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Abstract
It is suggested here that an interesting and important line of inquiry is the
elaboration of methods of inverse scattering transform (IST) type in contexts
where non-homogeneous boundary conditions intercede. The issue, which
has practical relevance we indicate by example, appears ripe for development,
thanks to recent new ideas interjected into the panoply of IST methodologies.
A sketch of the principal steps envisaged in carrying out analysis of boundary-
value problems using inverse scattering ideas is provided.
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1. Introduction

A central development in the theory of nonlinear partial differential equations (PDEs) in the
second half of the 20th century, and continuing to the present, is the introduction of the inverse
scattering transform (IST henceforth). The technique was put forward in the famous 1967
paper of Gardner et al [GGKM] in connection with the Korteweg–deVries (KdV) equation
and the range of its applicability began to unfold with the publication of Zakharov and Shabat
in 1972 [ZS] on the nonlinear Schrödinger (NLS) equation. Since both the KdV equation
and the NLS equation arise as models in a number of different contexts, the interest in these
new ideas was immediate. Following these seminal works, the hunt was on by the scientific
community, broadly construed, for other equations having an IST theory, the paper of Ablowitz
et al [AKNS] being especially important in showing the way.

By now, we have a well-developed theory of integrable evolution equations, by which
we mean equations which can be analysed via IST machinery. The impact of this formalism
is hard to overestimate. Firstly, for integrable equations we have learned detailed aspects of
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solution behaviour. This includes the long-time asymptotics of solutions and the central role
played by the solitons. Secondly, it has became apparent that some of the lessons taught
by integrable equations have applicability even in non-integrable situations. Indeed, many
investigations in the last decade or so have their genesis in results coming from IST theory,
albeit in non-integrable settings.

Heretofore, the IST methodology was pursued almost entirely for pure initial-value
problems, which is to say, an integrable evolution equation

ut = A(u), u(·, 0) = ϕ, (1.1)

where ϕ is drawn from suitable function classes defined on all of space x ∈ R and which might
evanesce as |x| → ∞ or which might be periodic in space. However, in many laboratory and
field situations, the wave motion is initiated by what corresponds to the imposition of boundary
conditions rather than initial conditions. In any case, it is a daunting task to determine a
wavefield everywhere in space at a given instant of time, which is what is required in (1.1)!
Much more tractable is to determine the wavefield as a function of time at given spatial points.
Hence, the study of initial-boundary value problems for integrable equations and their relatives
presents itself naturally.

Theory for initial-boundary-value problems for nonlinear dispersive wave equations made
by the classical techniques of PDEs has lagged behind that for the pure initial-value problems,
although the issue was already apparent in the 1970s (see [BB,BD]). For example, the elegant
well-posedness results for the pure initial-value problems for KdV and NLS pioneered by
Bourgain and others in the 1990s have only very recently seen analogues for initial-boundary
value problems (see, e.g., [BL, BSZ1, BSZ3, CK, H]). Similarly, IST theory that is adapted to
lateral boundary conditions had been noticeably lacking until recently, despite a need for the
delicate conclusions such techniques might supply.

It is our purpose here to bring this forward as a potentially very fruitful line of development,
and to indicate by a couple of simple examples the sort of payoff that would be in the offing.

The plan is to outline techniques in section 2 and to use them in section 3 in a linear
circumstance to cast light on a recalcitrant issue arising in water wave theory. A brief
commentary on nonlinear problems is provided in section 4.

2. IST for boundary-value problems

A unified approach for analysing initial-boundary-value problems for linear and integrable
nonlinear PDEs, based on ideas of IST methodology, was introduced in [F1] in 1997 (see
also [F2,FIS]). The forthcoming monograph [F3] chronicles further progress and also provides
a guide to the existing literature.

As a paradigm problem, which will find use in section 3, attention is focused on the
initial-boundary-value problem

qt (x, t) + qxxx(x, t) = f (x, t), x, t > 0,

q(x, 0) = q0(x), x > 0,

q(0, t) = g0(t), t > 0,

(2.1)

with the obvious compatibility condition q0(0) = g0(0). General well-posedness results for
this problem are readily available (see, e.g. [BSZ3]) corresponding to restricting q0 and g0 for
minimal smoothness and requiring decent behaviour of q0(x) as x → +∞. The concern here
is to develop IST type methods capable of dealing with quantitative issues. We foresee four
steps to this process.
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Step 1. Write the PDE as a one-parameter ‘family’ of equations, each of which is in divergence
form.

For problem (2.1), a clear choice of an integrating factor to achieve this is q̃(x, t) =
e−ikx−ik3t , leading to the form[

e−ikx−ik3t q
]

t
+

[
e−ikx−ik3t

(
qxx + ikqx − k2q

)]
x

= e−ikx−ik3t f. (2.2)

One natural and more systematic way to get to (2.2) is to consider the formal adjoint, namely,

q̃t + q̃xxx = 0

and to note that

(q̃q)t + [(q̃q)xx − 3q̃xqx]x = q̃f.

Upon choosing q̃ as above, (2.2) falls out.

Step 2. Use the divergence form to determine a global relation coupling the various boundary
values.

In the case of (2.1), this takes the form

e−ik3t q̂(k, t) = q̂0(k) + g̃(k, t) + F(k, t), t > 0, Im k � 0, (2.3)

where q̂, q̂0, g̃ and F are defined as follows:

q̂(k, t) =
∫ ∞

0
e−ikxq(x, t) dx, q̂0(k) =

∫ ∞

0
e−ikxq0(x) dx, Im k � 0,

F (k, t) =
∫ t

0

∫ ∞

0
e−ikξ−ik3τ f (ξ, τ ) dξ dτ, t � 0, Im k � 0,

and for t � 0, k ∈ C, ω(k) = −ik3,

g̃(k, t) = g̃2(ω(k), t) + ikg̃1(ω(k), t) − k2g̃0(ω(k), t), (2.4)

with

g̃j (k, t) =
∫ t

0
ekτ ∂j

x q(0, τ ) dτ, j = 0, 1, 2.

The global relation provides a link between the known boundary value g0 and the two
unknown boundary values qx(0, t) and qxx(0, t). The global relation follows from (2.2) by
integrating in x over the half-line R

+ = {x : x > 0} to derive the formula(
e−ik3t q̃

)
t
=

∫ ∞

0
e−ikx−ik3t f (x, t) dx + e−ik3t

[
qxx(0, t) + ikqx(0, t) − k2q(0, t)

]
. (2.5)

Integrating formula (2.5) over (0, t) leads directly to (2.3) with the notational conventions just
defined.

Step 3. Obtain an integral representation for the solution by inverting the global relation.
For the example (2.1), this takes the form

q(x, t) = 1

2π

∫ ∞

−∞
eikx+ik3t

[
q̂0(k) + F(k, t)

]
dk +

1

2π

∫
∂D+

eikx+ik3t g̃(k, t) dk, x, t � 0,

(2.6)

where

D = {k ∈ C : Re ω(k) < 0} = D+ ∪ D−
1 ∪ D−

2 ,
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Figure 1. The Domains D and E.

with

D+ = {k ∈ C : Re ω(k) < 0, Im k � 0}
and D−

1 , D−
2 similarly defined (see figure 1).

Indeed, taking the inverse Fourier transform of the left-hand side of the global relation (2.3)
yields q expressed as the first integral on the right-hand side of (2.6) plus the integral

1

2π

∫ ∞

−∞
eikx+ik3t g̃(k, t) dk.

The contour of integration in the last integral can be deformed to lying along ∂D+ by Cauchy’s
theorem (actually Jordan’s lemma) together with the fact that for x, t � 0, eikx+ik3t decays
exponentially in the domains E+

1 and E+
2 between the real axis and D+ and is bounded in the

closure of this set.

Step 4. Use the global relation and certain transformations to eliminate the unknown boundary
conditions, thereby obtaining an effective integral representation for the solution.

In the special case (2.1) under consideration as an example, this step proceeds as follows.
Let α = ei(2π/3) so that α, α2 and α3 are the three cube roots of unity. Note that the change
of dependent variables k �→ αk and k �→ α2k leaves ω(k) invariant. Furthermore, if k ∈ D+,
then αk ∈ D−

1 and α2k ∈ D−
2 .

The global relation (2.3) holds in D−
1 ∪ D−

2 . Hence for k ∈ D+, we see that

e−ik3t q̂(αk, t) = q̂0(αk) + F(αk, t) + g̃2 + iαkg̃1 − α2k2g̃0,

e−ik3t q̂(α2k, t) = q̂0(αk) + F(α2k, t) + g̃2 + iα2kg̃1 − αk2g̃0.

View this as a pair of equations for g̃2 and g̃1, solve and substitute the resulting expressions
into the definition of g̃ in (2.4) to reach the formula

g̃(k, t) = α
[
q̂0(αk) + F(αk, t) − e−ik3t q̂(αk, t)

]
+ α2

[
q̂0(α

2k) + F(α2k, t) − e−ik3t q̂(α2k, t)
]

− 3k2g̃0(k, t).

Replace g̃ in (2.6) by the above expression and use the fortunate fact that the terms involving
q̂(α, t) and q̂(α2k, t) make a zero contribution, by Cauchy’s theorem again, to obtain

q(x, t) = 1

2π

∫ ∞

−∞
eikx+ik3t [q̂0(k) + F(k, t)] dk +

1

2π

∫
∂D+

eikx+ik3t
[
α

(
q̂0(αk) + F(αk, t)

)
+ α2

(
q̂0(α

2k) + F(α2k, t)
) − 3k2g̃0(ω(k), t)

]
dk. (2.7)

Equation (2.7) provides an explicit formula for the solution of (2.1) depending only on
the data g0 and q0 and the forcing f . Applications of this formula are discussed in section 3.
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3. Periodic boundary conditions

In laboratory experiments performed in a flume and aimed at understanding how well KdV-
type equations work in practice, a paddle-type wavemaker was oscillated periodically and the
resulting wave motion was monitored at several points down the channel (see [BPS]). If q(x, t)

denotes the deviation of the surface from its rest position at the point x in the channel at the
time t , then q is governed approximately by the KdV equation, of course with damping taken
into account. (On laboratory scales, damping is as important as nonlinearity and dispersion,
whereas it is often much less crucial on geophysical scales.) The measurements correspond to
determining the functions

q̃(0, t) and q̃(xj , t), j = 1, 2, . . . ,

where the zero of the horizontal coordinate x along the channel has been located at the
point where the first measurement is taken. To check the predictive power of the model,
g0(t) = q̃(0, t) is used as boundary data (with q(x, 0) ≡ 0 corresponding to everything being
at rest at the beginning of the experiment). The evolution equation then predicts values for
q(xj , t), j = 1, 2, ..., and a direct comparison can be made between these and the measured
values q̃(xj , t). The reader may consult [BPS] to see the outcome; our attention is drawn to
two interesting mathematical issues arising from this set of laboratory experiments.

It transpires that the boundary data g0(t) in the just mentioned experiments rapidly become
periodic of period 2π/� which is the period of the wavemaker. Moreover, at successively
later times, q(xj , t) also becomes periodic of period 2π/�.

The first question is whether or not there is a corresponding, mathematically rigorous result
about the initial-boundary-value problem for the KdV equation. Secondly, in the wavemaker
experiment, there is obviously no mass added, on average. Is this a fact about the initial-
boundary-value problem? These problems have received some attention in the literature (see,
e.g. [BSZ2, AABCW, BWu]).

In the case of the linear KdV equation, we will now show that the ideas developed in
section 2 yield answers to both these issues via elementary considerations.

The case we have in mind corresponds to (2.1) with q0 = f ≡ 0, and so the solution given
in equation (2.7) simplifies to

q(x, t) = − 3

2π

∫
∂D+

k2eikx

(∫ t

0
eik3(t−τ)g0(τ ) dτ

)
dk. (3.1)

Suppose now that g0(t) is a periodic function of frequency � (period 2π/�). Consider the
difference between q(·, t) and q one period later, namely,

q

(
x,t +

2π

�

)
−q(x,t)=− 3

2π

∫
∂D+

k2eikx

[∫ t+ 2π
�

0
eik3(t+ 2π

�
−τ)g0(τ )dτ −

∫ t

0
eik3(t−τ)g0(τ )dτ

]
.

(3.2)

The change of variables s = τ − (2π/�) in the first temporal integral together with the
presumption that g0 is periodic of period 2π/� allows the right-hand side of (3.2) to be
simplified to

q

(
x, t +

2π

�

)
− q(x, t) = 1

2π

∫
∂D+

3k2eikx

(∫ 2π
�

0
eik3(t−s)g0(s) ds

)
dk. (3.3)

The right-hand side of (3.3) disperses away. More precisely the integral on the right-hand side
of (3.3) tends to 0 as t → ∞, uniformly on bounded subsets {x : 0 � x � L}. In fact, using
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the method of stationary phase, the decay is easily determined to be O(t−2/3) for x/t = O(1),
as t → ∞. Thus, q does indeed becomes asymptotically periodic.

Concerning the mass, suppose again that g0 is periodic with frequency � and that g0 does
not add mass, which is to say g0 = h′

0 where h0 is also periodic with frequency �. If equation
(2.1) with f = 0 is integrated over the half-line R

+, then one obtains formally that

∂t

∫ ∞

0
q(x, t) dx = qxx(0, t).

Integrating this equation over [0, t] and using the fact that q(x, 0) ≡ 0, it is found that

M(t) =
∫ ∞

0
q(x, t) dx =

∫ t

0
qxx(0, s) ds. (3.4)

This formal calculation that ignores a possible boundary contribution at +∞ is easily justified
using for example the qualitative theory in [BWu]. The quantity M(t) is the added mass in
the channel at the time t , relative to the undisturbed state q = 0, since q(x, t) represents the
deviation of the free surface from the rest position. Of course, M(0) = 0. But M does not
remain identically zero. Indeed, the mass in a real channel oscillates as the wavemaker is
displaced. However, guided by intuition derived from the physical situation, M(t) is expected
to settle down to oscillations around zero. To see the validity of our intuition, fix T and consider
the average mass in the channel over a wavemaker period starting at T , namely,

M̄(T ) = �

2π

∫ T + 2π
�

T

M(t) dt = �

2π

∫ T + 2π
�

T

(∫ t

0
qxx(0, s) ds

)
dt. (3.5)

To develop an appreciation of the double integral on the right-hand side of (3.5), return to
formula (3.1) for q, differentiate twice with respect to x and integrate by parts using the fact
that g0(0) = 0 to obtain

qxx(x, t) = − 3i

2π

∫
∂D+

keikx

(∫ t

0
eik3(t−τ)g′

0(τ ) dτ

)
dk. (3.6)

Evaluate the latter relation at x = 0 and integrate over [0, t] to reach the helpful formula∫ t

0
qxx(0, s) ds = − 3i

2π

∫
∂D+

k

(∫ t

0
eik3(t−τ)g0(τ ) dτ

)
dk. (3.7)

As t � τ , the change of variables m = k(t − τ)
1
3 can be implemented in (3.7) to reach the

alternative formula∫ t

0
qxx(0, s) ds = − 3i

2π

∫
∂D+

meim3

(∫ t

0

h′
0(τ )

(t − τ)2/3
dτ

)
dm = 3Ci

2π

∫ t

0

h′
0(τ )

(t − τ)2/3
dτ,

(3.8)

where

C = −
∫

∂D+
meim3

dm.

Thus, we are reduced to determining

M̄(T ) = 3C�i

4π2

∫ T + 2π
�

T

(∫ t

0

h′
0(τ )

(t − τ)2/3
dτ

)
dt. (3.9)

Inverting the order of integration and performing the t-integration explicitly yields

M̄(T ) = 9C�i

4π2

[∫ T

0
h′

0(τ )(t − τ)
1
3
∣∣t=T + 2π

�

t=T
dτ +

∫ T + 2π
�

T

h′
0(τ )(t − τ)

1
3
∣∣t=T + 2π

�

t=τ
dτ

]

= 9C�i

4π2

[∫ T + 2π
�

0
h′

0(τ )

(
T +

2π

�
− τ

) 1
3

dτ −
∫ T

0
h′

0(τ )(T − τ)
1
3 dτ

]
.



Open Problem T201

Figure 2. The contour ∂D+ for the linearized KdV.

Letting τ = s − 2π/� in the second integral and using the fact that g0 = h′
0 is periodic with

period 2π/�, this may be simplified to

M̄(T ) = 9C�i

4π2

∫ 2π
�

0
h′

0(τ )

(
T +

2π

�
− τ

) 1
3

dτ.

Integrating by parts and using the fact that h(0) = 0, and by periodicity h(2π/�) = 0, there
follows that

M̄(T ) = 3Ci

4π2

∫ 2π
�

0

h0(τ )

(T + (2π/�) − τ)
2
3

dτ = 3Ci

4π2T
2
3

∫ 2π
�

0
h0(τ ) dτ

− Ci

2π2T
5
3

∫ 2π
�

0
h0(τ )

(
2π

�
− τ

)
dτ + O

(
T − 8

3

)
, T → ∞.

This shows clearly that asymptotically, the average mass in the channel tends to 0.
Similar results are valid for the case that the linear PDE also contains the term qx . For

example, equation (3.3) is modified as follows: k3 in the exponent of the exponential is replaced
with k3 − k, the factor 3k2 is replaced by 3k2 − 1 and the contour ∂D+ is now depicted in
figure 2, where the relevant curves are defined by k2

I − 3k2
R + 1 = 0.

4. Nonlinear problems

We very briefly indicate the way these ideas ramify in the presence of nonlinearity. This
will be developed in more detail in a separate publication. Let us consider the following
initial-boundary-value problems for the full KdV or NLS equations

qt + qx + qqx + qxxx = 0, x, t > 0,

q(x, 0) = q0(x), x > 0,

q(0, t) = g0(t), t > 0

and

iqt + qxx + |q|2q = 0, x, t > 0,

q(x, 0) = q0(x), x > 0,

q(0, t) = g0(t), t > 0.

Steps 1, 2 and 3 may still be carried out. The nonlinearity is reflected in two ways. First, the
analogues of q̂0(k) and g̃j (k, t) apparently cannot be written in closed form but instead are
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obtained in terms of the eigenfunctions of the x and t parts of the associated Lax pair, evaluated
on the appropriate boundary values of the solutions. For the KdV equation, these values are
q0(x) and {∂j

x q(0, t)}2
j=0, respectively; whilst for the cubic NLS equation they are q0(x)

and {∂j
x q(0, t)}1

j=0. The integral representation that results from carrying out steps 1, 2 and 3
involves components of a 2×2 matrix µ(x, t) which is the simultaneous solution of both parts of
the Lax pair. This matrix may be obtained as the solution of a matrix Riemann–Hilbert problem
defined in terms of the analogues of q̂0(k) and g̃(k, t). The global relation can then be solved
explicitly for the unknown boundary values (in the KdV case, {∂j

x q(0, t)}2
j=1) [BFS, F4, TF].

However, this ‘solution’ involves the eigenfunctions of the t-part of the Lax pair which itself
depends on all the boundary values. Thus, one is left with a nonlinear integral equation to
solve. Of course, well posedness of the initial-boundary-value problem for the KdV equation
is known by other means, as already indicated. If the auxiliary data q0 and g0 are sufficiently
smooth, (see [BW1,BW2] for theory in smooth spaces), the boundary values {∂j

x q(0, t)}2
j=1 all

exist. Hence, while the inverse scattering formalism developed here does not yield solutions in
closed form, the associated integral equation does contain information not available by other
means. For example, by applying the Deift–Zhou [DZ] theory to the matrix Riemann–Hilbert
problem, it can be shown that for boundary data of essentially finite duration, the solution is
dominated by solitons in the asymptotic range where x/t is of order 1 and t → ∞.
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