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1. Introduction

In this paper, we continue the study of the Korteweg-de Vries equation (KdV-equation henceforth)

U+ Uy + ULy + Ugex =0 (1.1)
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posed on a finite interval (a, b), which without loss of generality is taken to be (0, 1), subject to an
initial condition

ux,0)=¢(), forxe(0,1), (1.2)

and the non-homogeneous boundary conditions

u(01 t)=h1 (t)1 u(l’t)=h2(t), ux(lyt)=h3(t), fOI't?O, (1'3)

where the initial value ¢ and the boundary data hj, j =1, 2, 3, are given functions. As is usual in stud-
ies of the KdV-equation, u = u(x, t) is a real-valued function of the real variables x and t which often
correspond in applications to space and time, respectively, and subscripts denote partial differentia-
tion. The principal concern of the present essay is the well-posedness of the initial-boundary-value
problem (IBVP henceforth) (1.1)-(1.3) in the classical Sobolev space H*(0, 1) for negative values of s.

We remind the reader that while there is marvelous theory developed for the pure initial-value
problem (IVP from now on) (1.1)-(1.2) set on the whole line I = R (cf. [6,7,16,30-32,41,44] and the ref-
erences therein), and for the initial-boundary-value problem of Eq. (1.1) posed on the half line | = R+
(cf. [3,5,8,9,15,20,23-26] and the references therein), some of which will be discussed presently, when
the equation is used in practical situations, one inevitably encounters a finite domain where lateral
boundary conditions must be imposed. Hence, theory for such boundary-value problems, while more
complicated and less elegant than the theory on the whole line, is important, as is discussed in some
detail in the works [1,2,4] and [14] for example. And, though a theory related to very rough auxiliary
data such as that which is the focus here is not relevant to real applications of equations like (1.1),
the issue is mathematically challenging and, moreover, the representations derived in Section 2 do
find use in the analysis of practically important issues (see e.g. [2]).

Recall that the IBVP (1.1)-(1.3) is said to be locally well-posed in the space H¥(0, 1) for some s € R if for
given T > 0 and suitably compatible auxiliary data’

¢ €H©0,1) and h= (h1,ha,h3) e HM(0, T) x H*2(0, T) x H*3(0, T),

there exists a T* with 0 < T* < T depending only on

r=|1@llus©,1) + Ihllam ©,1yxHP2 ©,T)x HH3 (0, T)

iuch that (1.1)~(1.3) admits a unique solution u € C([0, T*]; H* (0_z 1)) which depends continuously on ¢ and
h in their respective spaces. If T* =T for any compatible ¢ and h, the IBVP (1.1)~(1.3) is said to be globally
well-posed in H*(0, 1).

The reader is referred to [10,17-19,27,28,37-40,42,43] and the references contained therein for
various studies of the IBVP (1.1)-(1.3). In particular, we showed in [10] that (1.1)-(1.3) is locally well-
posed in the space H¥(0, 1) with p =y = ‘—'5—‘ and u3 = % for any s > 0 and is globally well-posed
in the space H%(0,1) for any s > 3. In the case wherein 0 < s < 3, we showed that (1.1)-(1.3) is
globally well-posed with compatible

(@, h) € H(0, 1) x HM®(0,T) x H¥1©)(0, T) x H#2©)(0, T),

1 The reader is refereed to [10] for the definition of compatibility of the initial value ¢ and the boundary data A Compatibility
does not arise as an issue in spaces where the relevant traces of the auxiliary data at (x,t)=(0,0) and (x,t) = (1,0) do not
exist, such as those that are the principal focus here.



2560 J.L. Bona et al. / ]. Differential Equations 247 (2009) 2558-2596

where 111(5) = € + (55 +9)/18, pa(s) = € + (5s+3)/18 and ¢ is an arbitrary small positive constant.
This result has been improved recently by Faminskii [27]; he showed that (1.1)-(1.3) is globally well-
posed in the space H%(0,1) for any s with 0 < s < 3 for compatible data

(@, h) € HS(0,1) x H5*+€(0, T) x HF+€(0, T) x H3*€(0, ).

Even more recently, Holmer showed in [28] that (1.1)-(1.3) is locally well-posed in H¥(0, 1) for any
s> —%. The following question then arises naturally.

Question 1.1. Is the IBVP (1.1)~(1.3) well-posed in the space H*(0, 1) for some values of s < —%?

The same issue arises for the IVP for the KdV equation posed on the whole line R, viz.

Ur+uty+Upx =0, X,tER,
PR e l (14)

u,0)=¢®x),
with Sobolev-class initial data ¢, posed with periodic boundary conditions so that ¢ is periodic and
solutions having the same period are sought, or posed in a quarter plane, viz.

Up + Uy + Ully + Uyxx =0, xeR+,teR+,] (15)

u(x,0)=¢®, u0,t)=h(), xteR*.

After considerable effort by a number of researchers, it has been understood that the IVP (1.4) is
well-posed in the space H*(R) for s > —3 whereas the periodic IVP for (1.4) is well-posed in the
space Hf,e,((a, b)) for s > —% [33,34]. The IBVP (1.5) is also known to be well-posed in the space
HS(RT) for any s > —3 [12,28].

In the context of the pure IVP or the periodic IVP (1.4), or the quarter-plane problem (1.5), one can
ask the same question as for the finite-interval problem.

Question 1.2. Is the IVP (1.4) well-posed in H*(R) for some s < —%; is the periodic IVP (1.4) well-posed in
H3e((@, b)) for some s < —1; is the IBVP (1.5) well-posed in H*(R™) for some s < -7

For the IVP (1.4), when s < —%, it has been shown to be ill-posed in HS(R) in the sense that
the solution map, if it were to exist, cannot be locally uniformly continuous. The same can be said
for the periodic IVP (1.4); it is ill-posed in H*(S) when s < —% in the sense that the solution map
cannot be locally uniformly continuous. When s = —%, a weaker form of local well-posedness was
established for the IVP (1.4) in [21]. Thus, the indications were that the answer to Question 1.2 was
almost certainly negative. However, Kappeler and Topalov [29] recently demonstrated that the IVP
(1.4) is (globally) well-posed in the space H*(S) for s > —1. In addition, Molinet and Ribaud [35]
showed that the pure initial-value problem

Up + Ully + Uy — U = 0, —00<x<00.t>0,} (16)

u(x, 0) =¥ (x), —00 < X < 00,

for the KdV-Burgers equation is well-posed in the space H*(R) for s > —1 and is ill-posed when
s < —1 in the sense that the corresponding solution map is not C2. Both of these results are a little
surprising. Molinet and Ribaud achieved their result by taking full advantage of the combination of
the dispersion introduced through the term uy and the dissipation introduced through the Burgers’
term —ux. The corresponding solution map is real analytic when s > —1. In contrast, the approach
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of Kappeler and Topalov is based on the classical inverse scattering transform. The corresponding
solution map associated with the periodic IVP (1.4) is continuous, but not locally uniformly continuous
when s < —%. The interested reader is also refereed to [22,23] for similar discussions for the Burgers
equation,

There is an interesting connection between the KdV equation and the KdV-Burgers equation, Let
o, B € R be given and consider the transformation

u(x, t) = e bty (x, t).

A direct calculation shows that u is a solution of the KdV equation

Ut +Ux + Ul + Uypy = 0 (1.7)

if and only if v is a solution of the equation

vet (@ +a® + B)v + (3a% + 1)V + Vaax + 30 vy + P ¥ (v + vv,) = 0. (1.8)

This connection between the KdV equation and the KdV-Burgers equation led us to consider in [13)
the following IBVP for the KdV-Burgers equation posed in a quarter plane:

(1.9)

U +alx, Hutly + Usxex — Uxx =0, x,t> 0,
ux,0)=vyx), ux0)=h(), xt>0,

where a =a(x,t) is a given smooth function. It was shown in [13] that the IBVP (1.9) is locally well-
posed in the space H(R™) for any s > —1. Consequently, there emerges the following well-posedness
result for the IBVP (1.5), which provides a partial answer to Question 1.2 for the KdV equation posed
in a quarter plane.

Theorem. Let v > 0 be given. Then for any s > —1 with s # 3m + %, m=20,1,..., the IBVP (1.5) is locally
well-posed in the weighted Sobolev space

H; (R*) = {f e H°(RY); " f € H*(RT)}.

Moreover, the correspondence (1, h) — u of data with the associated solution is an analytic mapping between
the relevant spaces.

In this paper, interest is focused on Question 1.1 for the IBVP (1.1)-(1.3). The following two theo-
rems are the principal outcomes of the present study.

Theorem 1.1. The IBVP (1.1)-(1.3) is locally well-posed in the space H(0, 1) for any —1 < s < 0. The corre-
1 1

spondence (yr, hq, ha, h3) = u is an analytic mapping from H*(0,1) x H3(0, T) x H3(0, T) x H°(0, T) to

C([0, T]; H*(R™)), where T > 0 is any value less than the existence time provided by the local well-posedness.

Theorem 1.2. For any € > 0, the IBVP (1.1)~(1.3) is globally well-posed in the space H*(0, 1) for any s in the
range —1 < s < 0 and for auxiliary data ¢ € H°(0,1) and h € H§+‘(0, T) x H%‘L‘(O, T) x H¢(0, T).

In addition, it will be shown that the IBVP (1.1)-(1.3) possesses a strong smoothing property, sim-
ilar to that of the heat equation.
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Theorem 1.3, Let s > —1 be given. lfﬁ € HZ.(RT) x HiR.(RY) x Hiy (RT), then for any ¢ € H*(0, 1), the

loc C

corresponding solution u of the IBVP (1.1)-(1.3) belongs to the space C (Rt; H(0, 1)).

Thus it is concluded that the 1BVP (1.1)~(1.3) has the same local theory as that established by Kap-
peler and Topalov using inverse scattering theory for the periodic initial-value problem. An advantage
of the present arguments is that they do not depend upon the rigid structure of inverse scattering
theory, and so may be expected to apply to a range of nonlinear dispersive equations.

The rather strong damping property enunciated in Theorem 1.2, and which is a consequence of
imposing boundary conditions, indicates why one might hope for a better local existence theory than
obtained heretofore. Indeed, the improved theory developed here owes almost entirely to a better
appreciation of the smoothing induced by the imposition of boundary values.

Observe that a function u = u(x, t) solves the IBVP (1.1)-(1.3) if and only if v = e~ 2+xy solves the
[BVP

Ve +4vy + %(e‘"‘z"v)x F Vi — 3V =0, x€(0,1),
v(x, 0) = ¢*(x), (1.10)
V(Ov t)=h?(t), V(1vt)=h;(t)v Vx(lat)=h§(t)v

for a KdV-Burgers-type equation posed on (0, 1), where ¢*(x) = e*¢(x) and h* = (h%, b3, h3) with

R =eEh(),  h3O=e ), k5 =e ¥ (ha(t) + h3(®).

Thus, to prove Theorems 1.1-1.3 for the KdV equation, one needs only study the IBVP (1.10) and es-
tablish for it the same well-posedness results as those described in Theorems 1.1-1.3. More precisely,
it suffices to prove the following well-posedness results for the IBVP (1.10).

Theorem 1.4.

(a) The IBVP (1.10) is locally well-posed in the space H*(0, 1) for any —1 < s < 0. Moreover, the correspon-
dence of auxiliary data to solutions (¢*, 71*) > u is an analytic mapping of H*(0, 1) x HE (0, T) x
H% 0, T) x HS 0, T) to C(0, T; H%(0, 1)) for appropriate T > 0.

(b) Forany T > 0, the IBVP (1.10) is well-posed in the space H*(0,1) forany =1 <s <0 with ¢* € H*(0, 1)
andh* € H3T€(0, T) x y%“(o. T) x HE (0, T). (Thus the problem is globally well-posed in these spaces.)

(c) Let s > —1 be given. If h* € HS.(RT) x HS.(RT) x H.(R™T), then for any ¢* € H*(0, 1), the corre-
sponding solution v of the IBVP (1.1)-(1.3) belongs to the space C (R*; H®(0, 1)).

This result will be proved using the Laplace transform approach developed in our earlier papers
[12,13].

The paper is organized as follows. In Section 2, explicit representation formulas are presented
for solutions of initial-boundary-value problems for the linear KdV-Burgers equation, These are de-
veloped along the lines put forward in [12,13]. Various estimates will be established for the linear
problems associated to (1.10). These will play a central role in the analysis of the nonlinear problems.
In Section 3, the well-posedness results for the IBVP (1.10) as described in Theorem 1.4 are estab-
lished. The technical Appendix A contains proofs of some of the lemmas that arise in the analysis
underlying the principal results.

2. Linear problems
This section is divided into two subsections. In the first, consideration is given to linear problems

associated to the KdV-Burgers equation. Explicit representation formulas for solutions of an initial-
boundary-value problem for this equation will be derived. Then, the boundary integral operators that



J.L. Bona et al. / J. Differential Equations 247 (2009) 2558-2596 2563

arise in the solution formulas will be extended from the domain (0, 1) x R* to the whole plane R x R
using the approach developed in [13). The extended boundary integral operator will play a crucial role
in our analysis. The second subsection contains estimates of solutions of the linear problems and of
the boundary integral operators.

2.1. Solution formulas

Consideration is first directed to the non-homogeneous boundary-value problem

Ut +4uy + txy — Uy =0, u(x,0)=0, (21)
u@,t)=m(t), u(l,ty=hy(t), ux(1,t)=hs(). '
Applying the Laplace transform with respect to t, (2.1) is converted to
sfi(x, 8) + 4ig(x, $) + fixxx (X, 5) — 3l (%, 5) = 0, 22)
i0,5) =hi(s), 0(1,5)=ha(s), x(1,5) =hs(s) '
where
+00
fi(x,s) = / e tu(x, tyde
0
and
400
hj(s) = / e Sthytydt, j=1,2,3.
0

The solution (x, ) of (2.2) can be written in the form

3
fi(x,s) = ch(s)e"f(s)"

j=1
where the Aj(s), j=1,2,3, are the solutions of the characteristic equation

s+4r+23-322=0

and the ¢;j=cj(s), j=1,2,3, solve the linear system

cC1+C+c3= fl1 ),
1 eA'I (6] + CZCAZ(S) + C3€A3(s) = hZ (S),
C1A1(5)eM® 4 a2 (5)e*2®) 4 c3a3(5)er® = hs(s).

Let A(s) be the determinant of the coefficient matrix of the left-hand side of this system, and A; (s)
the determmants of the matrices that are obtained by replacing the ith column of A(s) by the column
vector (hl(s) hz(s) h3(s))T i=1,2,3. Cramer’s rule implies that

A)
ITAG)

j=1,2,3.
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Taking the inverse Laplace transform of {i yields the representation

rdioo r+ioo

3
u(x t)=L f e‘fﬁ(x,s)ds=ZL f estﬂexns)xds

r—ico r—ioo

which holds for any r > 0. The solution u of (2.14) may also be written in the form

ux, t) =uq(x, t) +ua(x, t) + us(x, t)

where ug,(x, t) solves (2.14) with hy =0 when j#m, m, j=1,2,3; thus u,, has the representation

3
Um(%,£) =D Ujm(x,t)

j=1

with

Ujmx,t) = Z i / CStﬁ—e}V(‘)th(S) ds
J=

r—ioco

for m, j =1,2,3. Here Aju(s) is obtained from Aj(s) by letting flm(t) =1 and hi(t) =0 for k #m,
k,m=1,2,3. It is straightforward to determine that in the last two formulas, the right-hand sides are
continuous with respect to r for r > 0. As the left-hand sides do not depend on r, it follows that we
may take r =0 in these formulas and in those appearing below. Write U}, in the form

+ioo 0
1 Ajm(S) A 1 Aim(s) A
Ui )= —— | et=EM o0 (yds + — [ et —LT—eMO*hy(s)ds
im0 =5 f A(s) m®)ds+ o A(S) m(s)
0 —ioo

=yt -
. uj'm(xs t) + uj,m(xv t)!

for m, j = 1,2, 3. Making the substitution s = i(o® — p) with 1 < p < +oo0 in the characteristic equa-
tion

s+4r+23 -322 =0, (2.3)
the three roots A}* may be written as a function of p rather than s, viz. AT(p). j=1,2,3, with

ReAf(0) 20, ReAf(0)20, RerA7(p)<0

and, as p — oo,

A (p)=ip+1 +0(%), A}(p)=£2——'p+1 +o<%>,

A;“(p)=:%1p+1 +o(%).
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Thus u}:m (x,t) and uj“m (x,t) have the form

400

1 (o3 o AT m(P) 5
+ = (02— p)t AT (P)x —Jum 2 _ 1\h+
ul (%, 0) 5= [e e A* (o) (Bp% =Dt (p)dp
and
+00
1 25 oy A7 (2) R
T, )= — —i(p?—p)t A; (0)x _im 302 — 1)h=
Ujm ) = o /e e (30° = 1)h(p)dp

1

where hif(p) = i(i(0® - p)), At(p) and A;.':m(p) are obtained from A(s) and Aj m(s), respectively,
by replacing s with (03 — p) and Aj(s) with A}L(p), for j=1,2,3. Notice that, with an obvious

notation, A~(p) = A—+(p) and A‘ n(0) = A+ m(o) for j=1,2,3, and ft;(p) = f&(p). In consequence,

it is also the case that u}, (x,t) = uj“ *x,0), j,m=1,2,3.
It will be helpful to know the large-p asymptotics of the ratios

(0) A7)
}m jum
A M A

Since
XS+ 22(8) + A3(s) =3,

it is readily seen that

AS) = (A3(5) — 229))e> 1D + (A1(5) — A3(5))€> 229 - (Aa(5) — A1 (5)) €323,

A11(5) = (A3(s) — A2(5))e> O, A1,2(5) = A2(5)e"?®) — A3(5)eM®,
82,1(5) = (M(5) — A3(s))e> 220, A22(5) = A3(5)eM® — a1 (s)eM®,
A3,1(5) = (A2(5) — A1(s))e> 4, A32(5) = M (9eM® — a3 (5)e™ ),
and
Aq3(5) = e*) elz(s), Az 3(s) = eM® _ ela(s), A3 3(s) = er2(®) _ eM®

Therefore, it follows immediately that as a function of the variable p introduced above,

RIS P () B M- 110, B
At(p) ’ At (p) ’ At(p)
AP s 850 5 ALG) s
At T AT T At '
A0 | 5 i AL s ALG) el 26)
At(p) ’ At(p) " AH(p)

as p — +o0.



2566 J.L. Bona et al. /]. Differential Equations 247 (2009) 2558-2596

As already noted,

ju— _ + . s
uj.m(x, t)_uj'm(x, t), j,m=1,2,3,
and

+00
1 F g
U t) = - f elP* =P Ox(352 _ 1)i*] (o) dp
1

for m=1, 2, 3, whilst

=+

(o]

1 i _ _ A
U}:m(x, t) = _27 el(pB_p)te l}-(p)(l X) (3p2 = l)h*j:m (p) d,O (let X¥=1-— X)

4 —

o0

1 i(03—o)t . —AT (o)X 2 At
=5 el =Pte= X (P (352 — 1)h*; L (p)dp

.—l\

form=1,2,3 and j=1,2, with

A (P)
A+(p)

AT (D) 3+ n
Jim A0+

et a aLt+
h*3,m(p) = h$(P), h*_],m(p) b

for j=1,2 and m=1,2,3. Moreover, it follows straightforwardly from (2.4)~(2.6) that
st1 541
hi e H(ﬁ_ (R+) = h}‘_l eH®R), j=1,2, hj € H:;_ (R),
s41 541
hacHE (RY) = K, eHy (R), j=1,23,
s % i
hse H3(RT) = hj;eHy’ (R), j=1,2,3.

For given m, j=1,2,3, let Wj  be an operator on Hf,(R+) defined as follows; for any h € H(‘)(R*').

(W mh](x, £) = [Ujmh] (%, £) + (U] mh1(x, £) (2.7)
with
+00
Ujmhix 0= 5 [ &Pt OD (307 1) (oo (28)

1
for j=1,2,m=1,2,3 and
+00

Wsnhlt, = 5 [ &Pt (302 1) (o) dp (29)
1
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for m=1, 2, 3. Here, the functions ﬁ*}:m are defined by

+
At A7 (P) A A
P*3m0) = fj,’;’—’m—)hJ’(p). h* () =

AT (D) 4+ a

Jan AT () p+
e f h

A+ (0) »)

for j=1,2 and m=1, 2,3, where A+ (p) = hA(i(p3 - p)).

Proposition 2.1. For given hy, hy, and hs, let h= (h1, ha, h3). Then the solution of (2.14) may be written in
the form

3
U0 E) = Woarh)(, ) i= Y Wi mhmd(x, £).

jm=1

Next, consider the same problem posed with zero boundary condition, but non-trivial initial data,
viz.

U +4ux +Upx — 3uxx =0, ux,0)=¢(x), (210)
u@©,=0, u(1,H)=0, ux(1,t)=0. '
By semigroup theory [36], its solution may be obtained in the form
u(t) = we(te (2.11)

where the spatial variable is suppressed and W¢(t) is the Co-semigroup in the space L%(0,1) gener-
ated by the operator

Af=__flll_4fl+3fll
with the domain

D(A)={f e H*©0, 1 | f(0) =0, f(1)= f'(1)=0}.

By Duhamel's principle, one may use the semigroup W.(t) to formally write the solution of the
forced linear problem

ut+ux+uxxx=f(x,t), u(x’0)=0v (212)
u®©,6)=0, u(1,£)=0, uy(1,t)=0 )
in the form
(4
u(t) = f We(t — 7)f (., D) dr. (213)
0
Recall the explicit solution formula
o0 [o.¢]
u(x, t) = Wr(D)d(0) =c / gl(€> -4 -3t gint f e~ Yy (y)dy de (2.14)

—00 -0
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for the pure [VP

Up + 44Uy — Styy + U =0, X, tER,
0 e ] (2.15)

u(x, 0) =y (x), XeR.

The formula for Wg(t) is explicit and simple. We take advantage of this simplicity to give a related
representation of W, (t) in terms of Wg(t) and Wigr(t).

Let a function ¢ be defined on the interval (0,1) and let ¢* be an extension of ¢ to the whole
line R. The mapping ¢ — ¢* can be organized so that it defines a bounded linear operator B from
H5(0,1) to H5(R). Henceforth, ¢* = B¢ will refer to the result of such an extension operator applied
to ¢ € H5(0, 1). Assume that v = v(x, t) is the solution of

Vet+4vy — 3Vt V=0,  v(x,0) =¢*(x)

for xe R, t > 0. If g1(t) = v(0,t), g2(t) = v(1,t), ga(t) = vx(1,t) and g = (g1, &2, &3), then vg =
vi(x,t) = (Whar (0)E1(%) is the corresponding solution of the non-homogeneous boundary-value prob-
lem (2.10) with boundary condition h;(t) = g;(t), j=1,2,3, for t > 0. It is clear that for x € (0, 1)
the function v(x,t) — vg(x, t) solves the [BVP (2.10), and this leads directly to a representation of the
semigroup W, (t) in terms of Wyg(t) and Wg(t).

Proposition 2.2. For a given s and ¢ € H*(0, 1), if ¢* is its extension to R as described above, then W¢(t) ¢
may be written in the form

We(t)p = Wr()¢* — Whar (DE (2.16)

forany x € (0,1) and ¢ > 0, where g is obtained from the trace of Wr(t)¢* atx=0andatx=1as indicated
above.

In a similar manner, one may derive an alternative representation for solutions of the inhomoge-
neous initial-boundary-value problem (2.12).

Proposition 2.3. If f*(-,t) = Bf (-, t) is an extension of f from [0, 1] x R* to R x RT, say, then the solution
u of (2.12) may be written in the form

t
w0 = [ Walt=)f*C,7)de = Whar )9
0
for any x,t > 0 where ¥ = V(t) = (v1(t), v2(t), v3(t)) is the appropriate boundary traces of
t
qx,t) = f Wer(t— 1) f*(r)dT
0

at x =0and x = 1, which is to say,

v1(t) =q(0,¢), va(t) =q(1,0), va(t) =qx(1,1).
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Of course, the formulas in Propositions 2.2 and 2.3 only provide solutions of the partial differential
equation for 0 <x <1 and t > 0. Indeed, Wc(t)¢(x), the left-hand of (2.16), is only defined for this
range of x and ¢. However, it will be convenient to extend the terms on the right-hand side of (2.16)
in such a way that they are defined for all x,t € R. This will provide a context in which to establish
the well-posedness of the nonlinear problem in the framework of Bourgain spaces. Note that the term
Wr(t) can be redefined as

[oe] [o 0]
We()p=c / oI (€2 —4)-362) ix / e~YE g (y) dy dE
—00 —00

for all x,t € R and thus only a suitable extension of the second term in both formulas is needed
to extend the entire formula from (0,1) x RT to R x R. Because of the structure of the boundary
integral operators [Wmhi(x,t), j,m=1,2,3 (see (2.7)-(2.9)), it suffices to consider extending an
integral operator Upgr(t) of the form

o0
[thar OR] 00 = % Re / et U= @ IHBUIX (3,2 _ 1)+ (1) de (217)
1

with fl+(p,) = fl(i(//«3 — w)), where both a(t) and g(u) are real-valued functions and a(u) < 0 for
all u.

Attention is thus turned to providing an extension of the boundary integral operator Upg(t).
Rewrite Upgr (t) as

[o ]
[Usar (HR](x) = %Re / eit(u3_u)e(a(u)+iﬁ(u))x(3 u?— 1)ﬁ+(u) du
1

4
1 _ ) R
= >—Re / Wit @UHBUOB) (3,2 _ 1), () () dut
1

o0

1 s . A
5 ore Re / e1u3t—mte(a(u)+lﬂ(llv))x(3M2 _ 1)¢2(P‘)h+(/"f) du
2

7
== L{1,(x, )+ Lx, )}
2
where ¢ (1) and ¢ (i) are nonnegative cut-off functions satisfying
$1(u) +¢2(u)=1 forall € R
with supp¢1 C (—1,4), supp¢, C (3, 00) and ¢3(x) is a smooth function on R such that

x forx>0,

9a(0) = [0 forx < —1.

The integral I1(x,t) is naturally defined for all values of x and t and, viewed as a function defined
on R x R, is in fact C°°-smooth there, with all its derivatives decreasing rapidly as x — £o0. Thus no
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complicated extension of I{ is required as the obvious one suffices. It is otherwise for I,. To discuss
I2(x, t), it is convenient to let x(A) denote the positive solution of
3
W —p=2a

for > >0 and u > 1, while p(A) = —u(—A) for A <0. By a change of variables, the integral I; can be
rewritten in the form

o0

fa(x,0) = Re [ ee@®imOme—isg, (u ) ar
Ewl
=E(x,t)

for x > 0 with ay (A) == (e (A)) and B, (1) := B(u(L)). Let the extension of E(x,t) to x <0 be g(x,t)
and write

E(x,t), x>0,

ot = { gt), x<0,

where g(x, t) is to be defined.
Using the argument appearing in [13] (see Section 2), one may rewrite Fx,[I2](§,t) as

Fxtll2l = Fi [/(E(x, t) cos(x§) + g(—x, t) cos(x&)) dx:l
0

+ %_[o é__l_—nft[‘o/cos(nx)E(x, t)dx—ofcos(nx)g(—x, t)dx] dn.

For x > 0, choose g(—x,t) such that

ft[/g(—x, t) cos(x‘;')dx] ()= —ft[/E(x, t) cos(xE)dx] (T)OE, 1)
0

0

+.7-‘t|:f E(x,t) cos(xE)dx] O -6¢E D)V () (218)

0

where @ (&, T) = x (I€| — 8ir|!/3) with & > 0 fixed, 0 < x () < 1 everywhere, and

_ 1, §<0,
X(E)—{O‘ E>0
whilst
1 ifjEI =1,
”(5)_{0 if €] <1,
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and w(t) is a smooth and bounded function to be specified momentarily. It is easy to see that such
a g is a combination of even and odd extensions, viz.

Faellli=Ta1(6, 1) + Tna(€, 7)

where

e}

Ing, )= 7-‘:[ f E(x,t) cos(xE)dx} (1 -0¢ 1)1+ vE)w(T))

0

and

722(£,T)=# / 5_1_nft[[E(X,t)cos(xn)dx](t)
—00 0

x (20, 1)+ (1- 0@, 1))(1 +vE)w(r)))dy

i Tl 1 T
= ;0/<m + m)]—}[!E(x, t) cos(xn)dx](t)

x (20, 1)+ (1- 0, 1))(1 + vE)w(T)))dn.

Because of the algebraic identity

T2a (&, T) may be written as

. 2' o0 oo
InE,v)= ”—;/ﬁl:fE(x, t)cos(xn)dx](r)
0 0

x (20, 1)+ (1- 01, 1))(1 + v®)w(r)))dy

2 [ am? [T
e s 1= (n/s)zf‘[ 0/ & f>C°S<xn)dx](r)

x (20, Ty + (1- 0, 1))(1 + v(®)w(7)))dn
=Q1¢, 7)+ Q20,7). (219)

Choose a C*°-smooth function w(t) (cf. [13]) such that for all 7,
Qi(¢,t)=0, for|§|>1.
Hence, for |€| > 1,

T2(6,7) = Q2(6, 7).
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Thus, when |§| > 1 and 7 20,

21C2

late, 0= =2 gz [ZKml(n,f)gbz(u(r))h(r)]

x (2@(17, )+ (1- 0@, 1))(1+w®))dy (2.20)

whereas

2iC
inEn="2 f . [Zsz(n,—r)tﬁz(u(—f))h(r)]

x 20(,7) + (1 - 0, D)(1 + w(2)))dn

when [§| > 1 and T < 0. Here, the functions Kj; are

Ku1(n, ) = L
T 2@20) + (4 B’

_ -y (A)
)= a0+ (- BD

) o2, (MBuMi
K31(n, M) = @Z () + (+ Bu(ND@E M) + (1 — Bu(A)?)’

2 ) — 2 )i

Ka1(n, 1) = i (2.21)

@2 (W) + (1 + BuND (@) + (1 — Bu())?)
and

[Klz(n.?v)=K11(77.)~), K2 (n, 2) = K21(n, A),
K3z(n,A) = —K31(n, 1), Kaa(n,A)=—Ka(n,2).

The extension of the operator W (t) as just outlined will be denoted by BZUm () for jym=1,2,3.

The boundary integral operator corresponding to this extension of Wy (t) = Zimﬂ Wi m(¢) is de-
noted by BI(t).

2.2. Linear estimates

In this subsection, estimates for solutions of associated linear problems for the KdV-Burgers equa-
tion are provided. These are used in establishing the well-posedness of the nonlinear problems in the
next section.

For given s € R, b € [0, 1] and any function w = w(x,t) : R x R — R, define

[o 3 e}

1/2
Asp(W) = ( f f (i(r - (6% — 4)) + 363 &) | Wig, 7| de dr)

—00 —00

where (-} = (14 2)"/2. Let X, be the space of all functions w satisfying
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Iwllx,, := Asp(W) < 00 (2.22)
and
Xsp =C(R; H*(R)) N X; (2.23)
with the norm
2 2 1/2
Iwlla,, = { sup|wC, )| yspy T+ Il : (2.24)
b (teR " "H R) xs_,,)

Consider first the semigroup {Wg(t)}3° associated to the linear KdV-Burgers equation posed on
the whole line R. Recall that for any ¢ € &',

Fo(Wr()9) (€) = exp[ 32t +i (g3 — 4£)t]d (&)

for all £ > 0, and we extend Wy to a linear operator defined on the whole real axis by setting

Fx(Wr(t)9)(€) = exp[—3£2|t| +i(&> - 48)t]p (&)

for t € R. The proof of the following proposition regarding {Wg(t)}3° follows the argument in [35,
Section 3], with some minor modifications.

Proposition 2.4. Let —00 <5 <00,0<b < 1,0 <8 < § and &' > 0 be given.

(i) There exists a constant C depending only on s and b such that

v OWr®)8] 4, < Clillsm)- (2.25)

(ii) There exists Cs > O such that for all u € X5, _1/245,

(iii) Forall f € Xs,—;+a’ the mapping

<Glifiix e (2.26)
S~y
X 1

5.2'

r
v f Wt —t)f () dt’
0

t
t—> / Wrt =t f(t)Hdt
0

liesin C(R*, HS+25(R)). In addition, if { fu} is a sequence with f, — O in X;,— 445 then

—0 asn— oo.
L°°(R+.Hs+25(R))

t
/ Wr(t =) fat) de
0

The next two propositions establish an estimate for the spatial traces of Wg(t)¢ and the integral
f(f Wgr(t —t') f(-, ') dt. The proof of these inequalities can be found in [13].
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Proposition 2.5. Let s € [—1, 2] be given. There exists a constant C depending only on s such that
sup|[Wr®)9] s < Clidlluscry (2.27)
xeR H,? (R)

and
sup|Wr®)| 5 < Cllllnsery (2.28)
xeR H¢ (R)

for any ¢ € H*(R).

Proposition 2.6. Let 0 < b < 1/2, -1 < s £ 2 —3b, ¥ € CF°(R) and

t
w(x,t)=fWR(t—t’)f(-,t’)dt’.
0

There exists C depending only on b, s and  such that

sup[[v (Ywx, )| sl SCIUFllxg s (2.29)
xeR H.® (R)

and
Sug lv®wxx, HA®) SCUfll X s (230)
Xe

Finally, attention is turned to the boundary integral operators BZU™(t), j,m=1,2,3.

Proposition 2.7. Let ¢ € C3°(R) be given and assume that 0 <b < 1/2 — s/3withs<O0andb # % Then,
2bts
there exists a constant C such that forany h € H, (R

(j.m) im=
[wBTO™ W)y, <CUl 2 0 im=1,2,3 (2.31)
Proposition 2.8. Let —3 < & < 1 and — < B < 1 be given. There exist constants Co, and Cg such that
su’gn BIU™h| o < ClBlgernpgsy,  Jm=1,2,3. (2.32)
te

The proofs of Propositions 2.7 and 2.8 are similar to those in Section 3 of [13]. A sketch of the
proof for Proposition 2.7 will be given in Appendix A.
Observe that

Wl 20,7 HsRY) < CAsp (Y W)

for any s € R and b > 0, where ¢ € C°(R) and ¥ (t) =1 when t € (0, T). The following result, which
follows from Propositions 2.7 and 2.8, presents a boundary smoothing property of the linear KdV-
Burgers equation, which is the same as that which holds for the linear KdV equation (see again [13]).
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Corollary 2.9. Forany given T > O and s > — %, there exists a constant C such that

”Wbdrh”[_2(0 s ey < CIRIL 4 (2.33)

H+(R+)xH“§‘(R+)xH3(R+)

forany h e H;}(R"') x H(;;c_ (R*) x H’(R+)

The boundary integral operator Wi, also possesses the sharp Kato smoothing property as de-
scribed below.

Proposition 2.10. For any given T > Oand s > — %, there exists a constant C such that

Sup || dxWagrh h 2.34
xekli 10xWhar ||H§(R+ Clhl (2.34)

H'F(R+)><H+(R+)xH§(R+)

- 14s 14s S
foranyhe HO“T"(R+) x H0+ (R*) x H§ (RY).
3. The nonlinear problem
In this section, we study the well-posedness of the nonlinear IBVP
1
U + duy + E(e‘““z"uz)x +Upex — 33Uy =0, forxe(0,1), t>0,

ux,0)=¢x), forxe(0,1), (31)
u©,t) =h1(t), u(,t)=hat), ux(1,t)=ha(), fort>0

Let ) » be the space of all functions w in X;p, (see (2.22)-(2.24)) satisfying

= e, )] wh =T

For any w € ); , define

1
Iwlly,, = (Ilwllxs,, +sup||wx(x )IIH,(R))Z.

The above Bourgain-type spaces are defined for functions whose domain is the whole plane R x
R. However, the IBVP (3.1) is posed on the domain (0,1) x Rt and we are seeking its solution in
the space C(R*; H®(0, 1)) corresponding to a given initial value in the space H5(0, 1) and boundary

data in the space Hljf(RJr) X ch_(R"') X Hf (R). It is thus natural to consider restricted versions
of these Bourgain-type spaces to the strip (0,1) x R*. Let £2 denote a subinterval of R: define a
restricted version of the Bourgain space X;p to the domain (0, 1) x £ as follows:

Xsp((0,1) x 2) = X; plo,1yx2

with the quotient norm

Nl x; 50, 1yx2) = Wief}(fb{llwllxs,,,l wx, t) =u(x,t)on (0,1) x 2}.
S
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The spaces X;5((0, 1) x £2) and Y; p((0, 1) x £2) are defined similarly. In addition, define

M (RY) = i (RY) x Hig (RY) x HE(R*)

loc loc

and
HO,T)= HS'?(O,T) X H%l(o, T) x H!ST(O, T)

for 0 < T < 0.
For the IBVP (3.1), the following well-posedness result obtains.

Theorem 3.1. Let —1 < s < 0, T > 0 and r > 0 be given. There exist T* € (0, T] and b € (0, %) such that for a
given pair (¢, h) € HS(0, 1) x M, (RT) satisfying

l¢lias,1y + IRl #som) ST,

the IBVP (3.1) admits a unique solution u € Ys »((0, 1) x (0, T*)). Moreover, the solution u depends continu-
ously on ¢ and h in the corresponding spaces.

The proof of Theorem 3.1 is based on the results expounded in Section 2 and the following lemmas.
The solution of the non-homogeneous linear problem

Up +4uy — U+ Uxx =0, forxe(0,1),t =20,
u(x,0 =0, (3.2)
u(0,t) =h1(t), u(l,t)=ha(t), ux(1,t)=hs(t)

may be written in the form

u(x, t) = [Wear ()1} (%)
for xe (0,1), t > 0 as expounded in Section 2.
Lemma 3.2. For a given pair (b, s) satisfying

1 s . 1
0<b<5—§ WlthsSOandb<§, (3.3)

there exists a constant C such that for any T > 0 and any heHs (0, T), the corresponding solution u of (3.2)
belongs to the restricted Bourgain space Y 5((0, 1) x (0, T)) and satisfies

lully, »(@,1%0,1) < CllhllHs,1)- (34)
Proof. For T > 0, let Hl € H5(RT) be such that H1 =h in the space H*(0, T) and

IRl s rey € Cllhll#sc0,1y-

Let 41 € C°(R) be so that y(t) =1 for all t € [0, T]. Define

w1 (%, ) = [BTOh1] ).
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Observing that

ux,t)=ui(x,t) for(x,t) e Rt x [0, T],

and using Propositions 2.7 and 2.8, one arrives at the inequalities

lultys 0. 1yx 0,1 < 11t lly,, < Cllhtllas gy,
from which (3.4) follows. The proof is complete. D

Consider the same linear equation posed with zero boundary conditions, but non-trivial initial
data, viz.

Ut +4uy —3uxx + uxx =0, forxe(0,1), t >0,
u(x, 0) = ¢ (x), (3.5)
u@,)=0, u(1,t)=0, uy(1,t)=0.

Its solution can be written as

u(x, t) = [We(t)p] (%)
for x,t > 0.

Lemma 3.3. For a given pair (b, 5) satisfying (3.3), there exists a constant C such that for any T > 0 and any
¢e Hf,(R+), the corresponding solution u of (3.5) belongs to the restricted Bourgain space Yip(RY x (0, T))
and satisfies the inequality

Nully,,r+x 0,1 < Cl@ll s cr+y- (3.6)

Proof. According to Proposition 2.2, one may write W¢(t)¢ as

We(t) = Wr(D)™ ~ Whar(DE

for any x,t > 0, where ¢* € H*(R), ¢* equals ¢ when restricted on R*, and g = (g1, 82, £3) is the
associated boundary trace values of v = Wg(t)¢*, which is to say,

s1O=v(©0,t), gO)=vd,0, gt)=vs(,1).
The inequality (3.6) follows from Propositions 2.4, 2.5 and Lemma 3.2. O

We turn consideration to the forced linear problem

U +4uy — 3ux+ uxpx=f, forxe(0,1),t>0,
u(x,0)=0, 3.7)
u@©0,6)=0, u(1,t)=0, ux(1,t)=0.
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Its solution can be written in the form
t
u.0= [Wee-nfemr.
0

Lemma 3.4. Assume that —1 <s<0and0 < b,b’ < % There exists a constant C such that forany T > O and
any f € Xs,—5(R* x (0, T)), the corresponding solution u of (3.7) belongs to the space Xy (R x (0, T))
and satisfies the estimate

letlly, b &+ x0,1) S CUF N, _p(R* x(0,7)- (3.8)

Proof. By Proposition 2.3,
t
u,0 = [ We=DfC. Tt~ Whar 07
0
for any x,t > 0 where ¥ = ¥ (t) is the boundary trace values of fg Wg(t — T)f(-, T)dT. The estimate

(3.8) then follows from Propositions 2.4, 2.7 and Lemma 3.2. O

The next lemma presents a version of so-called bilinear estimates in the restricted Bourgain space
X5,5((0, 1) x (0, T)) which follows from minor modifications of the proof of Lemma 3.1 in [35].

Lemma 3.5. Given s > —1 and T > 0, there exist positive constants C, u, 8 and b € (0, %) such that

[ x, _, s nyx@my S CTMlxsp@nx @M IV IXspc0 D@ (39)
forany u, v e X 5((0,1) x (0, T)).
The way is now prepared for the proof of Theorem 3.1,

Proof of Theorem 3.1. By applying Lemmas 3.2-3.5, Theorem 3.1 can be established by the standard
contraction mapping principle. .
In more detail, let ¢ € H5(0,1) and h € H .(R*) be given with s € (—1,0)]. For given ¢ with

loc

0 <6 <1 (to be chosen precisely presently) and v, w € Vs p((0, 1) x (0, 6)), define

t
F(W) = Wc(©)$ + Whar ()R — / We(t — 1) (e*2*w?) (r)d.
0

Using Lemmas 3.2-3.5, it is seen that

[Ew) ||ys‘b((0.1)x(o,9» < Ci(lIllms,n + IRllso,my) + CZG”’||W||§1s_,,((o,1)x(o,o))

and

[F(v) — F(w) ||ys‘b((0,1)x<o_0)) < 20711V = Wy, (0,0x@.60 IV + Wily;5(0,1)%(0.6))
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where the constants Cy and C; are independent of 6, v and w. Let B, be the ball of radius r in the
space Vs »(R* x (0,6)) where

r=2C1(I¢llsr+y + IRll#s0,1)).
and choose 6 = T* small enough that
26(T*)r=8<1.
It then follows readily that F maps B, into itself and that for w, v € By,
IIF(W) - F(v)"ys.b((o'])x(oy-r*)) < ﬂ"W - V"y;,b((o,])x(O,T'))-

Thus, the function F is a contraction mapping of the ball B,. The fixed point u of this map F in B; is
the advertised solution. D

The well-posedness result presented in Theorem 3.1 is conditional since uniqueness is estab-
lished in the space };5((0,1) x (0, T)) rather than in the space C([0, T]; H5(0, 1)). However, fol-
lowing the procedure developed in [11], one can show that in fact uniqueness holds in the space
C([0, T]; H5(0, 1)).

Proposition 3.6. Let s € (—1, 0] and r > 0 be given. There exists a T > 0 depending only on s and r such that
Jor given (¢, h) € H5(0, 1) x Hjoc(RY) satisfying

@l us,1) + lhllaso,ry <74

the IBVP (3.1) admits a unique solution u € C([0, T]; H*(0, 1)). Moreover, the solution u depends continuously
on ¢ and h in the respective spaces.

This well-posedness result is, in fact, valid for any s > —1.

Theorem 3.7. Let s > —1 and r > 0 be given, There exists a T > 0 depending only on s and r such that for a
given s-compatible (see [10) for the definition) (¢, h) € HS (0, 1) X Hype (RT) satisfying

@ llus,1) + Nhllrsmy <7

the IBVP (3.1) admits a unique solution u € C([0, T]; H*(0, 1)). Moreover, the solution u depends continuously
on ¢ and h in the respective spaces.

Proof. When s > 0, we refer to [10] for the proof. O

Next, consider the issue of global well-posedness of the IBVP (3.1). The proof of the following
theorem may be found in [13].

Theorem 3.8. Let s > 0 and T > 0 be given. For any compatible
@, he H*(RT) x HIOC(R+),
the IBVP (3.1) admits a unique solution u € C([0, T]; H(R)), where st =swhens>3 and st =s+ ¢

when 0 < s < 3 with arbitrarily small € > 0. Moreover, the solution u depends analytically on ¢ and h in the
respective spaces.
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When —1 < s < 0, Molinet and Ribaud {35] showed that the IVP for the KdV-Burgers equation is
also globally well-posed in the space H(R) by taking advantage of the dissipative smoothing property
of the KdV-Burgers equation. We have a similar global well-posedness result for the IBVP (3.1).

Theorem 3.9. Let —1 < s < 0, ¢ > 0 and T > 0 be given. For any given
9. h) € H*(R*) x M (R),

the IBVP (3.1) admits a unique solution u € C([0, T1; H*(RT)). Moreover, the solution u has the property that
uel?(e, T, HY(RY)) forany € > 0.

The following lemma is needed in the proof of the last theorem.
Lemma 3.10. Given s > —1 and T > O, there exist § > 0and b with0 < b < % such that for all u € X p(RT x
0, 7).

[
w= f We(t — T)(uuy)(r)dt
0

lies in L2(0, T; HSY8(RT)).

Proof. By Proposition 2.3, the distribution w may be rewritten w = wq + w2 with

[
wi= f Wr(t — T)(uux)(t)dr and wz = Whar(t)€
0

where g is comprised of the appropriate boundary traces of wj. According to Lemma 3.5, there exists
a 8§ > 0 such that uuy € Xs,—§+5(R+ x (0, T)). Thus, wq € L2(0, T; HS+¥(RT)) by Proposition 2.4. In

addition, it follows from Proposition 2.6 that g € H*(R™) which yields that wz € L2(0, T; H*P(R™))
by Corollary 2.9. The proof is complete. 0O

Proof of Theorem 3.9. By Theorem 3.1, the [BVP (3.1) admits a unique solution
u € ([0, T*]; HS(R™))

for some T* < T. Moreover, u can be decomposed in the form

ux, t) = ur(x, t) +ua(x, t) + uz(x, t)

with
t
HEH=WeOp,  wED=WhaOh w0 == [ W - D) (@), @) de
0

where a(x, t) = Je#~2*, According to Corollary 2.9, u; € L2(0, T; H'(R1)). By Proposition 2.2,
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U1 = WR(6)¢* — Whar(£)h1

with the vector Hl having as components the relevant boundary traces of Wg(t)¢*. It therefore
transpires that for any € > 0, uy € C([e, T}; H*(R™")). As for u3, it follows from Lemma 3.10 that
uz € L2(0, T*; H*+3(R*)) for some & > 0. Consequently, for any € with 0 < € < T*, there is a ty € (0, €)
such that u(-, t;) € H¥*5(R™). Taking ¥ (x) = u(x, t1) as a new initial value for the IBVP (3.1) and using
the same argument, one arrives at u(-, ty) € H*¥23(R*) for some t; <tz < €. Repeating this procedure,
one eventually arrives at the conclusion that u(.,t') e H‘?! (RT) for some 0 < t' < ¢, The proof is com-
pleted by invoking Theorem 3.8. O

For the pure initial-value problem (1.6), if ¢ € H*(R) for some s > —1, then the corresponding
solution u lies in C([e, T]; H*(R)). We have a similar result in the present context, which follows
directly from Theorem 3.9.

Corollary 3.11. Let s > —1 and T > O be given. Assume that ¢ € H*(R™) and heH® (0, T). Then the corre-
sponding solution u of the IBVP (3.1) belongs to the space C([e, T1; H®(R)) for any € withO <€ < T.
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Appendix A

In this appendix, a proof of Proposition 2.7 is presented. Since the proof is similar to that appearing
in [13], a sketch suffices. The reader is referred to [13] for details.

Proof of Proposition 2.7. Recall that

[BZU™ ()R] () = 11(x, ) + 12 (x, £)

where I1(x,t) is a function defined on the whole plane R x R and is, in fact, a C®-smooth function
of x and t. For any t € R,

112, 1) "L,%(R) <C

(302 = 1)) [ =108 e) e
0

L%(R)
< Clhllzr+y-

This type of inequality is also valid for a,{ 6{11 for any j, I > 0. Thus, it is straightforward to see that if
h € L2(R1), then

Asp(¥lh) € C”h"LZ(R+) (A1)

for any given b 2> 0 and s € R where the constant C depends only on ¥, b and s.
To analyze I;(x, t), remember that

Ftll21E, 1) =11 (&, 7) + Inp(, 7)

where, for || > 1,
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In¢, )= fc[ / E(x,t) cos(xE)dX] (1-0¢ )1 +o®),
0

. . [o,0] 1 1 [o,¢]

122($,t)=lCz!(m+m)ﬁ[O/E(x, t)cos(xn)dx]

x (20, 7) + (1 - 0, 1)) (1 + (1)) dn.

Since the relevant estimates in the regions [£] < 1 are straightforward, in what follows it is always
assumed that || > 1. First, consider the term

oo 00

f f (i(v — (8% - 48)) + 363 &) |In (6, 0 dedr. 1

—00 —00

Proposition A.1. Let s < 0 and b with 0 < b < min(] — §, 3} be given. There exists a constant C such that

[ [ - s+ erfine ol dede <l - 62
foranyh e Y (RT).

Proof. According to (2.19)-(2.20),
. 4 . 4 5
ft[ / E(x,t) cos(x, e)dx] =3 Kmi (€, o2 (LO)RR) + Y Km2(€, Mgz (e (=2)h(=D).
0 m=1 m=1

In the following, detailed analysis is given for terms containing K»1; the estimates for the other terms
follow similar lines. Suppose & > 0 in what follows. The case £ < 0 is entirely analogous. Use the
notation

Am1 (€, T) = Kmi (€, D2 (0(D)A(r), m=1,2,3.
For given s < 0 and b > 0, we have

[

o0

(i(r — (€ - 48)) + 362 (€)% | An €, ) (1 + 0(@) (1 - O, 7)) *de dr

0
<C f 62 (@) o) Bar (v do

with
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By (z) = / (i(z — (6% - 4€)) + 3% (6)%|(1 + 0(2)) (1 - O, ) |
0

5 a}, (V)2 (11(7))
@ (T)+ (6 — Bu(x))H)?

Claim. If b < min{} — §, 3}, then as T — oo,
321 (T) ~ .r(4b+25)/3l

To see this claim is valid, note that in fact

o0

Bai(r) = f (i(z — (€% - 48)) + 3632 (£)>

6|t|1/3

x (1+0@)*(1 - 06, 1)’ ds

ALY
@Z(0) + (€ — Bu(0)?)?

since ®(£,7) =1 when ¢ < 8|1:|‘3!. where & > 0 is fixed, but arbitrary for the nonce. Let £ = n(¢) be
the real solution of the equation

£ -4k=¢, 0<¢L <00, 2<E <00,

that connects continuously to the unique real root as ¢ becomes large. It is clear that

Ny~ asg - oo
For large 7, it is also the case that

pE@) ~t3, au@)|~1,  |Bu@)]~1T'A

Thus, for T > 0 large enough,

. o) o g
A+t —¢gl+eH%® s 1
oS Cazf A+ @ - gpg—a®
T
2t 2
S It {3 )i L NS
F A+ (@) — T1/3)2)2 3n%(¢)—4
T
0 2
A+lT =gl +¢HP  5n 1
c ——_d
* 2 Tra@ -8 spp—a®
T

= G21-1(7) + G21-2(7).
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Continuing this sequence of inequalities, it is seen that

27
2s/3 (1+If—§’|+§%}m’ 1

G21-1(T) S C(1+1) A+0@) —tiB)2) 3,]2@)__4‘1{
FXk4
y [ A+it—cp®+c¥ 1 7

e =]
(1 +1<0 g Q+me) -3 3 -4
T

Zt}
£c +t)%&+%§ /

1
833

(+ (& —T3)2)2
2r%

4b _ 1 2b

<C(1+t)%’l+%§+C(1+1:)33§/-—-——lrl?l& Ty

1+ ¢ —13)2)2

1
8t3
<Cl+7)%+%

if4~2b>1or b < 3, whereas

(1 4]r =g+

T
T — &5 +4

2
dc+C(+ r)?
‘ / A+ (€ —T3)2)2

573

(o]
G21—2(t) < Cf {_1 +§2;3)2(1 + c)—25/3é-2/3
2T
o 2
s Cf ‘;-2(1—5)‘3] d¢
2t

Ghy-25-3
<Ctr 3

if b <1/2 —s/3. The claim is thereby established.

As a consequence, the following estimate emerges. Forgivens < 0andb < min{% - %, %}, there exists

a constant C such that

[ Bp@)iole@de<c [ Gum)e@9sliof o
2 2

EW:) 35
<k
I s

foranyh e H¥%E (R1).
The proof of Proposition A1 is complete. 0O

(A3)
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Next, attention is given to the term

o o0
. 2b A 2
[ [t -a8) + 386 e, o) .
—00 —00
Proposition A.2. Let s and b be given satisfying 0 > s > —%, 0<hb< % - % and b # % Then, there exists a
constant C such that
[o, <N o]
: 3 212b .\ 251% 2 2
[ [l -a) + 362 e e, o3P dr < I s e, (A9

—00 —00
forany h e HGH+s=DB3 R+,

Proof. As before, we only estimate one term in F¢[ f0°° E(x,t) cos(xn)dx), say

A2 (&, T) = K216, D2 (L (D)A(D).

Notice that Ka1(—£&, T) = Kq1(£, 7). Hence, attention may be restricted to the case wherein £ > 0.
Denote by g the function

1

26D = T E - )

for § > 1. Let D, be given by

T 120 -0, 1)

'l"," O’(n, [)
q ”, T d” + 1 +w T

Dz, 7) =2_°° W

q2(n, T)dn

—00

for § > &1 () and

00 om.
%—E}qz(n,r)dﬂ (1+ (1))

—o0 -0

T e — 00, 1)

Dy(¢, 7) =2
2€,7) EE2—n?)

q2(n, ) dn

for 0 < & < &1 (), where 81 > 0 is a small constant. The relevance of these functions will become
clear presently. First, note that

A2, T) = 026, T2 (R(D))A@) [ (L (D))

As for D, changing variables in the integrals of its definition shows it to have the form
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L
Da(6,7) = 2 Of S5 O DNl Dy

+(1+0@) | o (1-0®7)g(n,7)dn
0/&(5 n%)

do
2 ’72
= o) i ’
u2(t) _0/ (2 —n2) (/"(t)ﬂ T)Pz(n T)dn

o0
14+ w(T) n?

+
ui() J y(?-n?)
ap

(1= e(u@)n, 7))p2(n. T)dn

i=D21(y, T) + D2 (¥, T)

where

_8|T|'P 41 . |z
a0 T

. aﬁ(t) ( _ﬁn(ﬂ)z)_1
pZ(n’t)_(u(r)ﬁ 17w '

We have similar definitions for 0 € y < 1. Remark that ag is bounded independent of T and so for y
large enough, y2 — 52 is bounded below for 7 € [0, ao]. Thus,

do y=§&/u(v),

ag
__2 "
Dxn(y,7) = y3u2(7)0f1_Wy)z@(u(r)n,r)pz(n,r)dn

1
= ———7D ,
V2 21,2(7, )
with
|Da1,2(z, y)| <C forany T and y.

Turning to Dj;, note that @ (i (r)n, T) =0 for n > ay, so

o]

2
/ y{y;?_ %) (1-6e(u()n, 7))p2(n, t)dn
@

o0
n?

= / sz(ﬂ, T)dn

o

o0
1 [ 1
=7[ 22V P22y, T)dz
¥
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o0
1 1
z y pz(zy,t)—l)dz+y fﬁdl

s

1
= F(Dzz 1(0, ) + D22,2(¥, T)).

Of course,
L}
o0 y
D (r)—/Idz—/1d
2:0,0)= [ 7—7z02= 1_172'7
a 0
y
since
s 1
——dn=0
fl—nz )
0

as a principal-value integral. It is therefore clear that

|D222y, 7)| < =

for some constant C independent of T when y is large. As for Da3,1(y, 7), note that

Bu(r) i (@) +BL(T) 1)((%@))2 ( ﬁu(ﬂ)z)'1
s -1= 2 v -
nty’p(ny, 1) ( n ) 11(7)? y w(t)y T\ n(rd)y

*
=—=p*(n,y,7).
yP y

Rewrite D3 1(y, ) as

172 2
D21y, T)= ( / / f)P:T:;,r)
ai/y 1/2 2

1

to obtain
2 00 *( )
prn,y,t
(/+f)—_1—???‘ dn|<C
172 2
and
1/2 " \
] ‘T
fp1—q_i;2—dn < Cyu(r)

am/y
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where C is independent of T and y for w(t) > 3 and y large. Thus, if y > yo, then

C

|D2(u(T)y, T)| < V2u

where C is independent of T and y. The following calculation shows the relevance of D;:

f f (i(r ~ (6~ 48)) + 364 )
00
X /e_nA21(n,t)(2@(n,r)+(1—@(n,r))(1+w(r)))dn dédt
°°1 2 h12 2 °°. 3 2\2b 2s
=[P¢2(y,(t))|h| (t)au(t)f(l(t—(é —4£)) +382)7 (&)
0 0
oo 1 2
fE_nqz(n.r)(Z@(n.rH(l—@(n.r))(l+w(r)))dn dt dt
T 1 2 h2 2 °°~ 3 02b, .2 2
=f 7292 (@) @0 () f (i(x — (&% - 4£)) + 362" (©)%|Dy6, )| d dr.
0 0

Thus, appropriate bounds on D, yield bounds on the left-hand side of the last formula.
Consider the quantity

Exr)i=a (@) [li(r (62 - 48) + 362 (©)[Das, ) e
0

1) you(r) 00
. 2b
- aj(r)( / + / + / )(:(r — (8% — 48)) + 3627 (6)* D3¢, T) d&
0 Siu(r)  youl(r)
= E21(t) + E22(7) + E23(7)
where §; is again a small positive constant. Then by the choice of w(7),

o0
IE23(T)| < cr?? f §6b+25_4d§'
You(r)

00
< Cr2/3u(r)6b+25—3 / €6b+25—4 ds
Yo

25 1
< C12b+T 3

for large T if 6b+ 25 —4 < —1, which isto say b < § — 3.
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For 61 <y < Yo,

——O(u(m)n, T)p2n, r)an

since

Qo

——O(u(™)n, T)p2(n, T)dn

@(N(T)U T)(
Y=

N
0

pa(n, T) — pa(y, 1)) dn| +

O(u(t)n, t)
1) | AR
P20y, T) / ST a

For D2y (&, T), note that if n > %, ora; << % the term pz(n, ) is uniformly bounded. Thus, when
y#hy#dands<y<}or3<y<yo

1
b o0
?’}2
Ay, T):= (/+!)W(l -0 (u()n, t))p2(n, v)dn
a
2

N

1
2 0
( f+/) yz(yi — O (un, 7)) (p2n, ) — p2(y, 7)) dn
a

<C

1
3 00
nZ
, (1~ 7))d
+pa(y r)(f+3f)y2(y2_n2)(1 O (u(r)n, 7)) dn
a
Z

It is also true that for £ <y < 3,

Ay, 7)<

i oo
(f+f)(n2+1)2 s
T

Wheny=1,0r3,oryel} glorye(¥, 3.

o0

2
f gt = (1~ @ )na, f)dn‘
o
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2

2
- f}z(yg—_nz)(I—@(u(r)n, 7)) (p2(n, ) — p2(¥, 7)) dn
ay
Y 7
+/W(l (u(r)n,r))pz(n.r)dn+pz(y,r)den‘

2

< c<1 = / P21, r)dn) < Cu(n).

ag
In consequence, we are left with considering the term

3
2

&
T, 1) :fW?—uz_)(’ —0(u(t)n, t))p2(n, T)dn
3

for s <y<yoand y¢3.3), y¢ (3, 2. If ye (81,31 or [, yol, then the integral in 7" has no

singularity, and

3
2

IT(y.r)[SCfpz(n, T)dn < Cu(r).

1
2

If instead y € [3, 411, then

3
2
IT(y,r)|<C<M(t)+ /—(1—@(u(r)n, T))p2(n, T)dn
y=n
9 (u(t)+

y_
1
<C<u(r)+ /sz(y—W.r)dw

)

(H(@)(Y —w), 7))p2(y — w, T) dw

).

y_

EI—‘

)

If m =min{|y — %I, ly— %I}. then m > § and so

1
/—u;pz(y— w, T)dw

-m

|7y, 7] <C(M(r)+

)
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m
1
=C<M(T)+ fW(pz(y—W.r)—pz(y+w,r))dWD
0
Tly— 2
<C<u(r)+f “’f(” Py —w,)p; (v +w, r)dW).
1}

Without loss of generality, assume y > 1. Let v=(w — (¥ — Elﬁf—;))u(t). Then

-2 u)

T, )| < C(,u('r) + A O)ly - %g,—’l ; )
—=-Zmu
w@ly -1 )
<clpm+
@“)1+mwu—m2
u(t)
S PRI T A e LT A
h C(“m T oo - m)
Therefore, if b # 1,
Yop(r)
|E22(D)| < C( f {i(r - (63 —4£)) +3§2)2b(§)zsu_2(r) de
8144(T)
Ru@ 1
. _ 3 __4 3 2 2b zs—d
+5f (e = (6 = 48)) + 382 00 o
gu(r)

izl %M”|s (r)|%®

<C rsb25—1+1+t%4b+25 — (T d

( (1+12F) a+1E— @D
Fu

(t 6b425—1 +t %M(T)Zb_l)

C
Cpb+25-1)/3,

NN

When b= 3,
|En(@)|<C(T Shapeml | R In(r)) < ct ™ In(r).

fogy< iG] £ 81, in D3 = D31 + D23, then

1¥1

D <
[D322] (D)

T 2
f ¥ _y,,z (1-e(u@mn, t))p2(n, v)dn| < €

iy

C
pA ()
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and

Dn = 2(1:)(_0/}; " (p2(n, T) — p2(¥, 7))@ (1(T), T) dn

do

+/‘
y+n
0

(p2(n, ) — p2(—y, 7))@ ((T)n, T) dn
ag

+0[(y1 p2(y, )+y pa(— y,r)) (n (r)n.r)dn)

1
— m(1)21_1 + D21-2 + D21-3).

Recall that pa(n7, T) = (v2(t) + (n + w(z))?) ™! with

v(T) = au(T)/ (), w(T) = B (T)/u(T),

so that

Da11(y, ) + D21-2(y, T)
_j“ O(u(T)n, 7) ( ytn+2w(@) — n—y+2w(T) )
_ﬂ V2(T)+ (M +w(T)2\vZ(T) + (¥ + w(T))2  v23(T) + (—y + w(T))?

a

_ / O, 1) [ —4yw(®)(n +2w(v))
, v3(T) + (n — w(T))2 Lv3(T) + (y — w(@)2)(v3(T) + (¥ + w(1))?)

1 1
* y(vz{r) + (y — w(1))? * vi(T) + (¥ + w(1))? )] -

It thus transpires that

|D21-1 + D21-2| < Clyl.

Also, we see that

D 3—pz(y,t)f—@( (T)n, T)dn + pa(—y, r)f—@(u(r)n T)dn

1 1
=P2(y,‘5)( —dn+ —_—@(,u(t)n,r)dn)
0/. y—n 0'1/ y—n

ay do
1 1 :
+ —,rf d+f e(un, 7)d
pz(y)(()Hnnaw,7 (u()n)n)
1
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=p2(y, 7)(~Inlas — y| +nlyl) + p2(-y, T)(Inlas + y| — In|y[)

1 @(u(r}n T)dn
£ =1

1 &(u(r)n, t)dy

)

+p2(- y,r)ln<1+ )+pz(y,r)f ( y/z/zl)@(u(r)n.r)dn

+pz(y,r)f +pa(— y,r)f

1=

aq

= (—=p2(y, T) + p2(=y, ©))(In|a1| — In|y|) + p2(y, r)(— In

L]
1 y/n
= T )
+ pa( y,r}m/n( oy ])O(n(r}r}. T)dn

ﬂg]
= (=p2(y, T) + pa(—y, 7)) (1n lay| —In|y|+ f E@(u(r}n. r)dn)

iy
+ p2(y, r)(— ln(

y y
1—2 2 .7)d
aj I) +af o= © #EmT) q)

y ; y
+ p2(-y, T}(lﬂ(l + a) - f T n)n@(,u(r)n. T) dn).

It follows that

|D21-3] < Clyi(In|y| + 1)

and
Clyl(In|y[+1)
Dyl € ———,
|D21l W2(7)
which implies that
Clyl(n]y|+1)
D3| § ——7
WA (z)

Thus, it is apparent that

S u(t)

2
|Ea1] < C f (a+ |r|)2”(s)2f—2(1 +In
0

3
—1|d
u(r) D :

§
—=_1}d
)%

Sru(T)
<2 / (5)2552(1+ln
0
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)

<Cr-2 / (1+ |u@|1g)* 3 @) (1 + In[()2 dg
0
8

<Ct2b——1+-23£\/.§2+25(1 +ln|§'|)d§'

0

S C‘[ 6b42s-3
if 2+ 2s > —1. Combining these estimates, there obtains
6b42s—
|E2()| < co ™5

ifs>-3/2and 0<b < — -35,b ;é . This in turn implies that
x

7 f (i(z — (67 —4¢)) +36%)" )

oo 2
x / F _1_ nA21(n, 7)(20(n, 1) + (1~ ©(n, 1)) (1 + w(v)))dn| dsdt

[+ 00 2
<Cfr2b—(1—25)/3 fh(s)e—ist ds d.L.
0
2
<CIIZ, ¢y

Similar estimates for other terms yield, in sum,

[o o & 5]

f f (i(r — (&~ 48)) + 36" ()% [lae, O de dT < CIIZ,

—00—00

if0>s>—3 and 0<b <1~ and b# . This completes the proof of Proposition A2. O
By combining the above two propositions, we complete the proof of Proposition 2.7. 0O
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