that the auxiliary condition (4.1) in Theorem 4.3 is removable if s > m/2, or if s < m/2 and

k<14 (4A(2512)/(m—2s) (k<2/(1—2s)ifm=1). (4.2)

Here a A b = min{a, b}. Whether or not the auxiliary space VT is removable when (4.2) is
not satisfied is a question left open in [18]. By applying the theory developed in Section 2,
a similar argument as that leading to Theorem 4.2 provides a partial affirmative answer for
this open question, namely, for any s > 0, the auxiliary condition (4.1) is removable so long
as (1.3) is globally well-posed in the space H* (R™) for some s’ > m/2.

Theorem 4.3 can thus be restated as the following unconditional well-posedness result.

Theorem 4.4 Assume that the potential function F satisfies conditions (F1) and (F2) and,
in addition, that (1.8) is globally well-posed in the space H® (R™) for some s' > m/2. Then
for any given s > 0 andr > 0, there exists a T = T(r) > 0 such that for any ¢ € H*(R™) with
lplls < 7, (1.8) admits a unique mild solution u € C([0,T]; H*(R™))which continuously
depends on its initial value ¢ in the corresponding spaces. Moreover, the solution u has the
additional property that

we YT
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5 Nonlinear wave equations
In this section, attention is turned to systems of nonlinear wave equations of the form

O¢=F(9¢) (5.1)

in R'*3, with initial values

¢(z,0) = fo(z),  09(z,0) = fi(z). (5.2)

Here, O denotes the standard 4-dimensional d’Alembertian —02+82+02+03, ¢ = (¢*, %, -+ -, ¢™)
and the nonlinearity F' = (F, F? ..., F™) has the form

F'= Z Fj’,kB;',k(a¢ia 3¢k)
3.k

with B}, (04, 0w) = Q(¢,w) being any of the null forms

Q(d,w) = Qup(d,w) = 0a0pw — OgPpOaw, 1<a<p<3 (5.3)
and the T, are constants. Equation (5.1) is a simple model for the Yang-Mills equations
under Coulomb gauge conditions. There are several conditional well-posedness results for
the Cauchy problem (5.1)-(5.2).
Theorem 5.1 (Klainerman and Machedon) [25]  The Cauchy problem (5.1)-(5.2) is

conditionally well-posed in the space HS(R™)x H*~'(R") for s > 2 with the auziliary condition
that the solution ¢ has the quantity

T
[ [, (06,6 +10Q(6, OF) deat -
finite for any of the null forms (5.8) that appear in F' and some T > 0.

To describe other conditional well-posedness results for (5.1)-(5.2), we need to mention
the spaces H; s and H, 5. The space H, s is the completion of the Schwartz space S (R*) with
respect to the norm

0 1/2
Nostw) = ([ [ wl(r, 0w )la(r, o) déar )
where 1 denotes the space-time Fourier transform of u and

we (7, &) =1+ |(Ir] £ [¢])].
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The definition of the space #, 4 is a little bit more complicated. For u € S(R*), define

0= 52,00
|||b|||<1 No& (v)<1 R3

el =/ bz, )] ar
The space H, s is the completion of the Schwartz space S(R*) with respect to the norm
Nsé(u) ( )+M5( )

Theorem 5.2 (Y. Zhou) [38] The Cauchy problem (5.1)-(5.2) is conditionally well-posed
in the space H*(R™) x H*"Y(R™) for s > 7/4 with the auziliary condition

w*w*w¥Va(r, €) - ub(r, §)| drdé

where

— 11Bll 1. go. .
- 116]] L (R3;L. (RY)

the solution ¢ belongs to the space Hg,_y. (5.5)

Theorem 5.3 (Klainerman and Machedon) [26,27]  The Cauchy problem (5.1)-(5.2)
is conditionally well-posed in the space H*(R™) x H*"Y(R"™) for s > 3/2 with the auziliary
condition

the solution ¢ belongs to the space Hgs—1. (5.6)

In light of these results, the natural question to raise is whether or not the auxiliary
conditions (5.4}, (5.5) and (5.6) are removable.

When s > 5/2, uniqueness may be established for solutions in the space
C([0, T); H*(R*)) N CH([0, T); H7H(R?))

by standard energy-type methods. In a recent paper, Zhou [40] demonstrated the uniqueness
of solutions in the space

Loo ([0, T); H*(R*)) N Woo ([0, T]; H (RY)).

Consequently, when s > 2, those auxiliary conditions are removable and the Cauchy problem
(5.1)-(5.2) is unconditionally well-posed in the space X, = H*(R®) x H*"*(R®).

To show the auxiliary conditions (5.5) and (5.6) are removable when s < 2, consider mild
solutions of (5.1)-(5.2) which are defined as in Definition 2.3 with X,, = H*(R®) x H'(R?).
A detailed study of the proofs offered in [38] and [27] reveals that both conditionally well-
posed Cauchy problem (5.1)-(5.2) given by Theorem 5.2 and Theorem 5.3 have the property
of pers1stence of regularity if it is globally well-posed in the space H* (R®) x H*~!(R?®) for
some & > 2. Thus, by Theorem 2.6, the auxiliary conditions (5.5) and (5.6) are indeed
removable when s > 3/2 and we have the following unconditional well-posedness result.
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Theorem 5.4 Assume that (5.1)-(5.2)is globally well-posed in the space H* (R*)x H¥ ~}(R?)
for some s' > 2. Let s > 3/2 and r > 0 be given. There exists a T =T (r) > 0 such that for
any (f,9) € H*(R®) x H"'(R?) with

W(fs )| ms(reyxms-1(rey < 7,5
the Cauchy problem (5.1)-(5.2) admits a unique mild solution
¢ € C([0,T]; H*(R*)) N C*([0, T]; H**(R’))
which depends continuously on its initial data. In addition the solution ¢ has the property
{ ¢ satisfies condition (5.4) if s > 2,

¢ € H.s‘,s—l ZfS > 3/2

6 Initial-Boundary-Value Problems

The focus of our discussion thus far has been the pure Cauchy problem. It is our purpose
in this final section to indicate the efficacy of the general theory for a broader range of
problems. Here, attention is turned to an initial-boundary-value problem (IBVP) for the
KdV equation, namely the quarter-plane problem

Uy + Uy + Uy + Uggr = 0, z, te Rt
(6.1)

u(z,0) = ¢(z), u(0,t) = h(t), z, t€ R,

Definition 6.1 (well-posedness) Let s, s' € R be given. The IBVP (6.1) is (locally) well-
posed in the space H*(RY) x HE (R*) if for any r > 0 there ezists a constant T =T(r) > 0
such that for given ¢ € H*(R*) and h € H},,(RT) satisfying certain compatibility conditions
and

| sy + ”h“Hs’(O,T) <

(6.1) admits a unique solution u = u(z,t) in the space C([0,T]; H*(R")). Moreover, the
solution depends continuously on its initial and boundary data (¢,h) in the corresponding
spaces.

Early well-posedness results for the IBVP (6.1) were presented by Bona and Winther in
3, 4].

Theorem 6.2 (Bona and Winther) [3, 4] The IBVP (6.1) is well-posed in the space
H¥+YRY) x HETYRT) fork=1,2,---.

loc
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More recently, the present authors obtained the following well-posedness result for (6.1).

Theorem 6.3 (Bona, Sun and Zhang) (7] The IBVP (6.1) is well-posed in the space
H*(R*) x HEMB(RYY for s > 3/4 with the auziliary conditions

loc
1

T 2
( sup |8;+1u(x,t)|2dt> <C (“¢“H8(R+) + IlhllH(3+1)/3(0,T)) ) (6.2)
0<z<+00 /0
T ’ y
([, s 1ot it) " < C (I8l + Mlucssrom) (63
0 O<z<+oo
and
+00 2
(/ sup |U($,t)l2d,’l}'> S C (H(]SHHS(R) + ||hHH(3+1)/3(0,T)) (64)
0 0<KI<T

to insure uniqueness.

The following result for (6.1) was then established by Colliander and Kenig.

Theorem 6.4 (Colliander and Kenig) [14] For any ¢ € H*(R") and h € HEHD/3(RY)
with 0 < s < 1 which satisfies the compatibility condition ¢(0) = h(0) if s > 1/2, there
ezists o T = T (|||l asr+), |l res+rsgsy) > 0 and a solution u € C([0,T]; H*(RT)) of the
IBVP (6.1). The map ($,h) — u is Lipschitz-continuous from H*(R*) x HEFDA(RT) to
C([0,T; H*(RT)).

This is not a well-posedness result in the sense of Definition 6.1 since uniqueness is not
discussed. Actually, a well-posedness result is established for an integral equation

w = HS(¢p, h) + IHS; (wwy) (6.5)

posed on the whole plane R x R, where HSi(¢, k) is an integral operator associated to the
linear homogeneous problem

V4 Vg +VUgae =0, >0, t€(0,T), }

w(z,0) = ¢(z), w(0,t)=h(t), z>0,tec(0,T)
and THS,(f) is an integral operator associated with the linear inhomogeneous problem

Vg Vg VU = f, >0,t€(0,7), }

w(z,0) =0, w(0,t)=0, z>0,te(0,T).

The precise definition of the integral operators HS; and IH S is given in [14]. The relation
between (6.5) and the IBVP (6.1) is that a solution w of (6.5), when restricted to the
domain R* x (0,T), solves (6.1). For the integral equation (6.5), Colliander and Kenig have
the following well-posedness result.
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Theorem 6.5 (Colliander and Kenig) Let 0 < s < 1 be given. There exists a 6 > 0
such that, if (¢, h) € H*(R*) x HEHV/3(R*) satisfies

(&, )| Loqrryxernrsrey < 6

and $(0) = h(0) when s > 1/2, then the integral equation (6.5) admits a unique solution
u € C(R; L2 4(R)) satisfying the auziliary condition

?,b(w) <00 (6.6)

for some a > 1/2 and b in the range 0 < b < 1/2, where

s = ([ [T arlerarir - )Pl ddr

—

2

w7 [ ot ) rdear

The well-posedness results of (6.1) presented in Theorem 6.3 and Theorem 6.5 are con-
ditional since auxiliary conditions are needed to ensure uniqueness. One naturally wonders
whether or not the auxiliary conditions are essential for uniqueness.

The uniqueness issue in the context of Theorem 6.4 is serious. There are many ways to
transform the IBVP (6.1) into an integral equation, each of which has a solution according
to a suitable version of Theorem 6.4. The question is whether the solutions of those different
integral equations are equal when restricted to the domain Rt x (0,T) for some T' > 0.
For the linear problem this is established by Colliander and Kenig in [14], but the point is
unresolved for the nonlinear problem.

The key to a resolution of these issues is to introduce the analogous mild solution for
the IBVP (6.1) as described below and to demonstrate that the conditionally well-posedness
results presented in Theorem 6.3 and Theorem 6.5 have the property of persistence of regu-
larity.

Definition 6.7 (mild solution) Let s < 3 and T > 0 be given. For given ¢ € H°(R") and
h e Hl(;jl)/?’(RJr), a function u € C([0, T); H*(R")) is said to be a mild solution of (6.1) on
[0, 7] if there exists a sequence {u,} in the space C([0,T}; H3(R*))NC'([0,T]; Ly(R™)) with

$n(z) = tn(2,0),  hn(t) =ua(0,8),  n=1,2,---,
which is such that
(i) un solves the equation in (6.1) in Loy(RY) for0 <t < T;
(1) limp 00 SUPg<yer [|Un (s ) — u(, 8) || He(r) = 0;
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(MZ) limn_,oo ”hn - h||H(5+1)/3(0,T) =0.
The following facts hold for mild solutions.
(a) The weak solutions given by Theorem 6.3 and Theorem 6.5 are all mild solutions.

(b) For given ¢ € H*(R*) and h € Hl(::rl)/a(R*') with 0 < s < 3, there is at most one mild
solution for the IBVP (6.1).

Consequently, the auxiliary conditions in Theorem 6.3 and Theorem 6.5 are not needed
for uniqueness and can be removed. In particular, the two solutions given by Theorem 6.5
for two different integral equations are the same when restricted to the domain Rt x (0,T).
If the word solution in Definition 6.1 is understood as mild solution, then we arrive at the
following unconditional well-posedness result for the IBVP (6.1).

Theorem 6.8 (unconditional well-posedness) The IBVP (6.1) is unconditionally well-

posed in the space H*(RT) x Hl(;:rl)/3(R+) for any s > 0. Its solution u has the additional
smoothing properties

u satisfies conditions (6.2)-(6.4) if s > 3/4;

u satisfies condition (6.6) if1>s>0.

The proof of this theorem is more technically involved than those in Section 3 for the KdV
equation posed on the whole line R. The reader is referred to [7] for details.

7 Conclusion

The focus of our discussion has been the pure Cauchy problem

2—1; + Lu= N(u), u(0)=¢. (7.1)
These are considered with initial data ¢ selected from a scale of Banach spaces X;, s € R,
such as the classical Sobolev spaces H*(R"). The issue of local in time well-posedness is
considered and it is assumed that (7.1) is indeed locally well-posed in X for s large enough,
but that it is only conditionally well-posed for rough data corresponding to small values
of s. This is the situation that obtains in a number of currently interesting situations. A
general result is formulated to the effect that, in this circumstance, and for small values of s
where only conditional well-posedness is known, (7.1) is well-posed in X if it possesses the
property of persistence of regularity. As indicated in Remark 2.7, persistence of regularity is
a necessary and sufficient condition in some circumstances. This is not a complicated result,
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but it has the salutary property of reducing the issue of whether or nor (7.1) is unconditionally
well-posed to the question of persistence of regularity. The latter point is amenable to
analysis by means other than classical techniques for proving uniqueness, which mostly fail in
situations without sufficient regularity. The efficacy of our observation is then demonstrated
by applying it to a number of concrete examples where the issue of unconditional well-
posedness is open, including nonlinear wave equations, nonlinear Schrodinger-type equations
and the Korteweg-de Vries equation. It is intimated that the same consideration may apply
to a considerable range of nonlinear evolution equations (for possible examples, see [8, 9,
10, 22, 24, 28, 33, 19, 29, 30]). It was also shown that these ideas have force when non-
homogeneous boundary conditions are in question, as for the Korteweg-de Vries equation.
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