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Abstract

Lower bounds on the rate of decrease in time of a uniform radius of spatial analyticity for solutions of
the derivative Schrodinger equation are derived. The bounds depend algebraically on time. They are valid
as long as the initial datum is of order one in L2-norm and satisfies suitable spatial decay requirements on
the real axis.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Consideration is given to the initial-value problem for the derivative-nonlinear Schrédinger
equation
5 . )
{m,+u“:l(|u|-u)\., (1)
u(x,0) = ug(x). '

Attention will be focused on solutions u(x, ) of (1.1) that may be continued analytically to a
complex strip S, = {z =x +iy: |y| < o}, at least for small values of o. Assuming this to be the
case at ¢t = 0, the point arises as to whether or not this state of affairs is maintained for nonzero .
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Besides being interesting in its own right, this question is connected (o issues of singulari
formation that have come to the fore in recent years in the study of dispersive equations (m-:ey
e.o. [12)). i

The general issue in view has been studied by several authors. An early appreciation may
be found in K. Kato and Masuda [14]. More recent work includes the results of Hayashi [8],
de Bouard, Hayashi and K. Kato [4], Hayashi and Ozawa [12] and K. Kato and Ogawa [|3}
in the context of KdV and NLS equations. General theory for the initial-value problem i'nr.lh;,-
derivative Schrodinger equation was developed by Tsutsumi and Fukuda [19.20], Hayashi [91,
Hayashi and Ozawa [10] and Takaoka [18]. In [11], Hayashi and Ozawa proved for (1.1) that it
ug decays exponentially, then the solution u(-, ¢) lies in the strip Soy;; at least for small values
of |t]. Recently, this fatter result was supplemented by one of Gruji¢ and Kalisch [7] showing
that if the strip of analyticity of ug is positive, it does not shrink, at least for a short time. even in
the absence of exponential decay.

At the center of the analysis in the present article is the study of the width o of the strip of
analyticity for large r. It will be proved that in certain circumstances, the radius of analyticity
remains positive for all time and can decrease at most algebraically as |7| — oo.

The function spaces considered in this article are known as analytic Gevrey spaces. They first
appeared in nonlinear PDE theory in the work of Foias and Temam [5] on the Navier—Stokes
equations, and are defined as follows, For ¢ > () and s € R, define G,y Lo be the subspace of
L>(R) for which

o0

2y P
luollg, = /(1 + | ) 21D

—00

fo(&)| d& (1.2)

is finile where i1 is the Fourier transform of uq. Functions in Gy automatically possess an an-
alytic extension to the complex strip S,,. The main result of this article is the following theorem.

Theorem 1. Suppose that uy G5 fOF sOme s 2 % and oy > 0, Assume that leeoll 2 < V2m,
and let T > O be arbitrary. Then there exists a constant Cy > 0 depending only on s, oy and
ol Goy.sr such that the solution u of (1.1) corresponding to the initial data wy lies in the space
C(-T,T], Go(ryja.) where

a(T) = minfoy, CoT~ '},

Remark 2. As is pointed oul in Section 6, the presumplion that the data is analylic can be
replaced by exponential decay of the initial data and its first two derivatives.

It should be remarked also that the power 120 is simply an artifact of the proof. We do not
expect it to be sharp; indeed, we know it can be improved somewhat at the expense of more
complex estimates.

It is also worth pointing out that the restriction on the size of the initial data in L>(R) is
conststent with the small amplitude assumptions that came (o the fore in the derivation of (1.1)
as a model of physical phenomena.

N N I . ol szpps " . ~ . .
Since the nonlinear term {d,(Ju|=u) presents difficulties owing (o the loss of a derivative, it

is helpful to first apply a gauge transformation, as has been done in previous studies (ct. [10]).
If u(x, ) is a solution of (1.1), define a [unction w(x, 1) by

X
w(x, 1) =cxp| —i /!u(,v,r)lzdy u(x,t). (1.3)
— o0
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Then W formally satisfies the initial-value problem
|4

. L= |
{ fwy + Wy = —lw W, — 5w w, (1.4)

wix,0) =wo(x),

s 2 . . . .
ith initial datum wo(x) = e 2 oY oy To see that this transform is continuous in
the Go.g-norm, first consider the situation when s = 0. It is convenient to use the equivalent
Hardy-space norm (the H2-norm) on a strip, namely,

o0 o0
%)
||uo||3{2(sﬁ):/|u0(x+io)|2dx+f‘u()(x—i(rﬂ dx, (1.5)
—00 —o0

instead of the form (1.2). By complexifying the path integral in the definition of w above, and
observing that the gauge transformation preserves the L?-norm, it is easily ascgrlamed that the
gauge transformation is continuous with respect to the G.p norm. When s is an integer, one may
differentiate w with respect to x s times and use the same analysis as for s =0 lo' see that Fhe
gauge transformation is continuous. Finally, the general case can be obtaiped by 1nlerpolal.10n
between integer values. The gauge transformation results in an equation which still has a dcnya—
tive nonlinearity. However, the derivative nonlinearity appearing in (1.4) can be conu.‘o]le_d using
Bourgain-type function spaces. The price 1o be paid is the quintic nonlinearity appearing in (1.4),
but it turns out this does not pose any special challenge, at Icast for moderate sized initial d'ata.

The paper proceeds as follows. Appropriate notation and {unction spaces are discussed in the
next section, while Section 3 contains some auxiliary linear estimates. Multilinear estimates ure‘
proved in Section 4, and the proof of the main theorem is given in Section 5. Th§ main resull of
Section 5 is combined in Section 6 with a local smoothing effect due to Hayashi and Ozawa to
yield global analyticity result for exponentially decaying initial data.

2. Function spaces

The Fourier transform of a function vy defined on R belonging to the Schwartz class, say, 1s
defined to be

o0

I .

Uy(&) = o f v (x)e™ " dx.
-0

For a function v{x, ) of two variables, the spatial Fourier transform is denoted by

o0

1 e
]—]v(&,r):T / vx, e Sy,
V2

— 00
whereas (he notation 9(&, t) designates the space—time Fourier transform
oo 00
1 @ P
0 1) =5= v(x, e e " dxdt.

24T
—00 —00
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Define Fourier multiplier operators A and A by
AvE, vy = (1+E))0E, 1) and  Av(E, 1) = (1+]7])DE, 7).

The following notation is used to signify the L”—L9 space-time norms;

[e o)
[|v(x,t)|(’ dt

—00

Y il
q P
dx ¢ .

The Sobolev space H*(R) is defined as the domain of A® in Lz(R), with the norm

(o]

lwllzrre = vl 0 =
LyL,

—00

o0

ool = /(1 gD

-0

B0(&)|* k.

As mentioned already, a class of analytic functions suitable for our analysis is the analytic Gevrey
class G,y used in [5]. This class is the domain of the operator A*¢®# in L%(R), with norm
(1.2) as described in the introduction. It is straightforward to check that a function in G4 is
the restriction to the real axis of a function analytic on the strip S, = {z = x + iy: |y| <o)
symmetric about the real axis and of width 2o

To efficiently exploit the dispersive effects inherent in (1.1), the following norm is used.
For ¢ >0, s € R, and b € [—1, 1], define X, ;) to be the subspace of LQ(R2) for which the
norm

b, 0| de dt

o X
Ilvlli..\-.b':/ /(1+|r+_szl)2”(1+|5|)2"‘e2rf<'+lfl>

—0c —00

is finite. For o = 0, the Banach space X,y coincides with the space X ; introduced by Bour-
gain, and Kenig, Ponce and Vega. The norm on X, j, is denoted by | - ||y, and is defined by the
integral

v(E, r)|2 dg dr.

2= [ [ (o) 0416

—00 —00

The space X, was introduced in [7], where it was useful in obtaining local-in-time well-
posedness of (1.1) in G, for an appropriate range of s and with fixed o. Here, interest is
focused on the global behavior of solutions in X,y , where o will be allowed to vary in time.

3. Auxiliary estimates
The definition of the X, 4,-norm is well coordinated with the linear part of the equation. In

the following, some identities and linear estimates are listed that elucidate this relation. For the
linear initial-value problem

3.1

{ [o; + @px =0,

@(x, 0) = o (x),
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an explicit solution is given in terms of the NLS-group S(r) defined by

1 T ; c g2
¢(x,f)=S(f)¢0=E/6”56_% Po(&) dE. (3.2)

—0
A relation between S(r) and the space X 4 is provided by the identity
"S(t)(p"n,.\‘,l) = ” Al‘leﬂAAb(/)” 2L (33)

As is well known, the space Cr , ; = C([0, T1, G,.,) is a Banach space when equipped with the
norm

|U|CTJT.«\' - OEIIJQT " U(.’ t) “Gm\' ’

For b > %, the space X, » is embedded in C([0, T}, G,.) as is evident from the inequality

Vler ., < cllvllos.s, (3.4)

which follows directly from (3.3) and the Sobolev embedding theorem.
To obtain estimates that are local in time, it is helpful to introduce a temporal cut-off function.
Let ¥ be an infinitely differentiable function on R such that

o, =
W)—{L It <
and let Y7 (£) = ¥ (t/T).

Lemma 1. Leto >0, b > % b—1<b <0,andT >0. Let vy € Gg.y and let v be the solution
of (3.1) with initial data vy defined by (3.2). Then, there is a constant ¢ such that

[vr s, , <e(r?+ 1), (3.5)
lor@vee, 0|, , <cT 7 vloys and (3.6)
I
Yr(t) / St —sywC,s)ds|  <o(T+T Yol 4. 3.7
0 O".\',h

Proof. The proof of (3.5) is immediate from the definition of Xo.5.b, the linearity of the op-
erator ¢’ and [16, Lemma 3.1]. In the same way, (3.6) follows from [16, Lemma 3.2] (see
also [17]). For the proof of (3.7), see [6, Lemma 2.1]. O
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To control the nonlinear part of the equation, multilinear estimates are needed. Some of these
rest on the following Kato-type smoothing estimates and maximal function-type inequalities. For
a suitable function f, define F), via its Fourier transform F,, to be

= |/ (& o)
F = 3.8
PN = T e+ ey e

Lemma 2. (Bourgain [3]) Let p > Zl be given. Then there is a constant ¢, depending on p, such
that

ATy | fapr <l fll 2z (3.9)

Lemma 3. (Kenig, Ponce and Vega [15]) Let s and p be given real numbers. There is a constant c,
depending on s and p, such that

, then

W ifp>

)=

|42 Foll ey <l Nl 223 (3.10)
(ii) if p > % and s > %, then

| AT Fpl oy < lfllgag 3.11)
(ii1) if p > % and s > % then

| A7 Foll e e S el flli22: (3.12)

Inequality (3.10) was proved in [15], and estimates (3.11) and (3.12) were proved in |7]. The
next inequality is the basis for the nonlinear estimate in the next section.

Lemma 4, Let s > %, % <b < %, and let b’ be such that —b < b’ < —%. Let dy =
d& dtydg dty dE dv, and suppose f, g, and h are in L*>(R?). Then, there exists a constant

¢ depending only on s, b and b’, such that

}‘ &5 (1 + ED hE, 7) L FEL T+ ED™

Joas [t +&3)" (1+ | +&D)P

o fE, )+ 15D o gé—-&1—&,t—n -l +|E-&E &N
(I + |+ &3 I+t -1 =+ E—& —&)P)H

du

2
< C||h”L§L$ ”f“LgL% ”g”Lng
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This lemma is similar to a lemma proved in [18]. The proof of these inequalities is standard
fare, and is therefore omitted. The crucial step in the proof relies on estimating the algebraic
expression

(1 1EDFA 45D (L + & —& — &)~
(T+IEND A+ 18R T+ 15 —& D' P +18 — &)

and it turns out that this quantity can be dominated by one of the expressions

min{(1 + D2, (1 + |& — & — £2])7}
(1 +1E1)3 (1 + &)
max{(1 + [£)7, (1 + [§ — & — £)7)
max((1 + |6 D3 (1 + [E2D)F min{(1 + [ED3, (1 + & —& —&D7T)

The proof of these latter inequalities is straightforward.
4. Multilinear estimates in Bourgain—Gevrey spaces

The goal of this section is to prove some multilinear estimates in analytic Bourgain—Gevrey
spaces which feature explicit dependence on the radius of spatial analyticity o . These inequalities
will play a key role in obtaining the algebraically decreasing temporal asymptotics for o .
Theorem 3. Leto >0, s > %, % <b< 19—6, and —% <b < —%. Then there exists a constant ¢ > 0
depending only on s, b and b', such that for any v € X4 p,

2 3 i3
I! vy " < C”v”.\'.h tco¥ ”U”(T,.\'.b' 4.1

a8

Proof. First note that (4.1) can be written more explicitly as

[+ |7+ €))7 (14 161y e 00T, 6, )|

3 i3
L} Scllvllyy, +ead vl (42)
Observe that if one defines

fED=(+]t+8) (01 +1g)’ " 5, 1) and
g )= (14t —&) (1 + &) e HEDH (g, —1),

then proving inequality (4.1) is the same as establishing the estimate

(14 |E) e MHED £y, r)e o UHED 1 4 gy~
(14|t +&)" (1+ |t +£2])°
R4

NG 7)e o UHR=8D (] 4+ & — &)
(14 |ta— 7 4 (&2 — &2
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L 8- T ra)e T UHE=RD (| 418 — £

déjdrtydérd
(1+|T—‘L’2—(€-‘_EE]2“.‘) El T) _Eg T

,
/i

< C”f«’_”(HlEDfHZLng e (HED

Hie2
g”LgL% +co8 ||f||L§L% ”g”LgL%

Using duality in the standard way, it thus suffices to estimate a 6-fold integral of the form

/ h(g, D)1+ g e IHED £(&) 7= UHED (] 4 |5y~
(14|t + &2~ (147 + &3P

H“;(’
i t e UHR=ED( 4 g — g )
(14 |z — 1 + (& — &2
8E 8 T—D)e” TUHE=ED (] 4|5 — £y )
(I+]t — 10— (& — £2)2P

du,

where h is an arbitrary element of the unit ball B in L%(R%) and du=d&dtrdé dt)dédt as
before. Using the simple inequality

e"(l+|5|)<e+0%(l+|5|) U(|+|E|) (4.3)
it is plain that the latter integral is bounded by I + I», where

I—es hE DI+ ED [FEL T)le RN 4 gy~
| = esup 5
het J (I + 1z +&2h=" (I+ |t +&7DP

A —sl,rz—r1>|e—"“+'52—51'>(1 + 18 — &
(14t — 11 + (&2 — §)2)P
e -5 7 —1)|e UHE=RD (] 4 |g — £y~
(14|t — 10— (§ —&)2]P

b= ot sup [ EDICHIED (1 4+ [£D5e7HED | £ (g, Tple "D + gy )
(I+ |z + &7

du  and

- lleBP (I+ v+ 82"

e g t)le o IHE=8D (] 4 |1g — £ )
(14— 1)+ (& — &P

 JeE — & v - a)|e @ HE=RDN () 4 & — g5l

- 1.
I+t —12—E —E)2) an
After the change of variables & — & + &), the inequality
= 2 .
IS el e £L,  femrHng o @4
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follows immediately from Lemma 4 with f (&, ) replaced by e~ U+1ED £(£ 1) and g(&, 7) re-
placed by e~ I+ED g (&, ). To establish the estimate

| .
% 2
b <ot If 17508l 2.0 @.5)
observe that
7 UTHED Qo UHED o (I +E—E2D) o (1 +1E2=1)
and then use Lemma 4 again. Theorem 3 is thereby established. O
The next result provides control of the quintic term in Eq. (1.4).

Theorem 4. Suppose v € X5, where o > 0,5 > jl, b > % and b’ < —%. Then there exists a
constant ¢ depending only on s, b and b', such that

1382, <cllvlS, +coTivlls, (4.6)

a.sb =

Proof. As before, let
FED=(1+]r+8))"(1+18)"e" 05, 7)  and
g€, 1) = (] + I,L. _$2I)h(] + |$|)x\'ea(l+|5|)l’)(_f’ —1).

Then, as in the proof of Theorem 2, the inequality is concluded as soon as one has appropriate
estimates of the integrals

Iy =csup
heB
RIO

86 BT — e TR 4 1E — £y
(I+1t — 14— (5 — &)%)
y [ — &3, 1 —r3)e @ UHE—ED 4 |5 — &)
(I |74 — 13 + (B4 —E3)2))°
L 8& — B e ~O R =8 (1 4 £y — £y
(14 |3 — 12— (& — £2)?|)
&g -1 ye T UHR=8D() 4 [& — &)~
(4 ra— 11 + (82 — £1)?))?
! 1(E, T+ £ (L + 5D Fe D £(g, 1) HED (1 4 gy )~
I, =07% sup Sy =
/ (I+lv+&2)—" I+t + 80P

/ h(g, o) + | IHED &) gpye—oUHOD(] 4 (g )
(I [z +82)7 (I + [z + &)

djpe  and

heB
RIO

8 T —Te” oUHE-ED(] 4|8 —gy)*

I+t —w—(E—&?)
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x f(E4— &3, T4 — 13)e 7 UHE—0D(1 4 gy — &)
O+l — 13+ (& — 8)2)DP

» gE3 — &), 13 — 1) T UFIR=ED(] 4 &5 — £
I+ — 10— (&3 — E2)2P

S &g e RN + 15 — &)
I+ =7+ E -2

du,

where, now, dyu = d&sdtad&ydr3dér dto dE) dt) dé dt and h is again drawn from the unit ball

in L2(R?). Using the inequality [£| < |&(] + |6 — &4| + |&4 — &3] + €3 — & + €2 — &(| and the
monotonicity of the exponential, /) is bounded as follows:

hE OIEP 1fELTOIA+1ED™ 18 — &7 —w)l(1 416 — &)
Iy <sup STl ) ) 21yb
hes O+t +ED" (A +]r +E&)° I+t —1—E -7

[f6a =&, — )0+ 18— &) 183 —&, 13— )| +86 —&)™"
(It — 3+ (5 — 83)2DP (43— 10— (53— &)2DP

. |f (& — &, o — )1+ |6 — &)
(I + 1l — 1 + (52 — &P

To analyze this integral, the domain of integration with respect to &, &/, &, & and &4 is divided
into 24 regions corresponding to combinations of inequalities such as |&§ — &| < |&4 — &3] <
|&3 — & < |&2 — &| < |§1|. The integral is then estimated on each region separately. The portion
of I| corresponding to the particular region just delineated can be dominated by the supremum
over all & in B of the term

d.

(H_p, FybA™ Gy AT F A" G A" Fy),

where (-,-) denotes the inner product in L>(R?), and H_;, Fj, and G}, are defined as in (3.8).
The estimate continues by noting that

(H_yy, FyA™ GLA * FyA " GpA™" Fy)
ScllH-py ”L}.L% ”Fb”Lﬁ.LE "Aﬂ.G/’ ” LA ”A—x F)y " LiL "A_'\-G” " LFLE "A_sF/’ " LELX
<l iz g 2805 1o
The integral I can be bounded above in an analogous way, resulting in the inequality
L < (AT H_yy, AT FyA™ G, A™ FyA" G, A~ F)

<cla®Hoy |4

AT F, I Lir} |a=Gs| LyLy
% ”A—.\' Fy ” 1L ” AT Gy ” L ” AT'Fy " Leipse

< 3 2
< C”h”LgL% ”f”LgL% ”g”LgL%

The desired result now follows. 0O
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5. Algebraic lower bounds on ¢

In this section, it is proved that the radius o of analyticity of a solution of (1.4) decreases at
most algebraically when viewed as a function of time ¢. The principal step in achieving this goal
is to obtain an a priori bound in G, (7)., on the solutions of (1.4) for a fixed but arbitrary T > 0. To
derive such a bound, a sequence of approximations to (1.4) is defined and proved to be bounded
in G, (1), for an appropriate value of o (7). This bound, combined with the local existence
theory in {7] and the global theory in [11] will enable us to prove the desired result.

The local and global results to be used in the proof of the main theorem are the following.

Theorem 5. (Gruji¢ and Kalisch [7]) Let s > % and ag > 0. For given initial data wo € Gg, .4,

there exists a positive time ty = t0(||w0||Gn0“‘,) such that the initial-value problem (1.4) has a

unique solution w in C([—to, tol, Goy,s). Moreover, there exist b > % and b’ with b’ < —% and

Il —b+b' >0, afunction v € X, .5, and a constant ¢ such that

Hollog.s.b < cr + 262 17" (2e(r + 1)), (5.1)

where r = ||w0||(,~”0__\,, and for t € [—~to, to], v agrees with the solution w of (1.4) corresponding
to wy.

Note that this theorem shows that a local solution of (1.4) exists in a fixed strip for sufficiently
small values of ¢. The following theorem asserts the existence of global-in-time solutions in the
usual Sobolev spaces provided the initial data are of order one in the L>-norm.

Theorem 6. (Hayashi and Ozawa [11]) Assume that wyg € H™ for some integer m = 1, and
lwoll;2 < V2r. Then, there exists a unique solution w of (1.4) in C((—o0, 00), H") and a con-
stant M,,, such that

sup w0 g < M llwoll g
1€(—00,00)

Next, consider a lemma relating the boundedness of a Sobolev norm to the boundedness of a
Bourgain-type norm.

Lemma 5. Let s > %, —1l<b< 1, tg>0, and let w be a solution of problem (1.4) in
C([=2T,2T), H**Y). There exists a constant ¢ depending only on s, b and ty such that if T > to,
then

lvrwe, D], , <cT?(1+arw)), (5.2)
where
arw)= swp_ {Jwe o[} |we 0l + fweol3). (5.3)
te|—2T.2T]
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Proof. Changing variables in the definition of the norm, it follows immediately that

oo

lvrw, 0, = /(1+|§|)2“’ f | AP (yr ()€ Fows, n)|* de dg

-

<c [0 [ ore B ol

+c / (1+180)* / |8, (wr ()’ Fow s, 1) dr .

-0

Applying Leibniz’s rule, the last integrand is seen to be
1 D) ) g2
TVr O Faw, 0+ yr ()(i87)e S FewE, ) + yr (0 Few (€, 0).

Using the equation i w; = —iw?w, — —|w|4w wyx satisfied by w, the last term above may be
replaced by

Yr (eI F, (0w ), 1) + %wm)e"fz'iﬂ(|w|4w)(s, 1N — Y @) (i&2) e Fow e, o).

Notice that the terms containing the second derivative cancel. Thus, there appears the inequality

o]

||1/fT(l‘)w(X,t)||i,,<C/(H-l%”l)zs f [yr (e Fowe, | dr dg

-0

T Q¢ v 1 es2 -
v [aeien® [ [puroe muen| a

+cf(l+l$l /WT(T)E'E' (whn )&, 0| dr de
+; /(1+|s| f|1//T(r)e5 "F(Jwlfw) (&, r)| dt d&
I fole] 2T
<<1+£)c/(1+|s|)2“' / |FowE, 0| dt de
—0 —-2T

o0 2T
+0/(I+I%‘I)2"' / |\Fo(whin )&, 0 de dg

2T
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+ St flf\ (l0l*w) &, 0 dr ds

27

SIS
8\8

<4c(l+l>T sup ||w(~,t)||i,l\.+4cT sup IIwZEx(-,t)Hi,.\-
fo 1E€|—2T 2T | 1€|—2T.2T|

+2T  sup |lwltw, l‘)"ip-
1€]-2T,2T |

It is now clear that inequality (5.2) holds. 0O

With these preliminary results in place, we are ready to tackle the proof of Theorem I.
First, define a sequence of approximations to (1.4) as follows. Consider the initial-value prob-
lems

{ iw! +wi, = _i(nn * 1//Tw”)z(nn * Y w ).x‘ - |’7n * 1//Tw”|4(77u * 1//Tw")a (5.4)
w"(x,0) = wo(x),

for n in N and T > 0, where the convolution is taken only in the spatial variable, 7, is defined
via its Fourier transform (o be

0, 1§
I, 1§

> 2n,
<,

. |
nn(§) = { |
and 7, is smooth and monotone on (—2n, —n) and (1, 2n).

Note that the proot of Theorem 5 holds, with only minor modifications, also for the prob-
lem (5.4). Hence,

Jw |, ;5 < or +262 7 (200 + ny’, (5.5)

where r, tg, ¢, b and ¥’ are as in Theorem 5.

Standard X, ,-estimates on w" — w and a priori regularity of w show thal, for n large enough,
solutions of (5.4) exist on the same interval as the solutions w of (1.4), and that indeed {w"},en
converges to w in the space C([—2T,2T], H"(R)). These facts are summarized in the following
lemma.

Lemma 6. Let r = 0 and wy € H" (R), and suppose w is the solution of (1.4) in C([-2T,2T],
H"(R)) for some T > 0 corresponding to the initial data wo.

Then, for any n large enough, there exists a solution w" of (5.4) in C(|—2T,2T], H" (R))
originating at wo. Moreover, the sequence {w"},en converges to w in C([—2T,2T], H (R)),
and the equivalent of Lemma 5 holds for each w'".

Henceforth, it is assumed that w is a solution of (1.4) in C([—4T,4T], H*t') with initial
data wo in G, for some o9 > 0 and s > %. Let w” be the solution of (5.4) with initial data wp,
n € N. Note that
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'
2 —_—
brOw" =Y O)S(Hwo — Yr (1) / St =) (M * Yrw")" (na * Yrw"), ds

Y / S(t — )]0 # Y[ (a5 Yrw”) ds (5.6)
0

holds tor all ¢ in (—o0, 0o). This representation reveals that, for n large enough, ¥ w" belongs
0 X5y for any o > 0. To see this fact, utilize the linear estimates (3.5)~(3.7), the multilinear
estimates obtained in [7, Theorems 2 and 3], and Lemma 6 to derive the inequality

lvr@w"|, ., < l¥r@S@)wol

o,8.h
+ |¥r () / S(t — ) (nn * 1»[/71‘)”)2('7” g WTU)”)X -
o.8.h
!
+ [ () / St = 5)|’7n * I:[fTw”|4('7” 4 wrw”)ds
as.bh

<c(T? +fn )Ilwollcr,“\

+ C(T 1r Tl o )(” M * WTU)” ”(7 Nz + ” M % 1T//Tw” ”rr s, b)

12 HJ

<C(T2 /i )”u)OHG,TUV\-

+ Koo (T+T ) (yrw |, + |wrw']] )

1 -.‘r

< (T2 +1yC )“w()”Gn() 5

Ko (T + 7 Y2 (14 ar (w) P+ [T3 (1 4+ er ()]

which is finite.
Our goal now is to show that, for n large enough, there exists a o (T) and a suitable R(T)

such that the sequence {y/7w"}, e lies in the ball Br(ry C Xo(1).5.5 centered at zero and of
radius R(T).

Proposition 1. Let T > 0, 09 > 0, s > 8 and 5 <b< T+ Suppose w is a solution of (1.4) in
C([—4T,4T], HST"Y with initial data wo € G, .. Then, rheie exists a constant K > O depending

on s, b, llwollG,,, and ar(w) (see (5.3)) such that the sequence {yrrw"},cr is bounded in
Xo(1)s.p as long as

o (T) < min{op, KT~} (5.7)

Remark 7. The exponent 120 in (5.7) can be improved, but we eschew this exercise here.
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Proof of Proposition 1. Let ) = to(||wo||G”0V\.) > 0 be the existence time in the local well-
posedness of (1.4) in X . obtained in Theorem 5, and suppose without loss of generality that
T > ty. From Eq. (5.6), the linear estimates (3.5)—(3.7), the multilinear estimates in Theorems 3
and 4, and Lemmas 5 and 6, it follows that

|vrow"|,,, <l¥r@S@w|,

+ WT(I)/S(I —s)(nn *WTw”)z(n" *v/Tw”).\' ds

a,s.b

+ WT(I)/S(I_S)MH *‘//Tw"|4(77n *WTwn)ds

aws.h

- 2/7

<e(T2 417 ) wolla, +e(T+ T =) ([yru], + |yrw]?,)

+C(T+ TI nad )O'x (”1// w” ||(r s.b + ”l[fTw” ”(7\ /7)

<c(TH+1 ')||woucm,+c(T+T' Y (lrwld, + lvrwll )

+c(T+T' ok (lyrw 3+ lyrw'|

ash

< C(T2 + fn )Ilwollcﬂo\
e(T+ T YT +ar )] + [T (1 +ar@)])

+e(T+ T o5 (lyrw |+ wrw |2, ) (5:8)

holds for n large enough, and an absolute constant ¢ > 0. Here, b’ lies in the interval (— —%).
Next, notice that [|v/;,w" ||5,.s.» is bounded by a constant My, viz.

Il Yiig w" “m),.\‘ b < CIO ”w” ”m) b= < My, (5.9

where |w" | 5,.5.5 is bounded as in (5.5).
Defining dependent variables z, a and d by

AT = |vrw" |,y e

a(T) = My, +¢(T* +r“ })Ilwollcn(,\
+e(T+T' )12 (14 ar@)] +[TH(1 +ar@)]),  and

d(T)=c(T + '),

a somewhat weakened version of (5.8) reads

z<a+do¥(T)(2? +729). (5.10)
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Henceforth, consider this inequality for any T’ with fo < T’ < T. Let o (T’) be defined by

58

7
o(T') = d8(23a3 + 25(15)8’

and let y = y(T") = z(T")/2a(T"). Then (5.10) becomes

Y1 -8 =5yt < 5.
It follows that by choosing § small enough, there are constants m* and M* with % <m* <
I < M*, such that either y < m* or y > M*. Recalling (5.9) and the definition of a, it is seen
that 2(0) = [ VW1, " llog.s.b < My, < alty), so that y(fo) < % < m*.

Because |7 w], lo(71).5.5 is a continuous function of T’ for to < T’ < T, it follows that
y <m* < 1 forall T/, which means, in particular, that z(T) < 2a(T). This yields the desired es-
timate with a constant K depending on s, b, b’, ||wo||(;”“v_prI and ar (w). The following continuity
argument is provided for completeness of the exposition. Let fo < U < V < T. Then,

|” Yuwy ”o(U),.y,b - H‘//Vw"l/ "rr(V)..\-.I;' < “ Yuwy — Yvwy ”a(U).x.I)

2 2
| ”"J/V w,\l/ ”(,(U)“\.[, - ||10vw'(/ ||U(v)._,-./,|
Iy wy llowy.s.b + 1Y vwy llowy.eb

The second term goes to 0 as U — V by the Lebesgue dominated convergence theorem. To
analyze the first term, define

i 22— 4
Nys=—i (77/1 * 1/fsw'§~) (Un # 'F.ﬂ'?f’f{-)_r - (7711 * VfSwg') (7711 * V/Swg‘)
for n € N. Then, it transpires that

Yo wy (1) — Yvwy () =Yy SEwo — Yy S(Hwo

] ]

+1/fU/S(t—S)Nu.U(S)dS—va/S(t—S)Nn,v(S)ds

0 0

=Wu = Yv)SOwo+ Yy — va)/S(t — )Ny u(s)ds
0

{

+1/IV/S(I_S)[NII.U — Ny vl(s)ds.
0

Each of the terms on the right-hand side of this relation goes to 0 as U — V in the X, )5
norm. [

The main theorem, already stated in the introduction, now follows easily from Proposition 1.

202 J.L. Bona et al. / J. Differential Equations 229 (2006) 186-203

Theorem 8. Suppose that wg € Gg, « for some integer s > % and for some oy > 0. Assume that

lwoll;2 < v2m, and let T > 0. Then, there exists a constant K > ( depending only on s, o9
and | wollGoy.s, such that the solution w to (1.4) corresponding to the initial value wq lies in
CU—T,T1, Go(1y/4.5), where o (T) is given by

o(T) = min{oo, KT 2%}

Proof. Because of the restriction on the L2-norm of the initial data, Theorem 6 assures the
global existence of solutions to (1.1) corresponding to the initial value wg. The proof of the
theorem follows from a compactness argument presented already in [2]. The bound on the se-
quence {Y7w"},en in Xo(7).5,5 Tollows from the a priori bounds in Proposition 1. Since b > %,
the Sobolev embedding theorem yields boundedness of the sequence {w"}, ey in Gy (r).y, uni-
formly on [T, T]. Recall again that the analytic Gevrey spaces G, (1., are equivalent to the
corresponding Hardy spaces on the symmetric complex strip around the real axis of width
20(T) (ct. (1.5)). Consequently, all spatial derivatives of w” can be uniformly dominated on
a closed strip of total width o(7)/2 via the Cauchy formula applied on the disks whose ra-
dius equals o (T')/4. Temporal derivatives are likewise bounded since each of the members of
the sequence satisfies the differential equation (5.4). Locally uniform convergence of the se-
quences {w"},eN, {0 w" }neN, {0xw" }pen, and {8, w"}en on Sy 1y x (0, T) then follows from
the Arzela—Ascoli theorem. In particular, locally uniform convergence on R x (0, T') allows us
to pass to the limit in (5.4). The limit w is a spatially analytic function inheriting the a priori
bounds from the sequence, which is to say, w € L*((—=T, T'), Gy (r)4.5). Theorem 5 then yields
continuity in the temporal variable.

To conclude, observe that for any r, the Sobolev-norm [Jwy|| 4+ is bounded by [woll Gy, .-
Hence. Theorem 6 implies uniform boundedness of a7 (w) in terms of lwoll,, . thereby finish-
ing the proof. [

6. Global analyticity for exponentially decaying initial data

It is well known that the solution map for the transformed initial-value problem (1.4) trades
decay in space of the initial data for smoothness in space of the solution for positive time (see,
e.g., [4] in the context of KdV and NLS equations). The following theorem states that exponential
decay of the initial data implies spatial analyticity of local solutions for the derivative Schrodinger
equation.

Theorem 9. (Hayashi and Ozawa [11]) Assume that cosh(x)wo(x) is in H 2(R). Then, there exists
T* =T*(J|cosh(-)wol| y2) > O, a constant M > 0, and a local solution w to (1.4) satisfying

wp w0, , < M(leoshOwo] ).
te|—=T*.T*|

This local smoothing effect, combined with Theorem 8, yields global analyticity for exponen-
tially decaying initial data having L?(R)-norm of order one.

Theorem 10. Suppose that cosh(x)wo(x) is in H2(R). Assume that lwoll 2 < V27, and let T*
be as in Theorem 9 relative to wq. Then, there exists a positive constant C\, depending only on
| cosh(-Ywoll 2, such that the solution w to (1.4) corresponding to the initial value wo exists
globally in time and, for each t >0, w(-,t) € G (1).2 Where

2t, ft<T*
min{2T*, Ci(t +1—T*) 10} ifr>T*

o(t)y= {

P - s
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