COMPARISONS BETWEEN THE BBM EQUATION
AND A BOUSSINESQ SYSTEM

A. A. ALAZMAN2, J. P. ALBERT?, J. L. BONA®, M. CHEN* AND J. WUS®

1 Department of Mathematics, University of Oklahoma,
Norman, OK 73019
2 College of Sciences, Department of Mathematics,
' King Saud University,
. Riyadh, 11451, Saudi Arabia
3 Department of Mathematics, Statistics and Computer Science, -
University of Illinois at Chicago,
Chicago, IL, 60607, USA
4 Department of Mathematics, Purdue University,
West Lafayette, IN 47907, USA
5 Department of Mathematics, Oklahoma State University,
Stillwater, OK 74078

Abstract This project aims to cast light on a Boussinesq system of

~ equations modelling two-way propagation of surface waves. Included

in the study are existence results, comparisons between the Boussinesq
equations and other wave models, and several numerical simulations.
The existence theory is in fact a local well-posedness result that be-
comes global when the solution satisfles a practically reasonable con-
straint. The comparison result is concerned with initial velocities and
wave profiles that correspond to unidirectional propagation. In this
circumstance, it is shown that the solution of the Boussinesq system
is very well approximated by an associated solution of the KdV or
BBM equation over a long time scale of order %, where ¢ is the ratio of
the maximum wave amplitude to the undisturbed depth of the liquid.
This result confirms earlier numerical simulations and suggests further
numerical experiments which are reported here.
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1. INTRODUCTION

In this report, attention will be directed to the pure initial-value
problem (IVP) for a Boussinesq system of partial differential equations,
namely

| 1
N + Uz + 6(77’0)3; — = Mgzt = 07
1D °
' 1
Vg + Mg + €VV; — gevmt =0.
The equations (1.1) are posed for (z,%) € R X R*, with prescribed
initial data ' '

(1.2) n(z,0) = m(z), v(z,0)=1w0(z), zeR

This system describes approximately the propagation of certain classes
of surface water waves in a uniform horizontal channel filled with an
irrotational, incompressible and inviscid liquid. The dependent vari-
ables n(z,t) and v(z,t) represent the dimensionless deviation of the
water surface from its undisturbed position and the horizontal velocity
at the level of 1/2/3 of the depth of the undisturbed fluid, respectively.
To make non-dimensional variables which are order-one quantities, 7
is scaled by a, the typical height of the waves being modelled, and v
is scaled by ag/co, where cp = V/ghg, with g being the acceleration of
gravity and hg the depth of water in its quiescent state. The coordi-
nate z which measures distance along the channel is scaled by A, the
average wave length, and time ¢ is scaled by A/co. The small coefficient
¢ represents the ratio between the wave height a and the water depth
ho. In equation (1.1), the Stokes number 5 = a)?/h3 is taken to be
exactly 1 for notational simplicity. One can replace the constant % by
%S for general values of S. In any case, it is part of the assumptions
leading from the Euler equations to (1.1) that 5 is of order one.

One of the advantages that (1.1) has over alternative Boussinesq-
type systems (see Bona, Chen & Saut [6]) is the ease with which it
may be integrated numerically. In the earlier study [5], it was observed
that certain solutions of the two-way models (1.1) behave very much
like solutions of the unidirectional BBM model

1

3
(13> Gt + Gz + §Eq(h - EEmet = 0.



BOUSSINESQ AND BBM COMPARISONS 3

In this paper, a result is established showing that if the motion in
the channel is properly initiated, then the solution of the Boussinesq
system (1.1)-(1.2) exists and is tracked by a directly associated solution
of the BBM equation (1.3) over the long time scale ¢. In light of the
work of Bona, Pritchard, and Scott [8] comparing solutions of the BBM
equation to solutions of the KdV equation

3 1
(1.4) T+ Tz + -2—67"7"9c —+ germm =0,
this result is equivalent to a comparison between solutions of (1.1) and
(1.4) (see Theorems 3.1 and 3.4 below).

Our analysis begins with a study of the well-posedness of the initial-
value problem (1.1)-(1.2). An informal interpretation of the principal
result is that as long as the channel bed does not run dry, the solution
continues to exist. A technical description of this result will appear in
Section 2.

The statement and proof of the main comparison result are given
in Section 3. This section also contains a brief discussion of the re-
semblance between this result' and others which have appeared in the
recent literature (e.g., Schneider and Wayne [18]).

Motivated by the theory developed in Section 3, accurate numeri-
cal experiments are reported in Section 4. These are used to further
illuminate the relation between the Boussinesq system and the BBM
equation.

The paper closes with a brief conclusion which provides an appreci-
ation of the present development and indications of interesting related
lines of investigation.

2. WELL-POSEDNESS RESULTS

We begin with a précis of the notation to be used in the technical
sections of the paper.
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For 1 < p < oo, the space of equivalence classes of Lebesgue mea-
surable, p*-power integrable, real-valued functions of a real variable is
denoted L,. The usual modification is in effect for p = co. The norm
on L, is written as || - ||z,. For f € Ly, the Fourier transform Fof fis
defined as -

Foy = [ (e do

—00
For s > 0, the Lo-based Sobolev class H® is the subspace of those Lo
functions whose derivatives up to order s all lie in Ly, and the norm
on H*® is given by

2= [ 0+ RyITR de

—co

For non-negative integers m, CI" is the space of m-times continuously
differentiable, real-valued functions of a real variable whose derivatives
up to order m are bounded on R. The norm is

I fllop =sup Y |f9()].
z€ER 0<j<m
For any Banach space X and T > 0, C(0,T; X) is the class of continu-
ous functions from [0,T] to X. If X = Ly, we write Lr for C(0, T} Ly).
Similarly, we write B for C(0,T;CF) and Hg for C(0, T H* k =
1,2,---. Of course, H} = L. If X and V are Banach spaces, then
their Cartesian product X x Y is a Banach space with norm defined

by [I(f, 9)llxxy = [ fllx + llglly-

Attention is now turned to the well-posedness theory. The principal
result is the following.

Theorem 2.1.

(i) Let (0,v0) € H* x H*, where k > 0. Then there exists T > 0,
depending only on ||(no, vo)|lmsx e, such that a solution pasr (n,v) €
HE x HE emists for the system of integral equations (2.2) below. If
k > 2, then (n,v) is a classical solution of (1.1)-(1.2). There is only
one solution to (2.2) in HE x HE, and the mapping that associates to
initial data the corresponding solution of (2.2) is continuous.

(ii) The conclusions of (i) still hold if H k is replaced by Cy*, where
m > 0, and HE is replaced by BF. In this case, (n,v) is a classical
solution of (1.1)-(1.2) if m > 1.
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(i) Let To € (0,00] be the mazimal ezistence time for the solution
described in (i); i.e., To 1s the supremum of the set of values of T' for
which the solution exists. If there exist numbers o > 0 and a € R such
that

1+en(z,t)>a

for allz € R and all t € (a,Tp), then To = oo. Also, if there exist
numbers M € R and a € R such that

H("?’v)llL2XL2 <M
for all t € (a,Tp), then To = 0.

Remark 2.2. The condition 1+en > 0, when interpreted in the original
physical variables, means simply that the total water height does not
reach zero, which is to say the channel does not become dry.

The proof of Theorem 2.1 is similar to the proofs given for analogous
results in [3] or [5]. For completeness, however, we indicate some of the
details here.

To begin, write the system (1.1) in the form

(1 - éeaf;) m == (1 +em),

1 €
(1 — 6682) Ve = — (7’] + -2"02>x .
Inverting the operator (1 — %e@ﬁ) subject to zero boundary conditions
at infinity leads to the relations
e = Mex (v(1+ )z,

(2.1) v = M, * (n _‘_%,Uz)z,

where the kernel M, is defined via its Fourier transform, viz.

— —1

MR = 176

Direct calculation using the Residue Theorem shows that for z € R,

M(z) = —71\/;—\/%4_
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Integrating by parts in (2.1) and then integrating with respect to ¢t over
the interval (0,%) yields

n(z,t) = no(z) + /Ot K. * (v(1+en)) dr,

(2.2) .
v(z,t) =vo(z) + | Ke* (77 + Evz) dr
) 0 € 2
where
_3 —\/6dlz] iy -
K, = E(sgn:n)e and K.(k)= T k26"

Estimates of the result of convolution with K. will be needed right
away. Similar estimates of the result of convolution with M, will find
~ use later. For any f € H® where s > 0, one has that

(2.3) 1K flls < Ce £le-

(Here and in what follows, C' denotes various constants which are in-
dependent of € and f). This follows from a direct computation; viz.,

1K 72 = [ :u YR TR dk

- [" R e R ak < (sup RGP ISIE

-0

Similarly, for any s > 0 and f € H?,
(2.4) [IMex flls < Cl| £l

In particular, if one is willing to sacrifice smoothness, then (2.4) implies
that
1K * flls < Clifllsra:

Furthermore, for any f, g € La, Young’s inequality gives

(2:5) K * (F)lzs < IKellzallf9llzy < Ce I fllzallglza-

Finally, we observe that if f € Cf*, m >0, then K f € Cy also, and
estimates analogous to (2.3) and (2.5) hold; namely,

(2.6) 1K * fllep < 1Kz iflop < Ce2 | fllop
and
@7 K (f9)llep < 1Kz Ifglicp < Ce2Ifllopllgliop-

These are easily established by differentiating under the integral which
defines K, * f.
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The proof of part (i) of Theorem 2.1 will now be considered. Let
T > 0 be arbitrary for the moment, and write the pair of integral
equations (2.2) symbolically as (7,v) = A(n,v), where A is the obvious
mapping of functions defined on R x [0, T]. It will be shown that the
mapping A is contractive on a suitable subset of Lr x Lr. Indeed, take
any two elements (11,v;) and (72, v2) from L7 X Ly, and notice that

| A(n,v1) — A2, v2) |l coxcr

t
/ K. * (v; — vg + €(muy — 12v2))dT
0

Ly

t
1
+ / Ke*(m—mn2+ EG(U% — v3))dT
0

L
Apply the basic estimates (2.3) and (2.5) to derive the inequality

| A1, v1) — A(n2,v2) | coxcr
< O [“Hon — valeq + €b(Im = mlle e + Il los = alles)]

+ 0T [ m = malles + ek (loallen + osllen)lor — wale |

< CTG_% [1 + l|(771,111)l|zT><cT + |1(772)U2)H£T><£T] X
| (71, v1) — (12, v2) |l £tz

Suppose that both (71,v1) and (12, vs) are in the closed ball Bg of
radius R about the zero function in £ X L. Then, the last estimate
leads to the inequality

(2.8) [ A1, 91) = A(m2, v2)llerxer < Ol 1) = (02, v2) lerxcr

where © = CTe 3(1 + 2R). If © < 1 and A maps Bg to itself, then
the hypothesis of the contraction mapping theorem will be satisfied.
By application of (2.8),

1AM, V)l erxer < O, 0) | coxer + [Im0llzz + llvollz, < ©OF+0.
Thus if b < (1 — ©)R, then A maps Bg to itself. Choosing R = 2b
and T' = %6%(1 + 2R)7! gives a set Br in Lr X Lr on which A is a
contractive self map. This proves existence in Lr x Lz for some T>0.

Next, observe that it follows from the definition of K. that if f € HF,
then K. x f € H**'. Therefore a standard bootstrap type argument
allows one to conclude that if (2.2) has a solution in Ly X Ly with
initial data in H* x H®, then the solution is in fact in H x H5.
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Moreover, the continuity of the solution map follows easily from the
simple dependence of the operator A on the initial data. Indeed, further
analysis shows that the solution map is analytic.

The question of uniqueness is now considered. Let (m;,v;) and
(12, vs) be two solutions of (2.2) in L7 X Lr, and let

(n,v) = (1, v1) — (12, v2).

The pair (1, v) satisfies the integral equations
: t
n= / K * (v1 — va + €(mor — M202)) dT,
0

t
1
v = / Kes(m—mn2+ 56("’% —v3)) dr.
0

As in the proof of the existence result, the following estimate obtains:

_1 ¢
1009 zaeza < O [ {1410 w0 lzaeza + 0o
0

|(m,v1) = (02, v2) || axz, AT

t
SDA”WMMMM%

where D is independent of ¢ € [0,7]. Gronwall’s Lemma then implies
that n = 0 and v = 0 on [0,T7], so proving uniqueness. The proof of
part (i) of the Theorem is now complete.

For part (ii), we merely note that in view of (2.6) and (2.7), the same
contraction-mapping argument yields local existence for initial data in

™ and the same uniqueness argument applies as well. (Note that
bootstrapping does not work in the context of CJ*, since it is not true
that f € C}* implies K. * f € Cy*t1. The necessity for bootstrapping is
avoided, however, if one establishes the contraction mapping directly
in CI™ rather than in C}.)

The global existence result stated in part (iii) of Theorem 2.1 depends
on the invariance of the functional

[ee]

E(t) = E(n,v,t) = / [7? + (1 + en)v?] da.

-0
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Lemma 2.3. Let (n,v) be a solution pair of the initial-value problem
(1.1),(1.2) in HE x HE, k >0, orin Bf x Bf, m > 0. Then E(t) =
E(0) for allt €[0,T].

Proof. Assume first that (n,v) is sufficiently regular for the following
formal calculations to be valid; say, (n,v) € (H: x HL) N (BE x B.).

Multiply the first equation in (1.1) by (n+ 2ev® — tevy) and the second

by (v-+ €un— 3€ng:), add them, and integrate with respect to « to reach
the relation

/oo +Evz—lev +v |v+ev —le dz
o e | 5 g et t Ui 6 TNzt

o € 1 1
=—/_oo<|:77+§v2—gevmt] [vﬂ—evn—ge:nzt})mdx:&

Regroup the terms on the left-hand side to obtain

> /1 1
(29) / (_2_ [772 -+ (1 + en)vz]t —_ 66 [T]{Umt + 'Ut')?g;t]) dx = 0.
Since

(e} o
/ [Nt + Veat] d = / (nevt)z dz =0,

it follows from (2.9) that
i o
).,

and hence E(t) = E(0) for all t € [0, T].

[7% + (1 + en)v?] dz =0,

Now suppose that (1, v) is, say, a solution in H% x HE with & > 0.
We can approximate (ng, vo) by regular initial data (no;,vo;) and thus
obtain solutions (n;,v;) on [0, T’ to which the above calculation applies,
and which, by Theorem 2.1(i), approximate (n,v) in H% x H%. The
desired result then follows by passing to the limit. Il

Remark 2.4. The functional E, together with the functional

F(t) = Fno,0) = |

—

(o]

|:77'U + %nzvzil dz,

and the obvious conserved quantities

/ndx and / v dz
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comprise the only known invariants for the system (1.1). Note that one
obtains the invariance of F by multiplying the first equation in (1.1)
by v and the second equation in (1.1) by 7, adding the results, and
integrating with respect to .

The simple idea exposed in the proof of Lemma 2.3 can also be used
to obtain an invariant for a more general type of Boussinesq system.

Corollary 2.5. Consider the following four parameter class of model
equations
P + Ug + (un)m + QUgge — b'r]:mt =0
and
Ug + Ny + Ulg + Cllzgz — dtzgt = 0.
If b=d, then for sufficiently regular solutions (n,u), the quantity

G(t) = / [ 4+ (1 +n)u® — e — auz] dz

-0

is invariant, i.e., G(t) = G(0) for allt > 0.

Remark 2.6. This class of model equations was put forward by Bona,
Chen and Saut [6] as approximations of the two-dimensional free sur-
face Buler equations for the flow of an ideal, incompressible liquid. In
this context, a, b, c and d are not independently specifiable parameters.

The proof of part (iii) of Theorem 2.1 now proceeds by means of the
usual continuation-type argument, as follows. Suppose that 1 +en >
o> 0foralzeRandallte (a7 According to Lemma 2.3, for
(G = max{1,a"'}, we have

Il + i, = [ (a2 +0?) do < BEE) = 8O

for all ¢ € (a,Tp). Now the local existence result stated in part (i) of
the Theorem implies that if (1.1) is posed with initial data (1(to), v(to))

satisfying
In(to)lI7, + lo(to)liz, < BE(0),

then a solution persists in Ly X Ly on the time interval (to, to+0), where
§ depends only on BE(0). If Ty < oo, one can choose o > min(a, To —
§), and thereby obtain an extension of the solution to [0,%0 + ). A
bootstrap argument then immediately yields that this solution is in
fact in H 5% HE .5 But this contradicts the maximality of Tp. Hence
we must have Tp = oo. Obviously, the same argument also shows that
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To = co under the assumption that ||(n, v)||r,xz, Stays bounded near
To.

3. THE COMPARISON RESULT

It is shown in [3] that the BBM equation (1.3) with initial condition
q(z,0) = g(z) has a unique global solution ¢ € C([0,00), H®) if g € H*
with s > 1. Moreover, for each T' > 0, the correspondence g — ¢ is a
continuous mapping of H® to C([0,T]; H®) while, if [ > 0, the corre-
spondence g — Olg is a continuous mapping of H* to C([0, T7; H*+).
This result was recently improved to include the range s > 0 in [11].

The question that comes to the fore now is: under what circum-
stances can solutions of the Boussinesq system (1.1) be approximated
using the solutions of the BBM equation? Another way of putting the
question would be to ask what combination of initial data (7o, vo) for
(1.1) generates a solution (n,v) such that 7 is well tracked by the so-
lution ¢ of the BBM equation with initial data ¢(z,0) = mg. At the
lowest order, we expect that if vg = —n), then the wave moves mainly
in one direction (see the discussion in [4]). However, the analysis in
the last-quoted reference suggests that this simple imposition of initial
data for (1.1) would not yield a solution which agrees closely with that
of the BBM equation on the time scale over which nonlinearity and
dispersion can have an order-one relative effect on the wave profile.
Rather, one expects to have to correct the lowest-order approximation
of the relation between amplitude and velocity at higher order to see
the Boussinesq system evincing truly unidirectional propagation. It
turns out that the appropriate relation between the initial amplitude
and velocity is given by

31 a(@0)=g() wd o0 =g) - zeo(a)

where g is an arbitrary function of sufficient regularity.

Indeed, solutions of the initial-value problem for the Boussinesq sys-
tem closely resemble an associated solution of the BBM initial-value
problem over a long time interval, as the following result shows.
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Theorem 3.1. Let 5 > 0 be an integer. Then for every K > Q,
there exist constants C and D such that the following is true. Suppose
g € HI*5 with ||g||j45 < K. Let (n,v) be the solution of the Boussinesq
system (1.1), with initial data defined by (8.1), and let q be the solution
of the BBM eguation (1.8) with initial data q(z,0) = g(z). Define w
by

(3.2) w=q-— ieqz.

Then for all € € (0,1], if

(3.3) 0<t<T=De",

then

(3-4) In(-,) = a5 B)lls + o (-, 8) —w(, B)ll; < Ce.

Notice that included as part of Theorem 3.1 is the assertion that the
Boussinesq system has a solution in H$ x H$ at least for T = D/e.

When combined with the basic inequality

1 1
1fllzee < AN, 11120y
valid for any f € H*(R), Theorem 3.1 yields the following.

Corollary 3.2. Let s > 6 and j € [0,s — 6] be integers. Then for
every K > 0, there exist constants C and D such that the following 1s
true. Suppose g € H® with ||g|ls < K. Let (n,v) be a solution of the
Boussinesq system (1.1), with initial data (1.2) defined by (3.1); let ¢
be the solution of the BBM equation (1.8) with q(z,0) = g(z); and let
w be defined by (8.2). Then for all € € (0,1], if

0<t<T=De?,
then
1820 — @) (-, )| ooty + 18(0 = W) (-, D)2y < CE-

Remark 3.3. This result shows that, under the stated restrictions on
the initial data for (1.1), solutions of (1.1) and (1.3) agree with each
other to an accuracy equaling the size of the terms which were ignored
in deriving (1.1) as model equations from the Euler equations. The
comparison is shown to hold on a time scale of order 1 /€, which is

long enough for nonlinear and dispersive effects to have an order-one
influence on the wave form.
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In our discussion thus far, we have focused on the BBM equation as
2 model for unidirectional surface waves because it lends itself easily
to the numerical investigations described below in Section 4. Formally,
however, the KdV equation (1.4) is at least as valid a model for uni-
directional surface waves. In fact, a comparison theorem similar to
Theorem 3.1 also holds for KdV.

Theorem 3.4. Let j > 0 be an integer. Then for every K > 0,
there exist constants C and D such that the following is true. Suppose
g € HI*5 with ||g|lj+5 < K. Let (n,v) be the solution of the Boussinesq
system (1.1), with initial data defined by (8.1), and let r be the solution
of the KdV equation (1.4) with initial data r(z, 0) = g(x). Define z by
(3.5) Z2=71— l67"2.

4
Then for all € € (0,1}, if
0<t<T=De,
then
(3.6) (-, 8) = (D)l + o 2) = 2, )l < Ce%.

Implicit in the statement of the preceding theorem is the assumption
that KdV is well-posed in H°. Although the well-posedness theory
for KAV is somewhat more involved than that for BBM, global well-
posedness of KdV in H® has now been proved for values of s down to
s = 0 and below. See for example [10, 12, 16].

The proof of Theorem 3.4 is given below in Subsections 3.1 and 3.2.
Once Theorem 3.4 has been proved, one then immediately obtains The-
orem 3.1 as a consequence, by virtue of the following result comparing
solutions of (1.3) to those of (1.4).

Theorem 3.5. Let j > 0 be an integer. Then for every K > 0 and
every D > 0, there exists a constant C > 0 such that the following s
true. Suppose g € HItS with |\gllj+s < K. Let q be the solution of
the BBM equation (1.8) with initial data g(z,0) = g(z) and let T be
the solution of the KdV equation (1.4) with initial data r(z,0) = g(x).
Then for all € € (0,1], if

0<t<T=De,
then
(3.7) g, 8) = ()l + ell? () = 2 (L p)lly < Cet.
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Indeed, (3.4) follows immediately from (3.6), (3.7) and the triangle
inequality, in view of the definitions of w and z. Theorem 3.5 is taken
from [8], where it is proved in a different form. For the reader’s conve-
nience we indicate some of the details of the proof in the Appendix.

We remark that it is also possible to prove a comparison result for
(1.3) directly, without first proving Theorem 3.4. See [1] for details.

Theorems 3.1 and 3.4 are reminiscent of some interesting recent re-
sults of Craig [13] and Schneider and Wayne [18] comparing bidirec-
tional solutions of the full Euler water-wave problem to solutions of the
unidirectional KdV equation. In these papers, the water-wave problem
is treated in unscaled variables, with the long wavelength and small am-
plitude of solutions appearing as small parameters in the initial data,
rather than in the equations themselves. In such variables, the model
Boussinesq system (1.1) takes the form

. e 1.
iy + U + (10)g — g ot = 0
(3.8)

e s 1.
UVt + Ny + VU — E'Ua:a:t = 0.

After rescaling (3.8) into the variables used in the present paper, and
applying Theorem 3.4, one obtains the following result.

Theorem 3.6. Suppose g € H® with s > 6. Then there ezxist constants
C >0 and D > 0 such that the following is true for all € > 0. Let Ef

be the solution of
3

1
| E, 4+ EEEQC + gEmm =0

with E(z,0) = g(z), and let (7},7) be the solution of (8.8) with fi(z, 0) =
2g(ex) and 9(z,0) = e2g(ex) — ze*g(ex)®. Then for allt € [0, D/€%,
we have

15(-, £) — € E(e(- — 1), €*t) || seom) < C€'t

15(-,t) — EE(e(- — t), ) | Leo(m) < Ce't.
In particular, for all t € [0,D/€%], we have

(-, 2) = €E(e(- = 1), )l zoo@y < ODe*
(-, t

(3.9) eF
' 13(-,2) — @E(e(- = ), )| ooy < CDe*.
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This result has a form similar to that of Corollaries 1.2 and 1.5 of
[18], for example, where solutions of the full water-wave problem are
compared to those of KdV. Notice that the power of € on the right-
hand side of 3.9) is larger than that appearing in the corresponding
results from [18]. However, Corollaries 1.2 and 1.5 of [18] have the
advantage that they allow the constant D appearing in the time interval
of comparison D/e® to be taken arbitrarily large, if one assumes that € is
sufficiently small. This means that, for example, the time interval can
be made long enough to include soliton interactions. By contrast, an
examination of the proof of Theorem 3.4 below shows that it does not
allow one to take D larger than a certain fixed number which depends
on g. (We remark on the other hand that the analogous constant D
in Theorem 3.5 can also be taken arbitrarily large. Thus Theorem
3.5 implies the existence of solutions of BBM which look like n-soliton
interactions.)

We now turn to the proof of Theorem 3.4, which will be accomplished
in two stages. In Subsection 3.1, the proof of Theorem 3.4 is considered
in the case j = 0. The detailed analysis of this case points the way to
the general case. Moreover, the general case, established in Subsection
3.2, is made by an induction argument wherein the result for j =0 is
the starting point. '

3.1.  Proof of Theorem 3.4 in the case j =0

One easily verifies that r and z satisfy the equations

1
7+ 2g +€(12)g — G Tamt = —€2GH,

1
2+ 7o+ €225 — & Zoat = — Gy — G5,
where
3 1 1

Gl = Z T2Tx - Z(Trm)mm - B_észmmza

1 1
Gy = —ﬁ TT gz — ﬁ (Tz)zzt,

1
G3 = -3 r3ry.

Interest naturally focuses upon the differences

m=n—r and n=v—2
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which satisfy the equations

1
Mt + 1g + €(mn)z + €(rn)e + €(zM)e — & €Mast = &G,
(3.10) .
ne + mg + e(nng) + €(zn); — g EMomt = &CGq + €8G5,

and have initial data given by m(z,0) = n(z,0) =0.

Multiply the first equation in (3.10) by m and the second by n, add
the results, and then integrate over Rx [0, ¢]. After suitable integrations
by parts, there appears the formula

(3.11)
1 [ 2 1 1
5 /_oo {mz +n?+ gemi + 667’112} dx

=— e/ot /:; (m(mn)z + m(rn)e + m(zm)s + n’ng +n(zn),) dz dr

t o] t 00
+ 62/ / (mG1 +nGs) dz dT + 63/ / nGs dz dT.
0 J—oo 0 J—o0

The idea is to derive from (3.11) a differential inequality that will im-
ply the desired result via a Gronwall-type lemma. The argument put
forward below for accomplishing this requires e-independent bounds on
r and its derivatives, as furnished by the following Lemma.

Lemma 3.7. Let s > 1 be an integer. Then for every K > 0, there
exists C > 0 such that the following is true. Suppose g € H? with
lglls < K, and let v be the solution of the KdV equation (1.4) with
initial data r(z,0) = g(z). Then for all e € (0,1] and allt >0,

Irlls < C.

Also, for évery integer k such that 1 < 3k < s, one may further assert
that

1657 ]ls—3x < C.

This familiar result is a consequence of the existence of infinitely
many conservation laws for KdV, together with the arguments put
forward in [10]. Details are provided in the Appendix so this side issue
does not distract from the main line of argument.
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We remark that it follows immediately from Lemma 3.7 and (3.5)
that 7, z and their derivatives in z up to order 5 are bounded in Lo
norm by constants which depend only on K, and which in particular are
independent of t and e. In what follows, we will use this fact without
further comment, denoting all occurrences of such constants by C.

Define the quantity A(t) to be the square root of the integral on the
left-hand side of (3.11); viz.,

o0 1 1
A%(t) = / [m2 +n?+ Eemi + Eeni dz.
—00

From this definition it is obvious that for all ¢, we have
Imllz, < A®) and |mells, < Ce 2 A).
Because of the elementary estimate
I, < lImlizallmellz,,
it then follows also that
[mllze, < CET2A().

Of course, the same estimates hold for n.

Now rewrite (3.11) as

1

(3.12) §A2(t) =L+ L+ I3+ 14

where

t 0 t o]
I = —e/ / m(mn), de dr = e/ / nmm, dz dT,
0 J—c0 0 J—oo
t 0 i (o)
I = —6/ / m(rn), de dr = e/ / rnm, dz dr,
0 V-0 0 —00
t [e%9)
—e/ / [m(zm), + n(zn)e] dz dr
0 —o0
€ t 00 :
= ——/ / zz(m? +n?) dz dr,
2 0 J—-0

t o t oo
I = 62/ / (mGy +nGs) dz dT + 63/ / nGs dz dr.
0 J—o0 0 —00

I3
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Three of these quantities may be easily estimated as follows:

t t
(313) L<e / [z [l za e 2, dr < Cet / A3(r) dr,
0 0

t
I; < Ce/ A?(1)dr,
0
and

t t
I, < C’ez/ A(T) dr + C63/ A(r) dr.
0 0

It remains to estimate I5. This apparently simple task is complicated
by the requirement of not losing a factor of e%, as this would lead to
an inferior result to that stated in the theorem. Indeed, if one were to
make the obvious estimate

t
(3.14) I, < Cet / A2(7) dr,
0

the best one could then do using Gronwall’s inequality would be to
establish a close comparison on a time interval of order e‘%, rather
than on the desired interval of order e~*. Here instead of (3.14) we will
use the considerably less straightforward estimate

(3.15) I < Ced®(t) +C /0 t |CA(T) + ed?(r) + 24%(7)] ar.

To prove (3.15), we begin by multiplying the second equation in
(3.10) by rn and integrating over R X [0, ¢] to obtain

t o0
// rnmg dz dr = Ki + Ky + K3 + K4 + K,
0 J—~o0
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t [e%e}
K= —/ / rnng dz dT,
0 J—-o0
t poo
Ky = -—e/ / rn?n, dz dr,
0 -0
T o0
K3 = —e/ / rn(zn), dz dr,
0 —00

1 t o)
Ky=-c¢ / / PNz AT dT,
6 0 —00

T o]
Ky = 62/ / (Gorn + €Gsrn) dz dr.
0 —00

where

19

To estimate K7, integrate by parts with respect to ¢ and use the fact

that n(z,0) = 0 to derive

: 1 t s} 1 o]
K, = —/ / ren? dx dr — —/ r(z,t)n*(z,t) dz.
2 0 J—o0 2 -0

In consequence, one has that
t
(3.16) Ky| < C / A%(r) dr + CA%(t).
0

For K,, one has that

(3.17)  |Ks| < 06/0 llze iz I allz, dr < Cet /Ot A%(r) dr.

The third integral, K3, may be rewritten as

i o]
K = %/ / (rez — rzg)n? d dr,
0 —00

whence one obtains
t
(3.18) |Ks| < Ce / A2(7) dr.
0
The estimate for K5 is also straightforward; viz.,

(3.19) |Ks5| < Cé? /Ot |n||z, dr < Cé? /Ot A(r) dr.
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The fourth integral Ky is more complicated. Start by writing

1 t o
K, = ——e/ / (rn)zng dz dT
6 0 J—o0
l t [e%s} 1 t [e%)
= ——e/ / TNgNgt AT AT — —e/ / TeMNg dx dT
6 0 J-o0 6 0 —0

= Ky + Ky,

say. Using again the fact that n vanishes at ¢t = 0, we have

K41_——5// ¢ dz dT
=_Ee/ r(z,t)n (xt dm—I——e// ’I“tn dz dr,

and it follows directly that

(3.20) |Kq| < CA%(t) + C/t A*(7) dr.

For Kys, integrate by parts in z to get

1 t poo 1 t poo
Ky = - 6/ / TexN dT dT+= 6/ / Mgy AT AT = Kyo1+Kyoo.
6 0 —00 6 0 —00

Now for Kyo1, integrate by parts with respect to t as for K7 to reach
the inequality

¢
(3.21) K| < Ced A2(t) + Ce / A%(7) dr.
0
(In obtaining (3.21), one uses Lemma 3.7 to obtain a bound for ||7ze||
which depends only on K.)

To obtain an effective bound on Kygz, write the second equation in
(3.10) in the form

(3.22) ne = K¢ % (m + §n2 +ezn) — M, * (€Gq + €Gh).

This formulation is obtained just as for the differential-integral equa-
tions (2.1) by first inverting (1 — £62) and then integrating the terms
involving my, enn, and €(zn), by parts. Using the form (3.22) for n; in
K495 and applying the elementary inequalities (2.3) and (2.4) connected
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to convolution with K, and M., we derive that

(3.23)
t

K| < Ce / Iallzalinelz, dr
0

t
€
< Ce [ Inalla [ + S0+ eonli, + @1Gallzs + €1 Gslzs] dr
0
T
<c / [EA() + 42(r) + (7)) dr.
0
Adding the inequalities (3.20), (3.21), and (3.23) leads to the bound
' t
(324)  |Ki| < CAXt)+C / [SA4(r) + 4%(r) + eA(7)] dr.
0
Finally, putting together the estimates (3.16) for K3, (3.17) for Ko,

(3.18) for K3, (3.19) for Kj, and (3.24) for Ky, we get the desired
inequality (3.15).

Now combining (3.15) with the estimates for I, Is and I, obtained
above, we deduce from (3.12) that for all positive e small enough, say
€€ (0, 60),

¢ 1
(3.25) A2() < C / [52,4(7) + eA%(r) + ezA3(~r)} dr.
0

Of course, once ¢y is fixed, then it is easy to prove that (3.25) holds
as well (with a possibly larger value of C) for all € > ¢, since (3.14)

implies that
C ¢y
I S—e/ A*(T) dr
2S =€ | (1)

whenever € > €.

From (3.25) and Young’s inequality, it follows that
¢
(3.26) A() < C / [@A(T) + A3(r)] dr.
0

The following Gronwall-type lemma now comes to our aid. The proof
is standard (see, e.g., [2], Lemma 2).
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Lemma 3.8. Let >0, 8> 0 and p > 1 be gwen. Define
o0
T = ﬁ_%a(l‘p)/f’/ (1+2°)7" dz.
0

Then there exists a constant M = M(p) > 0, which is independent
of o and B, such that for any Ty € [0,T), if A(t) is a non-negative,
continuous function defined on [0,T1] satisfying A(0) =0 and

A2(8) < /0 (QA(r) + fAP ()] dr

for all t € [0,T1], then
At) < Mat

for all t € [0,T1].

Applying Lemma 3.8 to (3.26) with a = Ce?, B = C, and p = 2, we
obtain that
A(t) < Cét

for all ¢ € [0, De~!], where D, like C, is a constant depending only on
K. This in turn implies that

(3.27) 170 8) = (- Ollza + 0( 8) = 2(, )|, < Cee,
at least for 0 < t < De™?, which is the advertised result when j = 0.

The preceding inequalities were all predicated on the existence of
the solution pair (7, v) of the Boussinesq system with initial data as in
(3.1) based on g. The local existence theory in Section 2 guarantees
that there is such a solution at least over some positive time interval.
Moreover, as long as the Ly norms ||n(-,t)||z, and ||v(-,¢)||z, remain
bounded, the solution continues to persist at whatever level of regular-
ity is afforded by the initial data, according to Theorem 2.1.

Suppose now that g € H®. According to the above calculations, we
know that (3.27) holds at least for 0 < ¢t < T' = min(Tp, D/¢), where
Ty is the maximum existence time for the solution (n,v) of (1.1) with
initial data as in (3.1). On the other hand, as long as (3.27) holds, the
triangle inequality implies that

Iz, < lln =7z, + 7|z,
o]z, < [lv = 2z, + ll2]l,.
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Thus Lemma 3.3 and (3.27) combine to yield Ly bounds on 1 and v.
This in turn implies that Ty > D/e. The proof of Theorem 3.4 in the
case 7 = 0 is now complete.

3.2.  Proof of Theorem 8.1 in case j > 1

In this subsection, consideration is given to comparison of (r, z) and
(n,v) in the Sobolev spaces H?, j > 1. The argument is made by
induction on j, the case 5 = 0 being in hand.

Define the quantity A;(t) to be the natural generalization of the
function A that appeared in Subsection 3.1; namely, :

J
Ajz-(t) = / E {m?k) + n%k) + 66m%k st gen%k | dz,
T k=0

where for any integer [ > 0, m(; denotes %IT”? and n(; denotes %. We
aim to prove that there exist C; and D; such that if ¢ € [0, Dje™"] then

A;(t) < Cyét.

In the previous subsection, this was proved to be true for j = 0. Fix
j > 1 and assume the result has been proved for j — 1. We attempt to
show that it holds for j.

Taking the j*® derivative of equations (3.10) with respect to x yields

Osmyj) + ngjg1) + €(mn)j41)
(3.28) 1 2
+e(rn)g + e(zm)4n) — Fedimag = € (G1) )

and

Fn(g) + mir1) + €(nng) ()

(3.29) 1
+e(2n)41) — 50 G1a = €(Ga)y) +€(Ga))-

(Note that according to Theorem 2.1, n and v, and hence also m and
n, exist and remain in H’*® at least for ¢ € [0, D;_1¢7*], so the manip-
ulations here are justified.) Multiply (3.28) by m(;) and (3.29) by ny;,
add the results, and integrate over R x [0, £] to reach the relation

1 [ 1 1
2 / [m%j) +n + Eem%jﬂ) + Een%jﬂ) de =D+ I+ I3+ 1y,
—0c0
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where

t o)
L=—¢ /O / [(mn) grymey + (nne)yney) de dr,

) t 0
12 = —6/ / (rn)(j+1)m(j) dx dT,
0 J—oo

t 0
Iy =—¢ /0 / [(zm)ganyma) + (zn)Gayne)] d dr,

t 0
Iy=¢é /O / [(Geme) + (Ga)gny) dz dr

t poo
+53/0 / (Gs)(jyny) do dr.

Our aim is to obtain estimates for [; through /4 in terms of constants
C which depend only on ||g||;+5, and hence only on K. (In what follows,
we will denote all such constants by C.) Because. of the induction
hypothesis, it is known that there exist constants C;_; > 0 and D;_; >
0, depending only on ||g||;+4, such that

Imllj—s + [Inlli—s = lln — 7llj-1 + [lv — 2ll21 < Cja€’t
holds for all ¢ € [0, D;_1€7%]. In particular,
Im|lj—1 + lInllj—1 < Cj—1Dj—1¢

for all ¢ € [0, D;_1e7!]. Therefore we can write that |m||;—1 < C and
|n|lj—1 < C. These estimates will be used repeatedly in the induction
step.

The integrand in I; can be expanded into a sum of terms of the form

M) M) () and nyn@n(y), in which each of k, 4, and [ is less than or
equal to 7+ 1, but no two can both equal j+1 in any term. Therefore,
arguing as we did for (3.13), we can conclude that

t
(3.30) || < Cei /O A3(7) dr

To estimate Iy, we use Holder’s inequality to obtain

t
11| 5062/0 Ay(r) dr
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The term I3 can be handled by writing

=— e/ / m(]+1)m(]) + n(3+1)n(a))
J+1 .
+ E ( ) 206 (M1-k) M) + Ng1- k)”m)} dz dr

=5 e/ / (m%j) + n%j))zcc dx dr

1,
- 6/ / < ) 2k (M(j1-k)MG) + NG41-K)N(5) AT dr,

0 k=1

from which it is obvious that

i
TARS Ce/o A2(r) dr

It remains to estimate Jo. Multiplying equation (3.29) by rn(; and
integrating over R x [0,%], we find that

2] (o]
(331) / / Ty (5+1) dx dr = Kl + K2 + Kg -+ K4 -+ K5,
0 J—o0

where

t  poo
—/ / ;O dx dr,
0 J—©
t [e%s}
Kz = —6/ / rn(j) (nnm)(j) dz dT,
0 —00
t o]
K; = —e/ / ey (2n) g1y dz dr,
0 J—©
1 t o0
K4 == 6/ / rn(j)atn(j_,.z) dx CZT,
6 0 J—0

t o0
Ks = 62/0 / rngy ((G2)g) + €(Gs)yy) da dr.
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Now I, may be written as

t poo
I = e/ / (rn)yme+1y dx dT
0 v/—0o0

t  poo
= e/ / TN)M(j+1) 4T dT
0 J—o0

t [e%e} J .
te /0 / > (%) T(5)N(G-k)MUs+1) AT AT,

k=1
and the last term on the right-hand side is easily seen to be bounded
by

¢
Ce /o A3(r) dr,
so the key is to obtain a bound for the integral in (3.31).

We now start estimating the summands K; through K5 in (3.31).
First, note that the same argument used to obtain (3.16) above gives
here

K| < CAXH) + c/t A2(r) dr,
and the same argument used to obtain ?3.30) above gives
K| < Ceb /tAg(T) dr.
Similarly, obvious estimates give 0
K| < Ce? /OtAf.(T) dr

and .
|K5| < 062/ A;(T) dr.
0

Attention is now turned to K. Integrating by parts gives

1 t [es)
Ky=—¢¢ / / (g8 + e Oingian)] do dr
0 -0
= K41 + K42~

The integral Ky; can be handled in the same way as K, to reach the
estimate

t
Kul < CAH) +C /O A2(r) dr.
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The quantity Ky may also be handled in a way that is familiar; write
1 t 0
K42 = 6 6/ / [rmn(j)é’m(j) + rmn(jﬂ)@tn(j)] dx dr
0 J—o0

= Kyo1 + Kygo,

and follow the same procedure given above for obtaining the estimates
(3.21) and (3.23), using (3.29) to replace the term Gyn(j) in Kygo. As a
result, we obtain the estimate

t
K| < CA(t) + C /0 [ a;(r) + 43(r) + eddr] dr,

as in (3.24).

Combining the estimates for K; through Ky gives
¢
K| < 040 +C [ [2a(r) + 43r) + 243(r)] dr,
0
from which it follows that

t
L] < CeAZ(t) + C /0 [@45(r) + dl(r) + 143()] ar.

Finally, putting together the estimates for I; through I, we obtain
the analogue of (3.25); i.e.,

A <C /O t [E2Aj(f)+eA§(T)+e%A§(T)] dr.

This inequality, valid for 0 < ¢ < D;_1¢™?, taken together with Lemma
3.8, allows the conclusion that there are constants C; and D; depending
only on ||g||;+5 such that

A;(t) < Cye’t for 0<t< Dje .
Thus the proof of Theorem 3.4 is complete.

4. NUMERICAL RESULTS

The theoretical results established in Section 3 are augmented by
a numerical study reported in the present section. There are several
issues of both theoretical and practical importance that are especially
illuminated by numerical simulations. First, one would like an idea of
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how large are the various constants that depend upon the initial data
lgll. They are independent of € for ¢ € (0,1], but if, for example, the
constant D in Theorem 3.1 is some enormous multiple of the norm of
the initial data, then the result has correspondingly less value. Next,
it is to be expected that if only small values of ¢ are considered then
the values of the constants can be improved, and presumably take on
an asymptotic best value as e approaches zero. An important question
then is to understand just how small must € be in order for the constants
to approximate well their asymptotic values. A related question is
whether the comparison estimate (3.4) is sharp in the sense that €? is
the highest power of € that can appear there. Finally, one might ask
whether the time interval of comparison in (3.3) can be extended to
a longer interval, such as [0,e¢72]. Since our analytical approach casts
little light on these detailed points, we have resorted to a series of
numerical experiments designed to elucidate the issues.

The numerical algorithm used is based on the integral equation for-
mulation (2.2) of (1.1) and a similar formulation of (1.3) (see [3]). The
details of the numerical procedure are presented in [5] for (1.1) and [9]
for (1.3). While there is no reason to report the details again here, it is
worth remarking that these numerical schemes are proved to be fourth-
order accurate in space and in time, to be unconditionally stable, and
to have the optimal order of efficiency.

We now present and discuss the results of the numerical experiments.
The first experiment, concerned with solitary waves, serves as a test of
our coding in addition to continuing the conversation about the relation
between (1.1) and (1.3).

Experiment 1: Solitary waves

In this experiment, we compare an exact travelling-wave solution to
(1.3) with the corresponding solution of the initial-value problem for
(1.1), given in Theorem (3.1). The initial data for (1.3) is taken to be

q(z,0) = g(x) = sech? (%1 / 1—+36ﬁ(x - a;o)) .

The solution of the BBM equation corresponding to this initial data is
the exact travelling wave solution g(z,t) = g(x —kt), where k = 1+¢/2
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is the phase speed. Following (3.1), we solve the system (1.1) with
initial data n(z,0) = g(z) and v(z,0) = g(z) — zeg(z)?. The solution
of (1.1) is approximated numerically with uniform mesh sizes, given by
Az = At = z+/e. The presence of /¢ in the determination of Az and
At renders them independent of ¢ in the original physical variables.

An example of the results is shown in Figure 1(a), where the surface
profile n(z,t) is plotted with € = 0.4 and zo = 19. The solution is very
nearly a travelling wave, like the solution ¢(z,t) of (1.3), as was to be
expected from the comparison result. It does have, however, a small
dispersive tail. The differences between (n,v) and (g, w) are calculated,
where w(z,t) = q(z,t) — feq(z, t)®. The quantities -

ln('>t)_Q('at)|p and |’U("t)_w('7t)|p
la(- )1, w(, Bl

where | - |, is the L,(0, L) norm, are plotted against time ¢ in Figure
1(b) for ¢t € [0,50]. The top two lines are the just-displayed quantities
with the Ly norm and the other two lines (which appear to be one line
because they are almost identical) are those featuring the L., norm.
Figure 1(b) not only verifies that the relative differences increase lin-
early with time ¢ for t < Ce™!, as asserted in Theorem 3.1 and Corollary
3.2, but also demonstrates that this linear estimate is valid for larger
values of t. Similar results are found in Experiments 2-4 below, in-
dicating that the time interval appearing in (3.3) is probably not the
longest possible.

The solution profiles of (1.1) and (1.3) at t = 50 corresponding to the
initial data outlined above are plotted in Figure 2(a) which shows that
n(z,50) and g(z,50) have a very similar shape. However, as one sees
upon consulting Figure 1(b), the relative difference between them is
almost 50%. This is clearly due to phase difference, which is to say the
two equations propagate their respective travelling waves at noticeably
different speeds.

This leads one to imagine a comparison between solutions modulo
a phase shift, or what we will call the shape difference. For a fixed
t, the phase shift is determined by first finding the mesh point zj
where n(zg,t) takes its maximum value, and then using a quadratic
polynomial interpolating (zx, n(zx,t)) and the two neighboring points
(zg—1,m(z~1,1)) and (Tx+1,7(Tk+1,%)) to determine the location of the
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FIGURE 1. (a): Surface profile n(z,?); (b): Relative dif-
ferences between solutions of (1.1) and (1.3).

©

FIGURE 2. (a): A solution of (1.3) (solid line) and a
corresponding solution of (1.1) (dashed line) at ¢t = 50;
(b): Relative shape differences between solutions of (1.3)
and (1.1).

)

maximum point of n(z,t); viz.,

o = 2z — Az)n(Zps1,t) — dzin(zRy t) + (278 + Az)N(TR_1, 1)

277(7;/6-{—17 t) - 477(3:767 t) - 277($k_1, t)

The solution 7°(z,t) = n(z + z* — 2o, t) is then compared with g(z)
and the relative differences calculated using the L, and L., norms.
Similarly, one can compute the relative difference between a shifted
profile v* and the initial data v(z,0) = g — 3eg®>. The results for
¢ = 0.4 are shown in Figure 2(b), where the dotted curves represent

the relative shape differences for  and v calculated using the Ly norm,
and the solid lines represent the relative differences calculated using
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n 123456 7 | 8
en 06(05|04(03]0.2[0.1]0.05]0.025
o 2020|1917 |14 12| 9 | 9
Detde () [ 79[ 64472014 [41] 12| 0.32
Bevede () 79 )64 [47]20] 14|41 12| 032
By =12 (%) 98 [ 78 [ 56 [ 34 | 17 |4.6| 1.3 | 0.34
Peowels (5) [o7 |76 |55 [ 34|16 [46] 1.3 | 033
rateon By | 1.3|1.5|1.7|1.8|1.8|1.9] 1.9 | —2
TABLE 1. The relative difference between solutions
(e, ve) of (1.1) and (g, we) of (1.3) at ¢ = 50 and the
rate of decrease of Fy with respect to e.
n 1] 2] 3] 4] 65 7] 8
€n 06 | 05| 04| 0.3 | 0.2 | 0.1 |0.05]0.025
o 20 | 20 | 10 | 17 | 14 [ 12| 9 | ©
gl (%) [ 3.1 ]25 |20 14[092]040]0.17]0.067
Pe—wee (%) | 15|14 ] 1.2]097[0.71[037]0.17]0.066
By =l (%) | 33 [ 28| 24|19 13061[024]0.085
e=wls (97 [ 2.7 [24]20[17]12]058]0.23]0.084
rate on B5 | 0.83|0.82|0.83]0.90| 1.1 | 1.3 | 1.5
TABLE 2. The relative difference between solutions

(g, w) of (1.3) and (7°(z, t), v°
of solutions (n,v) of (1.
decrease of E35 with respect to e.

the L, norm. The relative differences remain less that 2.5% for ¢ up

to 50.

Numerical experiments on solitary waves were conducted for other
values of . To maintain the accuracy, different values of zo (see Table
1) were used so the solution at the boundary was consistently small
over the entire temporal interval. The Ly and L., norms of the relative
w) at t = 50 are listed in Table 1
with € ranging from 0.025 to 0.6. The corresponding data on shape
differences are listed in Table 2. As above, we are abbreviating the

differences between (n,v) and (g,

(z,t)), which are the shifts
1), at t = 50, and the rate of

Ly(0,L) and Leo(0, L) norms by | - |2 and | - |, respectively.



32 A. A. ALAZMAN, J. P. ALBERT, J. L. BONA, M. CHEN & J. WU

From rows 4-7 in Tables 1 and 2, one notices that the comparisons
made via Ly, or Ly norms behave similarly. For either choice of norm,
the relative error decreases as € decreases, and the rates of decrease
are comparable. For the rest of the discussion, therefore, we use as
benchmarks the quantities

— s p—
|776| |Qe|2 and E;(e, t) _ |77€ Qe|2
Gel2 |gel2

where (7)* is the solution 7. after a shift matching the peaks of 7, and
Qe-

E2(6,t) =

Y

Note that Fj is decreasing as € decreases (see row 6 in Table 1). The
rate of decrease, computed by using the formula

log(E(€n, 1)/ Ea(ens1,1))
log(€n/€n+1)

is shown in row 8 of Table 1. The rate of decrease is also calculated for

the shape difference (see row 8 of Table 2). For relatively small ¢, the

overall difference is decreasing quadratically. The shape difference is

decreasing linearly with respect to ¢ for moderate e. Using Richardson
extrapolation on data at € = 0.4,0.2,0.1,0.05 and 0.025, one finds that

Byle,50) = e =%k 5 g 2
|QE|2
as € — 0. Therefore, the constant Dy in Theorem 3.1 for 7 = 0 seems

to be small (about 0.12 in this example).

rate(e,) = ,

Comparing the data in Table 1 and Table 2, one finds that the shape
difference F3(¢, t) is much smaller than the difference Es(, t), especially
for waves of moderate size. Using a least squares approximation on data
listed in row 6 of Table 2 at ¢ = 0.6,0.5,--- ,0.025, one obtains

In® —q

E3(e,50) = T 2 ~0.0494 e.

We know from earlier studies (for example [7, 14]) that the solitary-
wave solutions of the BBM equation play the same sort of distinguished
role in the long-time asymptotics of general disturbances that they do
for the Korteweg-de Vries equation. The numerical simulations in [5]
show that a similar conclusion is warranted for (1.1) (and see also [17]).
Consequently, it is potentially telling that an individual solitary-wave
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FIGURE 3. Solution of Boussinesq system with e = 0.5.

solution of (1.3) is seen to be very close (within 4% for all amplitudes
we have tried) to solving (1.1) when the one-way velocity assumption
(3.1) is imposed. Moreover, the structure of the solution of (1.1) when
initiated with the BBM solitary wave appears to be a solitary-wave
solution of (1.1) followed by a very small dispersive tail. Thus, the
impact of the present experiment could be much broader than appears
at first sight.

Experiment 2: Waves with dispersive trains

In the first experiment, the initial profile g was chosen so that it
generated an exact solution of the BBM equation. However, this initial
data had to depend on ¢, albeit weakly. In the next experiment, the
initial data g is fixed, independently of . We choose for this case a g
that results in a lot of dispersion; namely, a profile

41) g(z) = (—2 + cosh <3\/§(x - x0)> ) sech* (Z’v(x_\/—l_oxo)) )

with two small crests separated by a deep trough. This profile, with
zo = 60, is displayed as the top curve in Figure 3. The initial data
for (1.1) is (n(z,0,v(z,0)) = (9(z), g(x) — z€9*(z)) as before. Figure 3
shows the solution profile n(z,t) at t = 0, 10, 20, 30 and 40 with € = 0.5.
It is clear that the wave propagates to the right and also expands slowly
to the left, and decays in L., norm, leaving a considerable dispersive
tail behind. The solution profile ¢(z,t) of (1.3) disperses similarly (see
Figure 4).
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FIGURE 4. Comparison between solutions of BBM equa-
tion (solid line) and Boussinesq system (dashed line) with
e =0.5.
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FIGURE 5. Comparison between solutions of BBM equa-
tion and Boussinesq system with e = 0.5, where (a) plots

-—I”I;IZIZ and (b) plots __lvl;z'zlz_

The comparison between n(z,t) and ¢(z,t) at ¢ = 4.95,25.5,49.5 is
shown in Figure 4. It is clear that the two solutions are very close to
each other. The relative differences E, = 7 ;’ al2 and E2 = wlzu—lwlz

2 2
are plotted in Figure 5 for ¢ between 0 and 50. The values of E,
and Ej increase relatively rapidly, but linearly, to about 10 to 12% by
t = 3, and then more slowly thereafter. These numerical results not
only verify the theoretical result |n — ¢| < Ce?t for t < De™1, but also
demonstrate that the result may well continue to larger values of t. One
sees clearly in Figure 4 that n and ¢ have a very similar shape for all ¢
for which the solution was calculated, but give a large value of Ey(e, t)
(about 26% when ¢ = 50) due to the effect of a small but persistent
phase shift. The data on the total differences and the shape differences
are listed in Tables 3 and 4. The shape difference is calculated using
a different approach because no exact solution is available. For o € R
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080706 }05|04 03] 02]|0.11]0.05

€
B, == (%) [ 728 54.7(39.2 262 16.2[9.74 | 5.25 | 2.10 | 0.90

lgl2

rate on Ej 2112222211815 13| 1.2

By = 1=T12(%) [ 47.6 [ 30.7 | 18.0 [ 9.43 | 5.61 | 4.00 | 2.63 | 1.26 | 0.61

lg%2

rate on E3 33 (35 (35|23 |12 10| 11| 11

TABLE 3. The relative difference between solutions
(n,v) of (1.1) and (g, w) of (1.3) at t = 50, with initial
data (4.1) for BBM.

05104 03] 02] 01 | 0.050.0250.0125

€
By=Id) 1 43|33 |24 14051018 {0053] 0.015

lgl2

rate on Fy 1.2 1111315 ] 15 1.7 19 { —2

By = =CT(%) [3.71[3.03 [ 2.30 | 1.39] 0.501 | 0.173 | 0.052 | 0.014

lg]2

rate on E3 09 10|12 |15 ]| 1.5 1.7 1.9

TABLE 4. The relative Lo difference between solutions
n(z,t) of (1.1) and ¢(z,t) of (1.3) at ¢ = 1, with initial
data (4.1) for BBM.

and t fixed, define J to be

J(e) = {/+oo(n(fc,t) —q(z— a,t))2d~’v}%

-0

where 7(z,t) and ¢(z,t) are the cubic spline interpolation functions of
n(z;,t) and ¢(z;,t). The shape difference is obtained by finding the
minimum value of J(«). The Matlab program fminbnd is used in our
computation.

Calculations were performed with other values of ¢ and the same
initial data g as above. The dependence on € of the difference Es for €
equal to 0.05, 0.1, 0.2, --0.8 is listed in Table 3. The rate of conver-
gence to 0 degrades as ¢ approaches 0.05. Since this behavior does not
match the expected asymptotic behavior as ¢ — oo, we investigated
further using values of ¢ below 0.05. The results are shown in Table
4, where one sees what looks like quadratic convergence in €. These
calculations were done at ¢t = 1 since the ¢t-dependence of E5 for larger
values of ¢ is shown in Figure 5 already.
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In general, for moderate sized waves, corresponding to say ¢ < 0.4,
the shape difference is small until ¢ gets large. But for large € and ¢, the
shape difference can be large. (This is in contrast to the situation in
Experiment 1, where the shape difference remained small even for large
€ and t.) For example, for e = 0.8 and at ¢t = 50, the shape difference is
about 47.6%. A study of the wave profiles reveals the reason for this. As
€ gets larger, the wave profile for positive time becomes more complex.
There are several different amplitudes in evidence, and each of these
propagates at its own speed. As the speeds in the BBM approximation
are not quite the same as for the Boussinesq approximation, there is
a divergence because of phase differences, just as in Experiment 1.
However, because there is substantial energy in more than one wave
amplitude, there may be several phase differences, so that no single
translation can compensate for the phase mismatch. To put the issue
in simple terms, for given functions f; and f» one cannot in general
obtain a close fit to

Az 4+ o) + folz + o),
where a; and o are distinct, by using an approximation of the form
filz + @) + falz + o).

The solutions studied in Experiment 2 also differ from those of Ex-
periment 1 in that their structure changes when e is changed. (In
Experiment 1, solutions for all values of ¢ tried had the same structure:
namely, that of a solitary wave with a small dispersive tail.) The ef-
fects of changing € on the solutions in Experiment 2 may be seen, for
example, by comparing the solution for ¢ = 0.5, shown in Figure 3, to
that shown in Figure 6, where ¢ has been reduced to 0.05. In Figure
6, where n(z,t) is graphed against z for ¢ = 0, 10, 20, 30, and 40, it is
clear that n(z,t) is mainly a right-moving wave. This is in agreement
with the result one gets by considering (1.1) to be a perturbation of
the linear wave equations

N+ Vg = 0

vt + Nz = 07
with initial conditions 7(z,0) = g and v(z,0) = g — zeg®. For this
reduced system, the analytical solution is

1(z,1) = 9(z — 1) + 3e(g(@ + 1) — ¢*(a — 1)

o(o,1) = 9o — 1) - 3ele*(s + 1) + (1),
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FIGURE 6. Solution of Boussinesq system with ¢ = 0.05.

t=16.8, 3.5, SO.1

-o.s |-
20 30 40 so CE 70 80

F1GURE 7. Comparison between solutions of BBM equa-
tion (solid line) and Boussinesq system (dashed line) with
€ = 0.05. The difference between the two solutions is not
visible.

which to leading order is indeed a right-moving travelling wave solution.

Comparisons between 7(z,t) and ¢(z,t) at ¢ = 16.8, 33.5, and 50.1
are plotted in Figure 7. The difference between the two solutions is
hardly visible. To be specific, the relative difference F(0.05,50) is
only 0.9% at ¢t = 50 (see Table 3).

As another check on our code, we monitored the variation of quan-
tities that, for the continuous problem, are independent of time. Let
[0, L] denote the spatial domain used in our simulations, where L =
360\/e. The integrals I;(t) = fOL n(z,t) dz, L(t) = fOLv(:c,t) dz,
F(t) = foL [nv + (e/6)n.us) do and E(t) = fOL [n? + v2(1 + €n)] dz were
approximated using the trapezoidal quadrature rule applied to our nu-

merically generated approximations. It was found that over the time
interval [0, 50], I1(t) was zero to within 5.9 x 107%, I1(¢) stayed within
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FIGURE 8. Solution of Boussinesq system.

0.008% of —0.071, F(¢) stayed within 0.02% of 0.43, and E(t) stayed
within 0.000004% of 0.51. All the computations reported here and
throughout Section 4 were checked for convergence by halving the spa-
tial and temporal grid lengths and comparing the resulting approxima-
tions.

Experiment 3: Solitary-wave interactions

In this experiment, we consider the case when a large solitary wave
overtakes a small solitary wave. The initial data for the BBM equation
is the superposition of two exact solitary-wave profiles; namely,

1 3
q(z,0) = sech® <§ 1703 (z — 20)>

1 1 [ 05
= sech? [ 24/ —2 (z—54) ] .
tg e <2 TTo05 70 )>

Numerical solution of the BBM equation with this type of initial data
was carried out earlier in [7]. It was found there that two solitary-wave
solutions of the BBM equation do not interact exactly (elastically), as
they do in the case of the Korteweg-de Vries equation. From the results
of these earlier simulations, we know that it takes a fair amount of time
for the two solitary waves to fully interact. Therefore our numerical
computation is carried out to ¢t = 234.

The surface profiles n(z,t) of the solutions of the Boussinesq system
(1.1) with ¢ = 0.6 at t = 55,117, 148,192, and 234 are shown in Figure
8. Notice how closely these profiles resemble those of a double-soliton
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F1GURE 9. Comparison between solutions of BBM equa-
tion (solid line) and Boussinesq system (dashed line)

solution of the Korteweg-de Vries equation. Just as in a Korteweg-
de Vries soliton interaction, first the large solitary wave overtakes the
smaller one on account of its larger phase speed, then the two waves
interact nonlinearly, and finally both emerge from the interaction hav-
ing regained more or less their original shape and speed. This close
resemblance between solutions of (1.1) and the Kortweg-de Vries (or
BBM) equation is to be expected, for otherwise the validity of at least
one of these models would be in jeopardy. It should be noted, however,
that theory still falls short of being able to prove that solutions of (1.1)
exhibit the behavior shown in Figure 8.

In Figure 9 are shown comparisons between the solutions of the BBM
equation (1.3) and the Boussinesq system (1.1), starting from the above
initial data, at t = 79 and 199. The phase speeds for Boussinesq solitary
waves of a given amplitude are smaller than those of the BBM equation.
This is especially evident for waves of larger amplitude. At ¢ = 199,
the phase difference for the large solitary wave has accumulated to
the point where the two renditions of it differ by more than one full
wavelength.

Experiment 4: Initial-boundary-value problems

In the last experiment, we attempt a simulation that corresponds to
waves generated by a wavemaker in a wave tank or to regular, deep-
water waves impinging upon a coast. An idealized version of this sit-
uation is to pose (1.1) or (1.3) for (z,t) € Rt x R* with zero initial
data and a sinusoidal boundary condition

¢(0,t) = sin(nt) tanh(5¢),
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F1GURE 12. Comparison with ¢ = 0.5.

which is plotted in Figure 10. The function tanh(5¢) is used to ensure
the compatibility of initial data and the boundary data at the corner
(z,t) = (0,0). The left boundary condition for the system (1.1) is
taken to be 7(0,¢) = ¢(0,¢) and v(0,t) = ¢(0,¢) - 2€q(0,t)? as in (3.1).

The solutions of (1.3) and (1.1) are plotted in Figure 11 for ¢ =
0.2 and in Figure 12 for € = 0.5. The two solutions have a similar
shape, but the waves predicted by the Boussinesq system are smaller
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and slower than those predicted by the BBM equation. The difference
between solutions decreases as € decreages.

We emphasize that no theory for comparison was developed here for
such an initial-boundary-value problem. Preliminary considerations
show that such a theory is not necessarily out of reach, but it is more
complicated than our developments in Section 3 for comparing the pure
initial-value problems.

5. CONCLUSIONS

When one attempts to model long-crested waves entering the near-
shore zone of a large body of water, one naturally aims for the simplest
description that is consistent with the accuracy of the input data. On
the other hand, most of our knowledge of just how well various mod-
elling approaches work derives from laboratory experiments. In both
of these situations, there are available standard unidirectional models
such as (1.3) or its variable-coefficient analogues which take account of
variable undisturbed depth. These have been shown to predict pretty
accurately in laboratory environments. There are also available more
complicated systems, like (1.1) or its variable-coefficient versions, that
can potentially take account of reflection. Qur goal here, which had its
origins in sediment transport models arising in analyzing beach pro-
tection strategies, has been to understand a precise sense in which the
bidirectional model specializes to the unidirectional model. This is a
fundamental question, but the answer also helps with the formulation
of input to the bidirectional model in situations where we would nor-
mally have insufficient information with which to initiate the equation.
In particular, records of wave-amplitude incoming from deep water are
straightforward to use in initiating a unidirectional model like the BBM
equation (1.3). As becomes apparent from the analysis in Section 3,
the same data can be used to initiate the Boussinesq system (1.1),
and with the same implied level of accuracy. The advantage is that
the Boussinesq system can countenance reflection whereas (1.1) can-
not. Thus, (1.1) can in principle be coupled to models for run-up and
reflection in the very-near-shore zone.
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In addition to presenting a qualitative theory connected with the
comparison of the BBM equation and the Boussinesq system, we have
reported numerical experiments showing quantitative aspects of the re-
lation between these two models. After performing convergence tests
and the like to generate confidence in our numerical scheme, we ran
simulations with initial data corresponding to solitary-wave interac-
tions and to large-scale dispersion. The results show clearly how well
the Boussinesq system, with initial velocity as determined from the ini-
tial amplitude by (3.2), is tracked by the simple initial-value problem
for the BBM equation. Even more convincing are the boundary-value
comparisons shown in Experiment 4. As this is an important context
where our ideas could come to the fore, the agreement here is hearten-
ing.

APPENDIX

This appendix contains the proofs of Theorem 3.5 and Lemma 3.7.

For the reader’s convenience, the results are restated here as Theorems
Al and A2.

Theorem Al. Let § >0 be an integer. Then for every K > 0 and
every D > 0, there exists a constant C > 0 such that the following is
true. Suppose g € H'*® with ||g|;4s < K. Let q be the solution of
the BBM equation (1.8) with initial data q(z,0) = g(z) and let r be
the solution of the KdV equation (1.4) with initial data r(z,0) = g(z).
Then for all € € (0,1], if

0<t<T=De?,

then
la(,2) =7 0)ll; + ell®(, 1) — 72, 8)|l; < Cet.

Proof. This theorem is essentially proved in [8], to which we refer the
reader for any details that are omitted here. First consider the case
J =0, and let @ = g — r. Then 0 satisfies the equation

(A1) 0: + 0, + ge(rﬂ)z + 269% - ée@mt = 2@,
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where G = — ((rry)e + %rmmm). Multiplying (A.1) by 6, integrat-
ing over R x [0,¢], and integrating by parts leads to

[e) t t [oo]
(A.2) / (6> + %eeg) dz = ge / ro? dz dr + ¢ / / G8 dz dr.
—00 0 0 —00

Now let A(t) be defined by setting A%(t) equal to the integral on the
left side of (A.2). It follows easily from (A.2) that

A1) < C/Ot [ A(T) + eA*(1)] dr

where C' depends only on the norm of r in H?® , and hence, by Lemma,
3.7, only on K. By Gronwall’s inequality it then follows that

A(t) < Cre(e®t — 1)

for all £ > 0. In particular, it follows that for any D > 0 one can find
C > 0 such that

At) < Ceét
for all ¢ € [0,D/e]. Thus, for ¢ € [0, D/e], we have llg — 7| < Ce2,
gz = o|| < Ce¥2¢, and
lg* =72 = ll(@ = )@ + )| < lg = rloollg + 7|
< Clig=rl2llge — 2|2 < O (20)V2(¥2)V2 = e/,
Therefore
ellg® — r?|| < Cet4 < Ot

as desired.

In case j > 1, the argument is easier: starting from (A.1) and fol-
lowing the procedure in Subsection 3.2 above, one obtains that the
quantity A;(t) defined by

o J 1
Al(t) = /_ Z [9(2@ + gee(zkH)J dz

*® k=0
satisfies the estimate

A;(t) < Ceit,
where C' depends only on K. Hence ||q — Tll; < CA;(t) < Ceé?t. In
particular, using Lemma 3.7 we have

lg+rll; <llg=rll; +2lrl; < cet+Cc < ©
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for all ¢ € [0,D/e], where C depends only on K and D. Therefore,
since H is an algebra for J 2 1, we can write

ella® = r*ll; < Cellg —rll;llg +rll; < Cellg — rll; < et < Ce’t,

as desired. O

Theorem A2. Let s > 1 be an integer. Then for every K > 0,
there exists C > 0 such that the following is true. Suppose g € H* with
lglls < K, and let r be the solution of the KdV equation (1.4) with
wnitial data r(z,0) = g(z). Then for all ¢ € (0,1] and all t > 0,

(A.3) ()l < C.
Further, for every integer k such that 1 < 3k < s, one may also assert

that '
167 (-, )| gra-ar < C.

Proof. Define

o(a, 1) = (35) r(v/elB(a + 1), /a6 1),

so that p is a solution of the equation

(A4) Pt + PPz + Peee = 0.

As explained in the discussion on pp. 576-8 of [10], there exist a count-
able number of explicitly-defined functionals Io, I, I, ... which are,
at least formally, conserved under the flow defined by (A.4). As a con-
sequence of the well-posedness theory of KdV presented in [10], one
has that in fact I (p) is independent of time for 0 < k < s, provided
p € H® and s > 2. This result was later extended to s > 1 in [15].

Now the functionals I; are defined on functions f(z) by integrals of
the form

) = | B da,

e}

where Py (f) denotes a polynomial function of f and its derivatives. In
fact, P(f) consists of a linear combination of monomials

w (FN* (S (df\>
o () (&) (&)
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in which the “rank” of each monomial, defined as > ieo(1 + Ld)ay, is
equal to £+ 2. Hence if p(z,t) and r(z,t) are viewed as functions of z
parameterized by the variable ¢, we have

Fi(o)(z,¢) = P2 Ri(r)(v/e/6(z + 1), \/¢/6 ¢)

for all z and ¢, where Pk( f) denotes another polynomial function of f
and its derivatives, which like P, (f ) has coefficients which are indepen-
dent of e. Now define a functional I % by the formula

o
i = [ B) o
Since Iy (p) is independent of time, it follows that Ii(r) is independent
of time. Then the same argument as used to prove Proposition 6 of
[10] allows us to conclude that the norm of r in H* remains bounded
for all time, with a bound which depends only on the H® norm of
r(z,0) = g(z). Notice in particular that since the quantity € does not
appear in the definition of the functionals I, the bound thus obtained
is independent of e.

This proves the existence of the desired constant C' in (A.3). The
desired bounds on the time derivatives of r then follow immediately by
using (1.4) to express time derivatives in terms of spatial derivatives.
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