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Abstract

The generalized Korteweg—de Vries equation has the property that solutions with initial data that are analytic in a strip in the
complex plane continue to be analytic in a strip as time progresses. Established here are algebraic lower bounds on the possible
rate of decrease in time of the uniform radius of spatial analyticity for these equations. Previously known results featured
exponentially decreasing bounds.
© 2005 Elsevier SAS. All rights reserved.

Résumé

Si la donnée initiale est analytique sur une bande dans le plan complexe, alors la solution de I’équation de Korteweg et de
Vries généralisée le reste pour tout temps. Nous montrons que la largeur de cette bande décroit algébriquement en temps. Les
résultats antérieurs ne donnaient qu’un taux de décroissance exponentiel.
© 2005 Elsevier SAS. All rights reserved.

1. Introduction

This paper deals with the initial-value problem for the generalized Korteweg—de Vries (gKdV) equation
U + txxx +uPuy =0, ¢))

where p > 1 is a positive integer, and u is a function of the two real variables x and ¢t. Eq. (1) with p=1or p=2
arises in modeling wave phenomena in a variety of physical situations. For larger values of p, (1) has come to the

* Corresponding author.
E-mail addresses: bona@math.uic.edu (J.L. Bona), zg7c@virginia.edu (Z. Grujié), kalisch@maths.lth.se (H. Kalisch).

0294-1449/$ — see front matter © 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpc.2004.12.004



784 J.L. Bona et al. / Ann. 1. H. Poincaré — AN 22 (2005) 783-797

fore in our collective efforts to understand fully the interaction between nonlinearity and dispersion in evolution
equations.

In applications of (1) to physical problems, the dependent variable u is usually real-valued. However, for sev-
eral reasons, complex-valued solutions have attracted interest lately. The present paper aims to add to the latter
discussion. Interest will be focused upon solutions u(x, t) of (1) which, while real-valued for real values x and ¢,
admit an extension as an analytic function to a complex strip S, = {x +1iy: |y| < o'}, at least for small values of o.
In consequence, initial data ug(x) = u(x, 0) will be drawn from a suitable class of analytic functions. It should be
noted that there are situations where analytic solutions emanate from non-analytic initial data (see e.g. [7,16]). For
example, it is proved in [16] that for the KdV equation itself, the case p = 1 in (1), a certain class of initial data
with a single point singularity yields analytic solutions. However, these results do not produce explicit estimates
on a radius o of spatial analyticity of solutions. If, on the other hand, the initial datum ug is analytic in a symmetric
strip around the real axis, it has recently been established that the solution will retain analyticity in the same strip at
least for a small time [10] (see also [11,12]). The present work is focused on studying the asymptotics of the width
o of the strip of analyticity for large ¢, assuming that a certain Sobolev norm of the solution remains finite. The first
result in this direction was proved by Kato and Masuda in [15] where the rate of decrease of o in time was shown
to be at most super-exponential. More recently, an exponential bound on the width of the strip was presented in
[3] via a Gevrey-class technique. Our intuition, partly based on the existence of algebraic bounds on the rate of
increase in time of Sobolev norms for (1), as shown by Staffilani [20], suggested that an algebraic lower bound for
the width o of the strip may hold. The goal of this paper is to provide an affirmative answer to this conjecture. The
main ingredient in the proof is a new multilinear estimate in Bourgain—Gevrey spaces. This estimate effectively
introduces a power of o as a prefactor in the nonlinear term, and this induces the algebraic decrease of o over time.

The appropriate notation and function spaces are introduced in the next section, while Section 3 contains some
auxiliary linear estimates. Multilinear estimates are proved in Section 4, and the proof of the main theorem is given
in Section 5.

2. Function space setting

The Fourier transform of a function vy belonging to the Schwartz class is defined by

o(§) = vo(x) e ¥ dx.

[e¢]

7
2n

—00

For a function v(x, t) of two variables, the spatial Fourier transform is denoted by

Fev(E, t)x = v(x, t) e ¥ dx,

o
=/
2
—00
whereas the notation 0(&, T) designates the space-time Fourier transform

1 o X
0, T)=— / f u(x,t)e %6 e gy ds.
2
—00 —00
Define Fourier multiplier operators A4 and A by
Av, o) = (1+EN3E,
and
AvE, 1) = (1+[c))dE, 7).
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The following notation is used to signify the L”-L9 space-time norms;

N & p/a 1/p
nan,,L,,:[f f|v(x,t)|th dx} _
-0 =

A class of analytic functions suitable for our analysis is the analytic Gevrey class Go,s, introduced by Foias and
Temam [8], which may be defined as the domain of the operator A° ¢®4 in Ly. The Gevrey norm is defined to be

o0
lvolg,, = f (1+1£1) 2 AIED| G58) | ae.
—00
It is straightforward to check that a function in G, is the restriction to the real axis of a function analytic on a
symmetric strip of width 20 The strip {z = x +iy: |y| < o'} will be denoted by So.
To efficiently exploit the dispersive effects inherent in (1), we consider a space that is a hybrid between the
analytic Gevrey space and a space of the Bourgain-type. More precisely, for o > 0, s € R, and b € [—1, 1] define
Xo,5,b to be the Banach space equipped with the norm

|lv||§,s.,,=f /(1+|r—§3|)2”(1+|s|)2se2“<1+lf'>|a(g,r)]zdgdr.

—00 —00

For o =0, X,,5,» coincides with the space X5 introduced by Bourgain, and Kenig, Ponce and Vega. The norm of
X;.p is denoted by || - ||s,» and is defined by the integral

||v||§,,,=f /(1+|r—’;’3|)2b(1+|§|)2s|ﬁ(§,r)|2d§dr.

—00 —00

It follows directly from the Sobolev embedding theorem that the inequality

sup v, 0, <elvlloss .
te[0,T] '

holds for b > % In addition, if vg € G and € is such that 0 < € < o, then vy and all of its derivatives are bounded
on the smaller strip Sg—e.

Proposition 1. Let 0 < € < o and n € N be given. Then there exists a constant ¢ depending on € and n, such that

sup |8;’f(x +iy)| <cllflle,-
x+HiyESy—¢

Proof. This is a direct consequence of the inequality

1 fNGs_cnss S Enell fllG, 3)
which holds for n € N, and the Sobolev embedding theorem. The inequality (3) follows from the relation

sup{e <MD (1 4+ 1£)" !} = e,
EcR

where cpe = ((n +1)/e)"*1(1/€"*1). Note that ¢, — 00 as € — 0, as one would expect. O
The space X 5 » Was introduced by two of the authors in [10], where it was useful to obtain local-in-time well-

posedness of (1) in G for an appropriate range of parameters s and b. Here, interest is focused on the global
behavior of solutions in X s 5, where o will be allowed to vary in time.
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3. Linear estimates

Since the analysis is based on boundedness in X, ;5 of an integral operator given by a variation-of-constants
formula, certain estimates of the solutions of the corresponding linear problem are needed. These estimates are
addressed now. Denote by {W (1)}$2 _, the solution group associated with the homogeneous linear problem

W + Wyyx =0, @
w(x, 0) = wo(x).
Let ¢ be an infinitely differentiable cut-off function such that 0 < ¢ < 1 everywhere and

s [0 1=2
L sy,
and, for T > 0, let Y7 (t) = ¢ (¢/T).

Lemmal. Leto >0, b > %, b—1<b <0,and T > 1. Then there is a constant ¢ such that

lvr@W©Ouox)|, , , < eT*|uollc, (5)
lvr@ue, v, , <cluloss (©)

and

< CT“v“a,s,b’- @

o,5,b

t
K”T(t)/ W —s)v(s)ds
0

Proof. The proof of (5) is immediate from the definition of Xo,s,b, the linearity of the operator e°4 and Lemma 3.1
in [18]. In the same way, (6) follows from Lemma 3.2 in [18]. For the proof of (7), one follows the proof of
Lemma 2.1 in [9] step by step, keeping in mind that 7 > 1. The actual bound that emerges from these ruminations
is cmax{T, T'=2*¥}, but since 1 — b + b’ < % and T > 1, the first term is dominant. [

The second kind of linear estimates needed are Kato-type smoothing inequalities and maximal function-type
inequalities. For a suitable function f, define F, p Via its Fourier transform F,,, viz.

S 1)

Fo,)=—2 207 8
R T Y ®

Lemma 2 (Bourgain). Let p > % be given. Then there is a constant c, depending on p, such that
1AV FplizeL, <ell fllLars. ©)

For the proof of this lemma, the reader is referred to [6].
Lemma 3 (Kenig-Ponce-Vega). Let s and p be given. There is a constant c, depending on s and p, such that

@) If p > 3, then

NAFp oL, <l fllLaLy; (10)
(i) If p > % and s > 3p, then

|A™ Fpll . <ellfllioas (11)
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(iii) If p > 5 and s > 5, then

lA™ Fol, ., < eNflarss (12)
iv) If p > % and s > %, then

|A=Fp ., S<clfllLaL,- (13)

The inequality (10) was proved in [18]. The estimates (11) and (13) were proved in [10], and (12) can be proved
analogously using an estimate appearing in [17].

4. Multilinear estimates in Bourgain—Gevrey spaces

The goal of this section is to prove some multilinear estimates in analytic Bourgain—Gevrey spaces which feature
explicit dependence on the radius of spatial analyticity o. These inequalities will play a key role in obtaining the
algebraically decreasing time-asymptotics for o

Theorem 1. Let 0 > 0,5 > %, b > %, b < ——% and p > 2. Then there exists a constant ¢ > 0 depending only on
s, b, and b’ such that
Nox 1. ups) | g g S cllalls,p - Nuprallss + o' Putllo,s,p - Nuptillo,s.b- (14)

Proof. We present the proof in the case p = 2 and comment on the case p > 2. First note that (14) can be written
more explicitly as

[+ 1 =€) (1 +181) & O EP g iz . 0 2.2

1/2

Lcllutllspllualisplluslls,e +co™“lutllo,splluzlloss-usllos,s-

Define v;, i = 1,2, 3, by
w(E, 1) = (1+18)° (1+ 10 —£31)" 00,8, ).
Then, proving the inequality (14) is equivalent to establishing the estimate

“ (1 + [£])*|€| e IHED f viEr, 71) e T AHED A 4 161)7 va (¢ — &, T — 1) e " IHERD(1 4|5 — 57"
(+x—&)7Y (1 + |1 — &P A+t —12—E-8&)3)°

» vk — &1, 1o — 1) e O UHETED A 415 — gD
I+ —71 — & — &)

<o o] s |e™ TV v o 7T E s 5 +eollvnliziz Il gug sl gy

d&) dry dézdmog

L3L?

Using duality, it suffices to estimate a 6-fold integral of the form

f heg, D+ DT e THED vy 6y, ) e HHED (A 4 )~
1+t —¢D" (I+Im =&

RG
va(§ — &, T — 1) e TUHERD (I 415 — &)
I+t -1~ E-&)D°
e —gn—n) e oUHE—8D (1 + & — &1)*
(A +|rp— 11 — (B2 —E1)3)P

du
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where A is an arbitrary element of the unit ball B in LZ(R?) and dp = d§3 dry d§; dry d§ dr. Using the simple
inequality

e (1+ED <e+01/2(1+|$|)1/230(1+|EI), (15)
it is plain that the latter integral is bounded by I; + I, where

- A&, DA+ IED™ o161, 7o) e HED (1 4 )~
1 =esup 7
hen)  (1+[T =] (1+ |7 — &)

& — b T — o) e MR 4 g —5))
(4|t —1— ¢ —£)3)°

(@ —&,n—mle 7 HRED A 4 15 — gy
A+ — 11— (52— &)3))°

dp

and

=072 sup

/ (&, DA+ 1ENF (1 + [£)1/2e7OHED [y (g1, 71)| eo I+ (1 4- | )=
heB]RG

(147 - &3~ (A +|m - &P

o 02 — &, v — )| e MHERD( 4 g — )
I+t —n—(E-8&)3)°
& —fn— r)|e”?UHR=aD (1 4 |5 — &)~
1+l —m — (&2 —E)2))P
To analyze I, split the integration with respect to £, &1, & into six regions corresponding to combinations of
inequalities such as |, — &1] < |€ — & < |&1(, and estimate the integral on each region separately. The portion of
I corresponding to the particular region just delineated can be dominated by the supremum over all 4 in B of the
duality relation

(Al/ij_b/, e—G’AAI/Z(Vl);— e—UAA—s(VZ)I;’r e—O’AA—S(V3);')

due.

where (-, -) denotes the inner product in L2(R?) and Hfb, and (V,-)l',ir are related to |k| and |v;|, respectively, as
in (8). This inner product can be bounded by the quantity

”AI/ZH—b’ ”L4L2 ”e_aAAl/z(Vl)b ! Lal, “e_aAA_S(VZ)b ”Lsz “e_aAA_s(V3)b ”LooLoo‘

Using the estimates (9), (11), and (13), it is deduced that

11 < C”e_GAvl ”L2L2 “e_aA 2 ”L2L2 ” e_aAv3 " LyLy

The other five cases (e.g. |62 — £11 < 161] < |§ — &1, [§ — & < 162 — &1] < [&1], etc.) follow by symmetry.
To effect a similar analysis of I, first note that

o (I+IED < e IHED go (15 -&)) o (1+I52-81])
and then split the £-integrations exactly as in the treatment of /;. This strategy yields the inequality
172 1/2 - =
Lh<o / }S;lelg”A i H_bl ”L4L2 ”A(Vl)b ”LooL2 ”A s(Vz)b ”LZLoo ”A S(Va)b ”L4L°°

1/2
<o 2 illL, 102y, 1030112,

where the estimates (9)-(11) and (12) were used. Notice that in estimating I, both types of smoothing results were
needed to compensate for the extra half-derivative coming from the inequality (15). This concludes the proof in the
case p =2.
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In case p > 2, the same scheme of estimation will yield p — 2 additional factors of the form
[E AT P
These remaining factors can be handled using (13). O
For p = 1, there are too few factors to absorb an extra power of the spatial derivative in an analogous way.

However, by carefully splitting the (£, 7)-Fourier space into a number of regions and then applying the smoothing
and the maximal function-type estimates, it is possible to overcome this difficulty, as is now demonstrated.

Theorem 2. Leto >0, s >0, b> % and b’ < ——%. Then there exists a constant ¢ depending only on s, b, and b’
such that

1/4
Jax@v) |, » < cllullspllvllse +colulosslvlos.s-

Proof. Only the case s = 0 is treated; the case s > 0 is straightforwardly reduced to the case s = 0. The inequality
eo (118D <e_|_01/4(1 + |1§-|)1/4e0(1+|5|) (16)
will play the role of (15) in the proof of the previous theorem. Setting
b ”
fE D=1+ =) e ag, o)
and
b =
g€, 1) = (1417 - &) e”EVis, o),
it is required to bound appropriately the quantity

hE, T)IE| 7 OVED £(gy, 1) e @ UHED g(5 — &, 7 — 7q) e o IHE01D

d 17
S+ =ED (CHm =g G lr—n= € &%) - S0

uniformly in A belonging to the unit ball B in L2(R?) where du = d& dr; d€ dz. Using the inequality (16), the
integral (17) is bounded by the sum of the two terms

I, DIE] 1 fE1L )l e 7D g€ — &, 7 — 1) e 7 IHERD

Iy =esup ; du
heB ), I+t -t A+ -&NP (A4t - — (- §)°
R
and
=o't f!h(&,rm-ﬂ(l + 16D 4 e7THED | £ (6, 7l e MHED g6 — &1, 7 —m) e 7 THETAD
heB ), (1+|r =&)Y A+ln—&p  (+lr—a—-E-80%
R
The first term can be dominated by
—gA —0A
C“e 7 f“Lng”e ’ gl|L2L2

in a way completely analogous to the estimate in the case p > 2. Estimating I3 in the case p = 1 turns out to be a
bit more challenging. First, observe that I can be dominated by

o4 sup |h(g, D)1+ 1EDY* | fE1L )l g€ — &1, 7 — 7))
heBR4 A+ |t —&3"¥ (1 + |7 — %-13|)b (4|7 —11— (£ —&)3))P

(13)

because e TED < e(+61D ¢U+E-ED Proceeding as in [6] and [18], the relation

18— [(m— )+t —1) — € —&)’] =36 - 61§
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implies that one of the cases

@) It — £ > |&11l€ — &1118],
) Ir1 — &1 > 16111 — &111E] o 19)
© |t =71 — ¢ — &% > E1l1E — E115)

always occurs. In case (a), the quantity in (18) is bounded by

spare’ (L4 EDY | £ (&1, )] (1 + & — &)Y g — &1, 1 — )|
(1 + |1 — &P I+t -1 —(E—&)3°

ol/t sup/|h(§,t)l(1 + 1€]) du.
heBR4

We now split the domain of integration into two further subregions, |§1] > |§ —&1] and |§1| < |€ —&;|. In the region
where |§1| > |§ — &1, the quantity in the just displayed integral is dominated by

v+3/8 L+ 63| £ g1, vl (L + 16 — £10)2 |6 — &1, 7 — 1)
(1+ |t — &P (L4t — 11 — (£ —£&)3)P

oV sup [ [ace,2)|(1-+1¢) an.
heB
®4
The latter integral can be further bounded by

|A7f8-1-b’ B

sup(AY Bk AT B AV G < ¢ sup | AYH/8 Hy
hel

heB LyLs ” A!/Gb ” LsLoo

Lng'
\<~. C".f”Lng ”g”f_ng

where Hy", F," and G} are related to |k|, | f| and |g|, respectively, as in (8). Since the last two factors in the
integral have identical structure, the analysis in the region [&;| < |& — &;] i$ the same.
In case (b), the quantity in (18) is dominated by

1 gy 16 DI+ DY | f )] g€ =&, 7 —n)|

$ - du.
hes) A+l —8DT  (+ED AFE—EDPA+ | —n— €&
14

We split the domain of integration into the same two subregions as before. In the region where [§1] > |§ — £&1|, the
quantity is dominated by

1 gy [ 16 DI+ |E|)>/4-28
heB (1 + |t —&3)-¥
Rri

o

g &1t — 1)l

du,
A+E—EDPA+lr—n—E—eipe W

| £ )

a

and the latter can be bounded by

sup(A5/4—2beb/, F0+A_bG,',") < csup |]A5/4_2bH_b/
heB heB

’L4L2 ||f”L2L2 ”A_bi“L4Loo < c”f”Lsz "g”L2L2-

In the region |§1| < | — &, the quantity is dominated by

1/4 G OIA+ED If &L )] A+1E—EDY g — &, 7 — 1)
o sup ; 3 OH-
neB)  (L+1T—=83DY (A+15D° A+ —&)PA+It — 1 — (€ — £)3))

]R4
The estimate continues in a similar fashion, namely

:ug(Al_ij—b" A_bFoJFAIM_bG;r) < C:“I;HAI_IJH—H ”L4L2 "A_bf“Lsz ”Al/4_bi”L4Loo
€ €

Sl flizoe, lgleyr,-

The proof in case (c) in (19) is similar to the proof in case (b). O
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5. Algebraic lower bounds on o

791

In this section, the algebraic decrease of o as a function of time T is proved. The main objective is to obtain
an a priori bound in G4 (1),s on the solutions of (1) for a fixed but arbitrary T > 0. This bound, combined with
the local existence theory in [10] will enable us to prove the desired resuit. To obtain such a bound, a sequence of
approximations to (1) is defined and it is proved that the sequence is bounded in G (r),s for an appropriate value
for o (T). Consider first the following result relating the boundedness of a Sobolev-type norm to the boundedness

of a Bourgain-type norm.

Lemmad. Let s > —%, be[—-1,11, T > 1, 0 >0, and let u be a solution of (1) on the time interval [-2T, 2T].

(i) There exists a constant ¢ depending only on s and b such that

lvr@uc,nl,, <cT2(1+ar@)”™

where

= ot :
) te[_%l?,m it )]s

(i) There exists a constant ¢ depending only on s and b such that

lvr@ut.n),,, <cTV?(1+pra)™™

where

5+1 :

pray= sup JuC,0lg,
te[—2T,2T]

Proof. Changing variables in the definition of the norm, it follows immediately that

[s,¢]

lyrouenlZ,= [(+16)* [ |a2(roe* Fut,0) are

—00

<c f (1+ 16D f W () e Feute, ) dr d

+cf(1+|§|)2s f |a,(¢T(t)e-i53'fxu(g,t))|2dtdg.

Differentiating with respect to ¢, the second integrand is seen to be

%WT (1€ 8" Feu(t,0) + ¥ (=187 e Fru(e,0) + ¥ @)™ Foue 6, 1),

Using the equation u; = —u”u, — Uy, the last term can be replaced by

1
p+1

Ur () e €T iE Fy (P E, 1) — Y ()(—iE%) e Fru(, 0).

Notice that the terms containing the third derivative cancel. Thus there appears the inequality

(20)

@1

(22)

(23)
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lproue.ol?, <e [ (1+) [ e @ e Fute, o farag

2
dr d&

A T 1 7 —i
1+1-§r)2 /‘;wr(oe Estfxu(é,t)

+e |

0o
we [
00
00

2
dr d&

(
(

o T] 1 ey,
1+|§|)2 /‘p_'_l!ﬂT(t)e “53’1€Fx(u”+1)(§,t)

00 2T 0 2T
<2c/(1+lél)2s f lfxu<s,r>|2drds+cf(1+|s|)2‘ / 6 Fx @) &, )| de de
—00 =27 —00 -2T

< 8T sup ”u(-,t)l?,s+4cT sup ”u”+1(~,t)||i1s+l.
t€[—2T,2T) te[—2T,2T]

It is now clear that the inequality (20) holds. The proof of part (ii) is obtained by adding the exponential weight
e??(I+lED to the £-integral in the proof of (i). O

Next, define a sequence of approximations to (1) as follows. Consider the initial-value problems
1
u;‘ + “‘;l{.t.t‘ =———0, [(nn * lrbSun)p-H],

p+1
" (x, 0) = up(x),

for n in N and § > 0 where 7, is defined via its Fourier transform to be
0, 2 2n,
fn(€) = I <!
L1 [§I<n,

and ), is smooth and monotone on (—2n, —n) and (n, 2n). Each n,, is therefore an entire function of exponential
type. The following properties of {u,} are evident since F, [d, (Mn * Ysu™P 1 is a smooth funetion with compact
support for (&, 1) € R x B,

@4

Lemma 5. (i) Letr > 0and ug € H", and let u be a solution of (1) with initial data ug that lies in C ([—28, 2S], H")
Jor some S > 0. For n =1,2,..., let u" be the solution of (24) with initial data ug. Then each u" lies in
C((—28,25), H"), and the sequence {u"™} converges to u in C([—S, S1, H"). In addition, the bounds in Lemma 4
hold for each u", uniformly in n.

(ii) An identical result holds in C ([—S, S], Go,r) provided ug € G, for some o > 0.

Henceforth, it is assumed that u is a solution of (1) in C([—4T, 4T, H**1) with initial data ug in Ggy 541 for
some og > 0 and s > % Note that Lemma 5 and (24) with T = § imply that

1
p+1

t
YrOu' = Y)W (t)uo — WT(t)f W (e = $)0x ([1n * (wru™)]"*') ds (25)
0

holds for all ¢ in (—o0, 00). This representation will reveal that Yru® isin X 5, for all n in N, Our goal now is to
show that there exists a o (T') and a suitable R(T') such that the sequence {yru"} lies in the ball Br(ry C Xo(Ty.5.b
of radius R(T) for n large enough.
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Proposition 2. Let T > 1,p > 2,00 > 0,5 > 5 3 and b = 2 + € for some € in the range 0 < € < 4 Suppose u

is a solution of (1) in C([—4T,4T], H”l) with initial data ug € Goy,s+1. Then there exist constants o1 < 0
and K > 0 depending on s,b, p, ||u0||(;a0's 1 and ar (u) (see (21)) such that the sequence {{yru"} is bounded in
Xo(T),s,b aS long as

o (T) < min{oy, KT~ @*+3P+2)], (26)

For the proof of this proposition, use will be made of the following 1nequa11ty which was proved by two of the
authors (Theorem 11 in [3]). It is worth note that the hypothesis s > 5 goes back to the seminal work of Kato
[13,14].

Theorem 3 (Bona—Grujic). Let u be the solution of (1) corresponding to the initial data ug € Goy,s+1 for some
og>0ands > %, and let T > 0. Then

(p+2)/2
sup [uC, 1) < NuollGy oy +CTY2 sup  uC, 0| et Q7
=, ]|I |G sn < ot ,E[_Zr_mll | o

with o (t) =oge™ "D, and

t t
1 n
y<t>=mf[d1+dzf||u(-,t )|
0 0

where di = ||u0||%;a ot and d, is a constant depending only on s and p.
(]

P
2
i dt"] dr’,

Notice that this theorem implies that

+2
sup y() <dstluoll, | +dac? sup [uC,0| AT (28)
te[—2t,21] te[—271,27]

where d3 =27 /(p+1) and dy = 22p dzp /(p + 1). With this estimate in hand, we can mount a direct attack on
proving the foregoing proposition.

Proof of Proposition 2. From Eq. (25), the linear estimates (5) and (7), and the multilinear estimate in Theorem 1,
it follows that

Y7 lloss < I¥rW@uollo,s.b +

WTfW(t—S)ax[(nn*wTu"(S))pH]

o,5,b

< T |0l Gy, + T |85 [(nn * wru"y’“]na,s,b,
<cT)ugllg, , + T {IlyruIP5" + o P lyru® 2]

o,s,b

for any 0 < o < 0g, where b’ = b — 1 + €’ for some €’ > 0 small enough, and for some large enough constant ¢
depending only on s, b and b’. Next, note that (see Lemmas 4 and 5)

rullsp < cTV2(1+ar @)’ < 2eTV2 (1 +ar )"

for n and ¢ large enough. Here, a7 () is as in (21). Thus, the first inequality in the proof may be extended to read

1)2 1
T losp < T2 lugllG, , + cTPH2(1+ar@) "™ +cToPlyru™|t (29)

o,5,b
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for n large and an appropriate constant c¢. The relation (29) holds under the presumption that 7 > 1. Additional
information about the boundedness of the sequence at 7 = 1 will now be provided by Theorem 3. To be more
specific, using (22), (23), Lemma 5, and the bounds (27) and (28), the norm can be estimated at T = 1 as follows.

p+1 p+1
118" a6 < (1 + Sup T, Ne,,,.)  <2(1+ Sup 0] oy )

D(p+2))/2
gf: Y(p+2)/ ) =M, (30)

1
<2el(1+ fuoll5), +C sup Jut,0)]
te[—-2,2]

for n large enough where o7 = oge™? (D and

p(p+2)
Hstl

y()=dslluolle  +ds sup [u(, o)
g te[~2,2]
Consider a slightly weakened version of (29), namely

1T lo @50 < M1+ T 40l G + T P2 (1 4 ar @)™ 4 cTo (P yruniZh ., @D
for T > 1,0(T) < 01 < 09 and n large enough. Fix n large enough so that (30) holds and define dependent
variables z, a and d by

2=2(T) = 1¥7u" lo(T).s5.6»

a=a(T) = My + cT"P|luglig,, ; + T P21 + ozT(u))(p+1)2 and

d=d(T)=cT.

With this notation, (31) becomes

z<a+do(T)/2zPH1, (32)

If o (T) is defined to be
52
d2a?r22p’

then (32) becomes

fe b
1)} =

~~

(o)

1

E,

where y = y(T) = %. It follows that by choosing § small enough for a given p, there are constants m* and M*
with % <m* <1 < M* such that either y < m* or y > M*. Because of (30) and the definition of a, z(1) < a, so

that y(1) < % < m*. Because ||¥ru” llo(Ty,s,» 1s a continuous function of T > 1, it follows that y<m* <1 forall
T > 1, which means that z(T') < 2a for T > 1. This yields the desired estimate with a constant K depending on p,
$, b, b, luoll Gy 4, and ar (). O

y(1—=68yP) <

Proposition 3. Let T > 1, p=1, 09> 0, s > % and b = % + € for some € in the range 0 < € < % Suppose u
is a solution of (1) in C([—4T,4T], H**YY with initial data uo € Goy,s+1. Then there exist constants o1 < og and
K > Odepending on s, b, ||ug ”szo,s+1 and ar (1) such that the sequence {Wrru"} is bounded in Xo(T),5,6 as long as

o(T) < min{oy, KT™'2}. (33)

Proof. Eg. (25), the linear estimates (5) and (7), and the bilinear estimate in Theorem 2 yield the inequality
Irulloso < cTV2luoll Gy s + T {lIWru™ 12, + o V4lyru |2, )

for an appropriate constant c. The proof now follows along the same lines as the proof of Proposition 2. 0O
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The estimates (26) and (33) provide the basis for the proof of the main theorem of the paper which is stated
next.
3

Theorem 4. (i) Let p > 2, and suppose that ug € Gg 511 for some s > 5 and o > 0. Let T > | and as-

sume that the solution u of (1) corresponding to the initial value ug lies in C([—4T,4T]), HSTYY, Then u €
C([—T, T, Go(ry2,5) where a(T) is given by (26).

(ii) Let p =1, and suppose that ug € Go 51 for some s > % and o > 0. Let T > 1 and assume that the solution
u of (1) corresponding to the initial value ug lies in C([—4T, 4T], HSY. Thenu e C([-T, T), Go(T)/2,5) Where
o (T) is given by (33).

Proof. It follows from Propositions 2 or 3 and inequality (2) that the sequence {u"} associated with ug as in (24)
is bounded in G4 (1), 5, uniformly on [T, T']. Proposition 1 then implies that all the spatial derivatives of u" are
bounded on the strip S, (T)/2,5- Since each u” satisfies Eq. (24), the time derivatives of u” are also uniformly
bounded on the strip Sg(7)/2,s-

Thus, in particular, {3,#"} and {Bfu"} for k =0, 1,2, 3 are equicontinuous families on (—T, T) x Sy (7)/2 and
we can therefore extract a subsequence (call it {#"} again) converging uniformly on compact subsets of (=T, T) x
So(1)/2 — along with the sequences {8;u"}, {0xu"} and {33 u"} — to a smooth function #. Passing to the limit in (24)
reveals that & is a smooth extension of u to (—T, T) X Sg(r)/2. Moreover, since for every t € (=T, T), u"(-, 1)
converges uniformly on compact subsets in Sy (7,2 to i(:, t), and each u” (-, t) is analytic on Sg(1)/2, #(-, t) is also
analytic on Sy (/2. In addition, since the sequence {u"} is bounded in G4 (r)/2,s, Uniformly on [T, T, it follows
thatu =it € Loo((—T, T), Go(T)/2,5)- This combined with the local-in-time well-posedness obtained in [10] yields
ueC(-T,T], Go(T)/2.5)s 88 advertised. 0O

This theorem has some interesting consequences. First, suppose that [|u(:, )]l ys+1 is bounded for all time. Then
Theorem 3 can be strengthened to yield the following.

Corollary 1. Let p > 2, and suppose that ug € Gg 511 for some s > % and o > 0. If SUP;¢(—o0,00) lu(, )| gs+1 £ C,
thenforall T > 1, u € C([-=T,T1, Go(T)2,s), where o (T) is given by (26). The same result holds for p =1, but
o (T) is given by (33).

In fact, for p =1 or p =2, all the integer Sobolev norms remain bounded owing to the well known infinite
sequence of polynomial conservation laws. Thus the following corollary emerges.

Corollary 2. (i) For p = 1, suppose that ug € Gor+1 for some integer k>2 and o > 0. Then u €
C(-T,T1, Gory2,k) forany T > 1 where o (T) is given by

o (T) < minfoy, KT™'2}.

(ii) For p =2, suppose that ug € G k+1 for some integer k > 2 and o > 0. Thenu € C([-T,T], Go(1)/2.x) for
any T > 1 where o (T) is given by

o (T) < min{oy, KT}

Note that in both cases, the constant K depends only on k, p and |uollG, ., s well as on the choice of b
and b’

Time-independent bounds on Sobolev norms of solutions of (1) in case p = 3 are known only for H 1 However,
solutions are globally defined. On the other hand, for p = 4 there is a finite-time blow-up [19]. Strong numerical
evidence supplemented with scaling arguments indicate that some solutions may lose regularity in finite time for
p > 4 [1,2,4]. Consequently, assuming finiteness of a certain Sobolev norm when p > 3 seems necessary for
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studying global-in-time analyticity of solutions. According to Corollary 1, uniform-in-time H”-boundedness for
some r > 3 suffices. The following theorem due to Staffilani implies that this can be scaled down to uniform-in-

time H!-boundedness.

Theorem 5 (Staffilani). Let p > 3 and s > 1. Assume that for a solution u of (1) SUP;e(—c00,00) 14 )l g1 < C.
Then there exists a constant c(s, p) such that the estimate

G, O]l s < s, PYA +121)"

holds for all t in (—o0, 00).
More precisely, Corollary 1 and Theorem 5 yield the following result.

Corollary 3. Let p > 3 and suppose that ug € G, 541 for some s > % and o > 0. Assume that for a solution u of
(1) emanating from u, SUD; (—c0,00) 14 G Ol g1 < C. Thenu € C([~T, T1, Go(1))2,5) for any T > 1 where o (T)
is given by

o(T) <min{oy, KT™#EP},

with i (s, p) = (p* + 3p+2)+2p(p + 1)3s, and the constant K depending only on s, p and luollG, 4, and on
the choice of b and V'

Noting that indeed the H!-norm stays bounded for all time if p = 3, the final corollary emerges.

Corollary 4. Let p = 3 and suppose that ug € Go,s+1 for some s > % and o > 0. Then there exists a solution
ueC(-7,T], Go(y/2,5) of (1) forany T > 1, where o (T) is given by

o (T) < minfoy, KT720-%},

Also in this case, the constant X depends only on s and luoll Gy, » as well as on the choice of b and b’

This paper has been concerned with the question of lower bounds on the uniform radius of spatial analyticity o .
The question of upper bounds is currently being studied by the authors using a completely different method,
based on finite-time blow-up results for certain complex-valued solutions for a large class of nonlinear dispersive
wave equations presented in [5]. If such upper bounds could indeed be proved, the complex singularities would
be confined between the lower and the upper bounds. This would yield a much more precise description of the
dynamics of complex singularities in time.
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