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CONSERVATIVE, DISCONTINUOUS GALERKIN-METHODS
FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION

J. L. BONA, H. CHEN, O. KARAKASHIAN, AND Y. XING

ABSTRACT. We construct, analyze and numerically validate a class of conser-
vative, discontinuous Galerkin schemes for the Generalized Korteweg—de Vries
equation. Up to round-off error, these schemes preserve discrete versions of
the first two invariants (the integral of the solution, usually identified with
the mass, and the L?-norm) of the continuous solution. Numerical evidence
is provided indicating that these conservation properties impart the approxi-
mations with beneficial attributes, such as more faithful reproduction of the
amplitude and phase of traveling—wave solutions. The numerical simulations
also indicate that the discretization errors grow only linearly as a function of
time.

1. INTRODUCTION

Considered here are the initial-boundary-value problems

(11 { g + (WP, + €Uppr = 0, 0<z<l1 t>0,

u(z,0) = u¥(z), 0<x <,

for the Generalized Korteweg—de Vries equation, posed with periodic boundary
conditions on the interval [0, 1], where p is a nonnegative integer and € is a nonzero
parameter. These evolution equations are among the simplest of a general class of
models featuring nonlinear convection (the term (p+ 1)uPu, in this case) and linear
dispersion (the higher-order term wg., ). This family of equations and others like
them that feature nonlinearity and dispersion arise as mathematical models for the
propagation of physical waves in a wide variety of situations (see e.g. [13, 35, 42,
15, 17, 23, 1]). The equations in (1.1) have also attracted attention because the
mathematical theory pertaining to them is surprisingly interesting and subtle.

The initial-boundary-value problems (IBVP’s henceforth) appearing in (1.1) are
locally well posed in a wide range of function classes, including those that allow
some of them to be justified as approximations of more complete models for physical
phenomena (see [24, 30, 41, 20, 5] for theory in this direction). However, the
resulting solutions do not always exist for all time. Singularity formation may
occur and there are a few rigorous results in this direction as well (see [38, 37, 8]).

There remain puzzling, unresolved issues connected with singularity formation.
A well-designed set of numerical simulations often provides helpful information in
situations where rigorous results prove to be elusive. If smooth solutions form
singularities during their evolution, they necessarily develop large values and large
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gradients (see [6]). Because of this attribute, solutions that form singularities in
finite time are said to blow up. When singularities appear, they seem to form locally.
Consequently, an idea that comes to the forefront when designing a numerical
scheme to investigate singularity formation is to implement time-dependent spatial
refinements that are locally dense in regions where the solution is no longer of
order one. Properly carried out, such a method has the possibility of retaining
both stability and accuracy long enough for the structure of the singularity to
become apparent.

The literature on numerical methods for the Korteweg—de Vries equation ((1.1)
with p = 1) is vast, with finite difference, finite element, finite volume and spec-
tral methods all having their proponents. The reader may consult [46, 47, 45, 40,
33, 7, 2, 48, 10, 32, 36] and the many references contained in these works for an
introduction to the literature in this area. In the cases p = 1,2, there are also an
interesting class of nonstandard methods based on the Inverse Scattering Trans-
form (IST) (see [43, 44]). Certain of these schemes (e.g. [10, 43, 32, 44, 36]) are
conservative, meaning they preserve the discrete versions of continuous conserva-
tion laws for the equations. Experience shows that schemes preserving the discrete
analogs of conservation laws appertaining to solutions of a partial differential equa-
tion often produce approximations that behave qualitatively like their continuous
counterparts, in addition to featuring accuracy when the mesh size is sufficiently
fine. Convergence results together with rigorous error bounds are available for some
of the schemes mentioned above, but the extant analysis relies upon uniform spa-
tial meshes. As indicated above, this is an assumption that probably should be
avoided when tackling blowup issues. Indeed, previous numerical work described
in [21] by two of the present authors and their collaborators has made it clear that
capturing the blowup with uniform spatial and temporal grids is unlikely and that
a successful approach to the simulation of blowing-up solutions of (1.1) will almost
certainly require highly nonuniform meshes.

The Discontinuous Galerkin—method (DG-method henceforth) is a class of finite
element approximations using discontinuous, piecewise polynomials as both the
solution and test-function spaces (see [29] for a historical review). It combines
advantages of both finite element and finite volume methods, including high order
accuracy, high parallel efficiency, flexibility for hp-adaptivity and straightforward
implementation on arbitrary meshes in geometries without any special symmetries.
The DG-method has attracted considerable attention in the past two decades and
has been applied successfully to produce good approximation of solutions to a
wide range of partial differential equations, many of them arising in important
applications areas. Particularly relevant for the present discussion is the fact that
such schemes do not demand continuity at the spatial grid-points, and this allows
a flexibility in making local refinements to an existing numerical grid not shared by
continuous Galerkin methods.

The DG-method was originally introduced in the context of hyperbolic conserva-
tion laws. Later, the method was extended to deal with derivatives of order higher
than one. Within the DG—framework, especially relevant to our development is the
important body of work [27, 49, 50] on approximating solutions of evolution equa-
tions with higher-order derivatives using the Local Discontinuous Galerkin method
(LDG-method) developed initially for the Korteweg—de Vries equation (KdV equa-
tion from now on) introduced by Yan and Shu [50]. The L?—error estimates for the
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semi-discrete LDG methods for the KdV—equation were provided in [49]. Later,
Cheng and Shu [27] proposed a new DG-method to solve directly time-dependent
equations with higher-order spatial derivatives without the introduction of the aux-
iliary variables required by the LDG formulation. A key ingredient in this more
recent method is a projection @ of the solution w of (1.1) that is consistent with
the dispersive term. This projection plays the role in approximating solutions of
dispersive equations that the elliptic projection does in the context of parabolic or
hyperbolic equations.

In the present paper, we construct a similar projection w of the solution u which,
in addition to being consistent with the dispersive term, has the added advantage
of being conservative. The new projection w is used in the derivation of error esti-
mates. Unlike w, the projection w is global. Indeed, this is the way conservation is
enforced. The nonlocality of the projection leads to interesting analytical complica-
tions and necessitates the imposition of some additional assumptions on the mesh
and the degree of the polynomials used in the approximation (see below). While
one of these assumptions appears to be important in our context, the other does
not. In any case, they are not particularly restrictive as far as simulating solutions
of equations like (1.1) is concerned.

It is worthwhile commenting on the overarching intuition that guided this work.
As mentioned already, the technical starting point was the methods introduced in
[27]. A drawback of the ideas developed in this work is that the resulting schemes
are dissipative (discussed in more detail presently). Dissipative schemes have an
inherent problem with traveling waves possessing finite energy, as such methods
constantly run down energy. In the case of nonlinear, dispersive wave equations,
traveling waves subsist on a balance being struck between nonlinear steepening
and dispersive spreading. Dissipation destroys this balance. For the Generalized
Korteweg—de Vries equations (GKdV-equations henceforth), it is known for a fact in
case p = 1,2 that arbitrary, finite-energy initial data resolves into traveling waves
and a dispersive component. Numerical evidence (see again [21, 22]) indicates
this to be true for other values of p as well. Thus, dissipation introduced by the
numerical scheme not only directly degrades accuracy, but it may result in the
breakdown of the entire structure of a solution by destroying the traveling waves.
In so far as this heuristic discussion has validity, it would appear wise to develop
schemes that can integrate such traveling-wave solutions very accurately.

For the readers’ benefit, the outline of the paper is sketched. Section 2 is de-
voted to notation and other preliminary material including the function spaces that
are relevant to the analysis that follows. The discontinuous finite element spaces
VI of degree ¢ > 2 defined on a mesh 7, are then introduced. Based on these
finite element spaces, conservative bilinear and multi-linear forms corresponding,
respectively, to the dispersive and nonlinear terms in (1.1) can then be specified.
These forms define operators which lead directly to a semi-discrete approximation
(an approximation where the spatial variable is discrete, but the temporal vari-
able remains continuous). The section is concluded by establishing existence and
uniqueness of solutions to the semi-discrete approximations.

In Section 3, the projection w which is consistent with the weak form for the
dispersive term is constructed. It plays a central role in the subsequent develop-
ment. As mentioned, the projection w differs from the projection w of [27] in that it
maintains a conservative property that is enjoyed by the fully continuous problem.
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Propositions 3.1 and 3.2 constitute the technical core of the paper. Highlights of
their content include the following.

(i) Existence of the projection w is proved under the slightly unusual assump-
tions that the degree q of the polynomials in the discontinuous finite element
spaces is even and that the number of cells in the mesh 7}, is odd.

(ii) Under the assumption that the number of adjacent cells of different length
remains bounded as h | 0, it is shown that the projections w are optimally
close to solutions u of the equation (1.1)

The technical requirements appearing in these lemmas stem from the global nature
of the projection w. Section 5 contains numerical experiments designed in part
to ascertain whether these conditions are essential or artifacts of the proofs. The
evidence collected suggests somewhat surprisingly that the parity of ¢ has an effect
on the convergence rates. The convergence rate for even ¢ appears to be g+ 1 whilst,
for odd values of ¢, the rate seems to be q. The weak regularity assumption on the
mesh also has a bearing upon the numerical accuracy, whereas the requirement that
the number of cells in 7, be odd was apparently not important as far as convergence
rates and accuracy are concerned.

The principal convergence results are contained in Proposition 3.3 and Theorem
3.1. It is shown there that, under the above mentioned conditions, the semi-discrete
approximation converges to the solution w at the rate O(h?) as h | 0. This is
suboptimal by one power of h, an effect owing to the treatment of the nonlinear
term. This is the same rate obtained by Cheng and Shu for ¢ > 2. When ¢ = 2,
we obtain here that the convergence is O(h?), whereas in [27] the error was only
proved to be O(h?) as h | 0.

In Section 4, some previously analyzed, semi-discrete dissipative schemes are
reviewed and contrasted with the present method. There is also introduced a
conservative, second order, temporal integration scheme. Applying this to a semi-
discrete approximation yields a fully discrete numerical scheme.

A C-language program implementing the fully discrete scheme is used in Section
5 to effect the aforementioned numerical experiments. The outcomes of the exper-
iments are discussed in some detail. A brief summary together with perspectives
for future research concludes the paper.

2. THE NUMERICAL APPROXIMATION

Details of the numerical approximations are now set forth. This begins with
a discussion of the spatial discretization which leads directly to a semi-discrete
approximation of the continuous problem.

2.1. The meshes. Let T} denote a partition of the real interval [0, 1] of the form
0=129 < <---<apy =1. Wewill also say that T}, is a meshon [0, 1]. The points
X, are called nodes while the intervals I,,, = [y, Zm1] Will be referred to as cells.
The notation x,, =z}, = z,, will be useful in taking account, respectively, of left-
and right-hand limits of discontinuous functions. The caveat followed throughout
is that x; = z;; and xxf = xg corresponding to the underlying spatial periodicity
of the solutions being approximated.
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The meshes T}, are taken to be quasi-uniform. This means that if h,, = ;11 —
Ty and h = hyax = max,, hy,, then there is a positive constant ¢ such that, for all
m?

hm,
2.1 0 < —.
( ) <c< h

Additional constraints stemming from technical considerations are imposed on the
mesh in Proposition 3.1.

2.2. Function spaces. In addition to the usual Sobolev spaces W*? =W*?([0, 1]),
repeated use will be made of the so-called broken Sobolev spaces W*P(Ty,). These
are the finite Cartesian products II;c7;, W*P(I). Note that if sp > 1, the elements
of W*P(T,) are uniformly continuous when restricted to a given cell, but they
may be discontinuous across nodes. For the purpose of quantifying these potential
discontinuities, introduce the following notation: for v € W*P(T,),s > 1, let v},
and v,,, denote the right-hand and left-hand limits, respectively, of v at the node
Tpm. The jump [v,,] (sometimes written [v],,) of v at x,, is defined as v}, — v,.
Similarly, the average {v,,} (also denoted {v},,) of v at z, is 3 (v}, +v,,). These are
all standard notations in the context of DG—methods. In all cases, the definitions
are meant to adhere to the convention that v, = vy, and v}, = v{. Norms in the
Sobolev classes W*? will be denoted || - |[ws» or || - [|ys»(;) when the interval I
might be in doubt. In case the interval I is clear from context, we will sometimes
use an unadorned norm || - || to connote the L?(I)-norm.

Use will also be made of the classes LP([0,T]; W*") of functions u = u(z,t)

which are measurable mappings from [0, 7] into W*" and such that

1/p

T
Mmmmww=<élwnﬂ%mm> <o,

with the usual modification if p = co.

The following, basic embedding inequality (see [4]) will find frequent use in our
development. For v € H(T,) = WY2(T,) and any cell I € Ty, there is a constant
¢ which is independent of the cell I such that

(2:2) Il < e(hr 2 lellaa +hifosllam),

where hy is the length of I. Indeed, the dependence of (2.2) on h; is easily ascer-
tained by a simple scaling argument. Note that (2.2) may also be viewed as a trace
inequality.

2.3. The discontinuous polynomial spaces. The spatial approximations will be
sought in the space of discontinuous, piecewise polynomial functions V;! subordinate
to the mesh Ty, viz.

V}?:{v|v‘1 €Py(Ip), m=1,--- ,M}

where P, is the space of polynomials of degree ¢ and ¢ > 2. The spaces V!
have well-known, local approximation and inverse properties which are spelled out
here for convenience (cf. [11], [25]). Let ¢ > 2 be fixed and let 4,j be such that
0 <j <i<q+1. Then, for any cell I and any v in H’(I), there exists a x € P,(I)
such that

(2.3) lv—xlj,r < chy v

i1
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where |v; ; denotes the seminorm [[v(||z2(;) on the Sobolev space H(I) and the
constant ¢ is independent of h;. The above property continues to hold if the LP—
based Sobolev spaces replace the L?-based classes H7. In particular, it holds for
the L norm, which is to say, with i, j as above, there is a x € P4(I) such that

(2.4) 109 (v — X)| Loy < chy |80 Lo (1)
The equally well-known inverse inequality,

(2:5) XI5 < ey Ixlo.r,
for all x € Py(I) (see [25]), will also find frequent use.
2.4. The weak formulation. Multiplying the nonlinear term in the GKdV—equa-

tion (1.1) by v € H'(T},), integrating the result over [0, 1] and integrating by parts
cell by cell leads to the formula

=

A —

—

S (@) = = 3 @) D () v — () o]
I€Ty I€T), m=0
M-1
(2.6) = =) W)= Y W,
I1€Ty, m=0

Notice that the only way information (fluxes) can be transmitted between cells is
through the jumps [f(u)v],, where f(u) = uP*!. Information will be transmitted
correctly if u is smooth, e.g., if u is the solution of the partial differential equation
being studied here. However, if u is a discontinuous approximation of a solution of
(1.1), then the above formula need not feature correct transmission of information
across the nodes and so f(u) = uP*! cannot be accurately reconstructed from
its projection on the piecewise polynomial spaces. To counter this problem, it is
standard to replace f in the jump terms by a suitable function f which will insure
the crucial requirement of consistency (correct transmission of information). Of
course, it must also be the case that the choice of f will guarantee stability of the
numerical scheme. In the present development, the choice of f is

p+1

(u+ )p+1—j (ur—n)j .

m

_ 1
(2.7) fludun,) = b2

=0

This version of f leads directly to the nonlinear operator A : H* (Tn) = V;! whose
L?([0,1])-inner product with any v € H(T) is

M—-1
(2.8) W (u),v) = = > (@) = Y fluf,un) [om]-
IeTy, m=0

The operator A is well defined by virtue of the Riesz Representation Theorem.
The following important consistency result holds for this operator.

Lemma 2.1. (i) The nonlinear term defined by (2.8) with the choice of f in (2.7)
is consistent in the sense that for all 1-periodic functions u in C1([0,1]), there holds

(2.9) (N(u),v) = (uPT),,v), Yo e HY(Th).
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(ii) The nonlinear term defined by (2.8) with the choice of f in (2.7) is conservative
in the sense that

(2.10) (N(v),v) =0 Yoe H'(T).
Proof. (i) For u as specified above,
flud us)=uw?t (zp), m=0,--- , M—1.
Thus, X
Flud ug)om] = [P o), m=0,-- M —1,

and (2.9) follows from (2.6).
(i) To establish (2.10), it is suffices to notice that, on one hand,

1

+ = — p+2 —_
Ups U )V = ——= v my, m=0,--- M-—1,
A
and on the other hand, that
| M1

Do) = - 3

IETh Pt2 .=
The proof of the lemma is complete. |

To derive a bilinear form for the dispersive term, perform integration by parts
twice to obtain

M-1 M—-1
(211) Z (u;cacgca 1))[ = Z (uxa Uacx)[ - Z [u;cacv}m + Z [uwvx]m
I€Ty I€Th m=0 m=0

There are many identities that can be used to express the jump terms appearing
in (2.11). Indeed, for ¢, € H?(T;), we list three, among the possible ways of
expressing [P, viz.

O[] + [Plm ¥,
(2.12) [$0lm = G lto]m + [Blmir,,
{Otm[Plm + [Plm {0} m.-

These identities must be put into a context that ensures proper transmission of
information (fluxes) across the nodes as well as stability and consistency with the
IBVP (1.1). To this end, define the operator D : H3(T,) — V,! by

M-1 M-1
(213) (D(u),v) = Z (Ua, Vaw)1 — Z (u;[v]m - [U]mv;ﬁc) + Z {ua tm[velm-
IeTy, m=0 m=0

The next lemma delineates crucial properties of D that justify the particular form
chosen in (2.13).

Lemma 2.2. (i) The operator D defined by (2.13) is consistent in the sense that
(2.14) (D(u),v) = (Ugaz,v), Vv € H*(Tp),

is valid for all 1-periodic functions u in C?([0,1]) N H3(T).
(ii) The operator D defined by (2.13) is skew-adjoint, which is to say,

(2.15) (D(v),v) =0 Yve H*T).
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Proof. (i) With u as specified, [t]m, [tg]m and [ugy]m vanish. Thus, using the first
identity in the display (2.12), we have [ugev]m = vl [V]m + [Uze]mv,, = ul, [V]m —
[u)v),. Similarly, from the third identity in (2.12), one sees that [u,vi]m, =
{tusz }m[Vz]m + [tz]m{vs tm = {tz}m[Vz]m. The conclusion now follows from (2.11).

(ii) To establish (2.15), it is suffices to notice that the second sum on the right-
hand side of (2.13) vanishes when v = u and that

1 L M1 M-1
Z (Uz;vmz)l = 5 Z /8m(vm)2 dzr = _5 Z [Ui]m = - Z {Uw}m[vm]m
IeTh re1, /1 m=0 m=0

The proof of the lemma is complete. O

The semi-discrete approximation wuy, : [0,7] — V;! of the solution u of (1.1) is
defined in terms of A and D by

(2.16)  (upt,v) + N (up),v) + €(D(up),v) =0, YveV? tel0,T],
up(0) = Pu°,

where P is a projection operator into V,!. Possible choices for Pu® are the L2-
projection of u° into VI or the Lagrange interpolant of u? in V2. For both of these
choices, the optimal estimate ||u® — up(0)|| = O(h9T!) as h | 0 obtains.

Expanding uy, in terms of a basis for the finite-dimensional space V}?, it is readily
seen that (2.16) is equivalent to a system whose independent variables are ordinary
differential equations in the time-dependent coefficients of the expansion. It is
immediate that this system has existence and uniqueness of a solution corresponding
to given initial data Pu®, at least locally in time. Global existence of the semi-
discrete approximation will ensue as a byproduct of the following conservation law
which implies appropriate a priori bounds.

Theorem 2.1. The semi-discrete approximation uy, satisfies

(2.17) [un ()] = [lun(0)]]
for allt > 0 for which the solution exists.

Proof. Letting v = uy, in (2.16) leads to

L ()] + (N (uan) ) + €(D(un), ) = 0.

The result follows at once from (2.10) and (2.15). O

Since all norms on V;! are equivalent, the above result entails that ||up|/pe~ is
bounded for all ¢ > 0 by a constant, which may of course depend on h. Since the
restriction of f to the space-time cylinder that contains wy is locally Lipschitzian,
the existence of uy, for all time follows.

3. ERROR ESTIMATES

For parabolic and hyperbolic equations, a centrally important tool used in deriv-
ing error estimates has been the so-called FElliptic Projection of the time-dependent
solution u. Since the third derivative operator lacks the positivity property of el-
liptic operators, devising an appropriate projection for it turns out to be a little
more subtle.

In an important contribution, Cheng and Shu constructed in [27] projection
operators for a class of equations with third- and higher-order derivatives. One such
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projection, suitable for the GKdV—-equation, is defined in the following manner. For
u € H3(Ty), the projection w € V;? is specified by the conditions

( ) (u, ) Yo € Py_s(I), I €T,
) ﬁ)w(x;',;)—um(acj,‘l), m=0,---,M—1,
Wy (2) = Uge (2)), m=0,---,M—1.

Note that for ¢ = 2 the first condition is vacuous. Also, the definition is local to
each cell. Hence, classical finite element approximation theory (see e.g. [25], [28])
can be brought to bear to show that w is indeed well defined and that it is an
optimal approximation to u in the sense that

(3.2)  u—dllwiry < I N ulwariogy, I€Th, j=0,1, p=2,00.

where h; is the length of cell I. The projection w defined by (3.1) is not consistent
with the conservative approximation D defined by (2.13). That is to say, it is not
the case that (D(w),v) = (D(u),v), Vve V.

This fact led us to define another projection w of u determined by the require-
ments

(w,v)r = (u,v)r, Yo € Py_s(I), I € Th,
(3.3) w(z,,) = u(z,,), m=1,---,M,
' {wetm = {tatm = uz(zm), m=0,---,M—-1, orm=1,---,M,
Wy (T)) = U (x])), m=0,---,M—1.

Note that the only difference between (3.3) and (3.1) is in the third equation.
This seemingly minor change causes the construction of w and the analysis of its
properties to be more demanding. In fact, at present, we are able to show that
w exists only for even values of ¢ > 2. Furthermore, the optimal approximation
properties of w require the imposition of some restrictions on the mesh 75, which
will be spelled out later. Part of the difficulty resides in the fact that the averages
{wy }m force a coupling across cells which makes the definition of w a global one.
However, it is straightforward to show that this new projection, when it exists, is
consistent with the operator D.

Lemma 3.1. Let u be smooth and 1-periodic. The projection w defined by (3.3)
satisfies

(3.4) (D(w),v) = (D(u),v), YveVL.

Proof. Integrating the term ZIeTh (Wg, Vg )1 in (2.13) by parts and using the sec-
ond identity in (2.12) for the jumps [WVzz]m, it follows at once that

M—1 M—1
(D(w),v) == (W, Vawa)r1 Z W @)+ Y et velm— Y W [Vza]m
I1€Ty m=0 m=0 m=0
The conclusion of the lemma now follows from the definition of w. O

Proposition 3.1. Suppose u is sufficiently smooth and periodic. Further assume
that ¢ > 2 is even and that the number of cells in Ty, is odd. Then, there exists a
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unique w satisfying the conditions (3.3). The projection w has the approzimation
properties

L
lu — wllwiwry < chy™? Z hillullw o100 (1

IeTN
(3.5) "

+ Z h(}HHUHWH?m(U j=0,1, p=2,00,
IeT\T,N

for a constant c independent of I, where T;N is the set of cells whose length differs
from at least one of its two immediate neighbors.

Proof. We assume that ¢ > 4. The case ¢ = 2 falls to a similar, somewhat easier
argument.

Let w and w be defined by (3.1) and (3.3), respectively, and let e = w — @. The
quantity e satisfies the conditions

(6,’0)] =0, Yv € Pq_3(1>, VI € 7;“
(36) e(x;z)zoa m=1--,M,
’ {ez}tm = g (xm) — W (xy,), m=0,---,M—1, orm=1,---, M,
exe(Th) =0, m=0,---,M—1.

For ¢ > 0, let Py(t), be the usual Legendre polynomials that are orthogonal on
[—1, 1], normalized so that Py(1) = 1. Given a cell I,,, = [T, Tm+1], consider the
affine map

(3.7) =a(€) = "6+

that maps [—1,1] onto I,. The family of rescaled Legendre polynomials P, ¢(x) is
defined by P, ¢(z) = Pp(§) where x and £ are related by (3.7). The polynomials
Py, are orthogonal with respect to the L?-inner product on I,,,.

Let e,, denote the restriction of e to I,,. The e,,’s can be expressed in terms of
the rescaled Legendre polynomials as follows:

q q
em(z) = Zam7ng7g(x) = Zam,ﬁpf(f)v m=0,---,M—1.
£=0 £=0
The first equation in (3.6) and the orthogonality of the Legendre polynomials imply
that
(3.8) ame=0, ¢=0,---,¢q—3, m=0,---,M—1

The second and fourth equations in display (3.6) my be used to solve for ay, 2
and y, ¢—1 in terms of oy, 4 To accomplish this, use the identities

(3.9) Pj(£1) = %(il)’v’—le(ul), 0=1,---,
(3.10) Pr(£1) = %(ﬂ)fv’(z—nz(fﬂ)(ew), (=2

which are easily proved by induction using the well-known recursion relations pos-
sessed by the Legendre polynomials.
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From the second relation in (3.6), and taking account of the affine mapping
defined in (3.7) and the normalization Pp(1) = 1, it follows immediately that
(3.11) e(z,,) = em-1(m) = @m-1,g-2+Wm—1,g-1+Un-14=0, m=1,--- M.

Similarly the fourth equation may be used to deduce that

Car() = (2=3)(¢=2)(q = Dgamg—2—(a—2)(g = Dalg+1) amg
(312) +(q—1)q(q+1)(q+2) Qm,q =0, m=0,---,M—1.
Note that the factors § and h,,? which arise from taking the second derivative have

been suppressed since they are of no importance when e, is set equal to zero. The
last two equations imply that

N ___ale+l)
SN (R CES V

o = 2Ra=1)
T g=2)(e-1) T
From the normalizations (3.9) and the third equation of (3.6), there holds

(3.13)
m=0,--,M-1.

1
(3.14) - ((q —2)(g—1)ap_14-2+(@—1)gou_14-1+qlg+1) oze_l,q)

+ h%( —(q—2) (-1 augo+(g—1Dgary1—q(g+1) ae,q)
= Uy (wg) — We () ).

form=1,---,M and £ = m mod M. Using the result of (3.13) in (3.14) leads to
the system of equations
(3.15)

. . q—2 o
Gy_1,q+ Guq = 7(%(@ — Wy (x )), m=1,.---,M, £ =m mod M,
q q 2q(2q _ 1) ) ( L
where &y, g = Qun q/hm. The coefficient matrix of this system is an M x M circulant
matrix with first row [1,1,0,---,0]. This matrix is invertible if and only if M is
odd, and in this case, its inverse is also circulant, having %[1, -1,1,-1,---,=1,1]
as its first row. Thus, if 9, = ue(Tmy1) — Wa(2,,41), m = 0,--- , M — 1, with
nm = 1o, then
= a1 )

3.16 mag = ———(Mm — — =0,---,M—1,

(3.16) Qm q 49(2¢ — 1) Ui Z (ne = new1) ) m

LEom,

where the index set 0, is such that each 7, appears exactly once in the expression
on the right-hand side of this formula.

It is clear from the inequalities in (3.2) that |1,,| < chd, |[u?™ | Lo (s,,). Proposi-
tion 3.2 (see below) also shows that |1, —ney1] < chZHHuq“HLoc(IeU]Hl) whenever
h¢ = hgq1. It then follows that
(3.17)
mal < elom { B e 1+ D0 AU e+ DD A Ry |

IeTN IeTW\T,N

for m = 0,---,M — 1. Now in view of (3.8) and (3.13), all the ay, ’s satisfy
(3.17). Finally, since || Pg|| o (0,1) = || Pm.ell £ (1,,) < ¢ for some constant depending
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1412 J. L. BONA, H. CHEN, O. KARAKASHIAN, AND Y. XING

only on ¢, the estimate (3.5) for p = oo, j = 0 follows from (3.2) and the triangle
inequality. The case p = 2, 7 = 0 follows as a direct consequence. The remaining
cases p = 2,00, j = 1 follow in turn from the bound [P, ,[|z~(1,,) < chy,'. This
concludes the proof. |

Remark 3.1. Commentary is in order concerning the conditions imposed in the
previous result.

(i) In contrast to the estimate (3.2) of the Cheng-Shu projection (3.1), the
bound (3.5) is not fully local due to the nonlocal nature of the projection.
Also, it is suboptimal in terms of the regularity required in the proof.

(ii) For odd values of g, the left-hand side of (3.15) changes to Gp_1,4 — Gu 4.
The resulting circulant matrix is singular for all values of M. This is why
q is presumed to be even.

(iii) Notice that the proof of Propsition 3.1 depends upon the number M of cells
being odd. This is because of the periodicity required of the projection w.
However, note also that the approximation u; can be determined whether
or not M is odd. Obviously, there is no problem connected with creating
a mesh 7, with an odd number M of cells. Moreover, this property is
easily preserved in a process of repeated refinement or coarsening at later
times in the temporal integration. Numerical experiments indicate that
the convergence rates are the same, whether or not the mesh possesses an
odd number of cells and so we have tentatively concluded this restriction is
simply an artifact of our proof, which relies upon the projection.

(iv) For a uniform mesh, the parameter v = #{T,¥ }, the number of cells at least
one of whose immediate neighbors have different lengths than does the cell
in question, is zero and so the estimate (3.5) becomes optimal. On the
other extreme, v is bounded by the total number M of cells in 7T}, in which
case the estimate (3.5) becomes suboptimal. However it is possible, in fact,
straightforward, to achieve extremely local refinements while at the same
time keeping v quite small. This can be accomplished by implementing
refinement in “patches”, by which we mean a refinement wherein various
subsets of contiguous cells are refined uniformly. This scheme of refinement
is very well suited to the simulation of localized singularities.

Proposition 3.2. Ifw is the projection of u defined by (3.1), then there are values
Cm,j> J =0,---,q—2 belonging to the cell I, such that

Nm = ur(merl) - wr(x:nJrl)

(3.18) 2
:h‘glzp]u(q+1)(<m,])7 m:O, aM_17
j=0
where the constants pj, 7 =0,--- ,q — 2 depend only on q. Moreover, it transpires
that
(3.19) M = Mmt1] < AT | oo (1, 01000)  Whenever b, = hi 1.
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Proof. Consider the Legendre polynomial expansion
q
W (z) = w(2)]r,, = Zo‘mdpmj(z)v
j=0

of w on I, and the Taylor expansion

T ul)(z o letD (e (x
(@) = @)y, = 3 Lm) u®" D (Em (@)

=

of w around x,,, where &,, = &,,(x) lies in I,,,. The first equation in (3.1) together
with the preceding two formulas leads to

(3.20) /I D)@ — wm)dz =3 /I Py (2)(@ — )l da
m 7=0 m
= w(z)(z — zm) de = qMﬂ”l
= [ u@e - zw'a =3 e

u(q+1)(Cm,l) g+1+2 I
(g+DNg+1+2) ™ 7

:07"'7(]_37

where (,,,; is a point in cell I,,, obtained by utilizing the Mean Value Theorem for
integrals. Using a change of variables related to the affine map (3.7) yields

@ —anar= (") [ p !
| P —eas = (5) [ poes
0 I <3,
- (11)2hkH1 I

=Nl +5+1)

where the last equality is based on Rodrigues’ formula that states P;(§) =

2]‘13'! %(5 2 1) and repeated use of integration by parts. Hence, the matrix whose

elements are [, P, ;(z)(z — @y,)'dz is lower triangular and invertible. Conse-
quently, (3.20) may be rewritten as

q q—3
(3:21) =Y Bjahd,ul? (@) + hE Y 7w (Guyg)y 1=0,00 00 =3,
=0 =0

where 3;; and v, are constants that depend only on g.
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The last three equations of (3.1), combined with the identities (3.9) for the
Legendre polynomials, allow one to derive the formulas

i (j)( ) s (a+ (C )

U T u'l m,q—2
T Qi = - h‘,zn + 9= hq+1 = U\Tm ,
m+1) E O ;:0: ;! (¢g+1)! (Tmt1)

2 q
> Pl an) = D amP(=1)
j=0 ™ j=0

B i Zam’j(_l)j_lj(j +1) = uz(xm)7

4 q
w;ﬂw Zam,_] m] ) = h—2 Zam,jpjfl(_l)
m ji—g

= % Zam,j(—l)j(j —1)j(G+ 1) +2) = tga(zm).

These equations can be written as the linear system

1 1 1 QAm,g—2
—(¢g-2)(¢—-1) (g—1)q —q(g+1) } [ Qm,q—1 ]
(@=3)g—2)(¢g—1)q —(¢—2)(g—1g(g+1) (¢—1)glg+1)(g+2) Qm,q
qa w9 (@m),j R (SHPTS qu m,
. |: o :mzm(Uem)(ﬁl)I " } - Z?;f amJ( 01)] Jl i@ +1) }
2h2 Uze (Tm) S (1) (G = 156G+ 1D +2)

for the unknowns om,q—2, @m,g—1 and ap, 4. The determinant of this 3 x 3 matrix
is 4¢%(¢ — 1)%(2¢ — 1), hence it is invertible and we can therefore write v, ; in the

form
Q1 = Z ﬁj’lhinu(])(wm) + hgn+1 Z’Yj,lu(q—i_l)(cm,j)v l= q— 27 q— 17 q.
j=0 j=0

It is then concluded that the equation

wm(x;ﬁwrl) = § am,g mj merl § am,g ] E am,j] J+1
ham =1

q72

1 C
(322 = - S ) + By 32y G ),
m j=0

=0

holds, where €; and p; are constants that depend only on ¢. Since 1 is an optimal
approximation to u, (see (3.2)) it appears that

Wy (T, 1) — Uz (Tmy1) = O(RL) as  hy LO.

For this relation to hold, the first term on the right-hand side of (3.22) must equal
Ug (Tm+1). This establishes (3.18). Finally, when Ay, = hi,41, (3.18) allows the use
of the Mean-Value Theorem to extract the additional factor of h,,. This concludes
the proof. O
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Our attention is now turned to estimating the error ||up(t) —u(t)||. The principal
component of this task is the estimation of uy(t) — w(t).

Proposition 3.3. Assume that the conditions of Proposition 3.1 hold and let ¢ :=
up —w, 1 :=w — u where w is the projection of u defined by (3.3). Suppose that
for some t* € (0,T), it transpires that

(3.23) h=HICE) Lo,y + Gl Lo () <1, V€ [0,87].
Then, for the same range t € [0,t*], the inequality
(3.24) Il < cet (ko) + A7),

holds true, where the constants C' and c depend on p and ||ul| poo ([o,¢+);wa+2.%(0,1)) -

Proof. Tt follows from (1.1), (2.16), (2.9) and (2.14) that
(3.25)
(Ctv U)+ (nh 7)) + (N(uh) _N(w)7 U)+ (N(w) —J\/(U), U) +6(D(<)7 ’U) =0, Wwe Vh?

In view of the skew-adjointness of D expressed in (2.15), if we set v = ( in (3.25),
there appears the differential equation

(3.26) HCH2 + (1, Q) + N (un) = N(w), §) + (N (w) = N(u), () = 0.

2 dt
To begin, we observe that the mapping © — w := Pu defined by (3.3) is linear
and thus commutes with the time differentiation operator, viz. w; = Pu;. Hence
Proposition 3.1 implies that ||w; — u¢|| < ch?, and so the bound

(3.27) |(me, Q)| < eh?||]|
emerges. The third and fourth terms on the left-hand side of (3.26) will be estimated
separately.

Part I: Estimation of (M (up) —MN(w),(). In detail, the term (N (up) — N (w), ¢)

is given by
N (un) = N(w),Q) = = 3 (@ —wP,¢,);
I€Ty,
M—1p+1 ' . 4
(3.25) =5 2 2 (T i = @ )
m=0 j=0

=& + &s.

Since ub ™' — wPt! = ¢ with 1 := Z] _oub 7wl integrating by parts yields

(3.29) 51=;<Z Yoo 1+Zw<2 ) el + e

I€Th
Since up, = ¢ +w, we can write ¢ = >0 ’Z;é (P,7)¢twP=*¢. Hence, it follows
from assumption (3.23) that
1
(3.30) 7] < ellcIP”
for some constant ¢ depending only on p and u (through w).

It remains to obtain suitable bounds on the quantities 51(2) and &. Both of these
terms contain powers of the form ¢¢, ¢ = 2,---,p + 2 with coefficients involving
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1416 J. L. BONA, H. CHEN, O. KARAKASHIAN, AND Y. XING

w. Using the trace/embedding inequality (2.2), the inverse inequality (2.5) and
assumption (3.23) provides the inequalities

(3.31) (Gul® < elGal 2R ICHF < eliCllF for €3,

where I is the union of the two cells to the right and left of the node z,,. To obtain
a similar inequality for the quadratic powers of { requires a little more effort. The
strategy is to combine parts of 51(2) and &; to produce terms of the form [w]¢? with
the jumps [w] providing the needed extra degree of accuracy. What is left after this
maneuver falls to the analysis leading to (3.35). In more detail, we write

M-1 p p—j
& - 3 PG = (G
P ez () )
M-—1
330 = 30+ Y (WP - ) (G)?) + 6l =g + £
m=0

where 51(4) is an expression containing cubic and higher powers of (I (. with
coefficients depending on p and w. Just as in the argument leading to (3.31), it
follows straightaway that

(3.33) 7] < elicl®.
Our attention is now turned to €. As in (3.32), we write
(3.34)

—1p+lp+l—j j

-1 PHL=GN (Y e —Vk (ot VP (= Yk
-3 ZZZZZI > Z_j( s ) () e i
+4>0

>~ ((p+ 1= wh ) (w V¢

1Ml

p+2

M*@

o

<.

Il

=]

(4 D) (w5 G ) Gl + 87
=& e

where 52(2) is an expression containing cubic and higher powers of (! (. with
coeflicients depending on p and w, and which therefore obeys the estimate

(3.35) 1E2)] < ell¢)?.

What is left now is 51(3) and 52(1), which are estimated together. Indeed, noting
that Y0 o(p+1—4) = >"_(j+1) = 3(p+1)(p +2), it follows that

M-1 p

(3) (1) _ p—j
£9) 4 g +2n;);(p+1—J(< 27 = () () ) (G)?
(3.36) +(p = 27) (wi )P~ (wi Y Gh G

- G ) () = ) ) ) 6.

In view of the range of the index j, it is clear that the w terms in the first and third
sums can be expressed, independently of each other, as g;(w™*,w™)[w] for some
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functions g;. On the other hand, in view of the range of values of p — 2j for j =
0,---,p, the second sum is also seen to contain terms, each of which has the jump
[w] as a factor. On the other hand, (3.5) implies that |[w],,| = |[u — ]| < chdFL.
We thus deduce that

(3.37) &Y +&Y <l
Gathering together (3.30), (3.33), (3.35) and (3.37) leads to the conclusion
(3.38) [ () = Nw), )] < ell¢]?,
where the constant ¢ depends only on p and wu.
Part II: Estimation of (AM(w) — M(u),(). Note that this term also satisfies

(3.28) with wy, replaced by u. Defining n = w — u and letting ¢ be given by
Y= _uPd w?, it transpires after integration by parts that

M-1

W) =N, Q) = 3 (n)as¢) + D [0 lm

I€Th

M-1p+lp+l—j j
p+ p+2 Z Z Z Z(p+ 1 _‘7>(k> () () (s )P0 (g )T (G

=&+ E9 + Es.
It follows from the estimate (3.5) that
(3.40) |&1] < ch¢],

for some constant depending on p and u. Similarly, applying the trace/embedding
inequality (2.2), there holds

(3.41) |&a] + |Es] < ch|C]l.

Finally, estimate (3.24) of the theorem follows from combining the bounds (3.38),
(3.40), (3.41) in (3.26) together with an application of Gronwall’s Lemma. O

The groundwork has been laid for stating and proving the main convergence
result for the semi-discrete approximation wy, defined in (2.16).

Theorem 3.1. Assume that the solution of (1.1) is sufficiently regular and that
up(0) is chosen to satisfy |[u® —up(0)|| = O(h?) as h | 0. Then, there exists hg > 0
depending on u,p and T and constants C' and c such that for all h in the range
(0, ho], the inequality

(3.42) |(w—up)(t)|| < Cehl, for 0<t<T,

holds, where as in Proposition 3.3 the constants C and c¢ depend on p and
||UHL°C([0,T];Wq+2:x(o,1))-

Proof. To begin, note that by virtue of (3.5) and the triangle inequality, it is suffi-
cient to prove the estimate

(3.43) IC(H)]| < Ceh?, for 0<t<T
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for suitable constants C' and ¢ and all h sufficiently small. Another application of
the triangle inequality yields that

(3.44) IS < [lun(0) = u®| + [Ju® — w(O)]| < ch?,

holds for some constant ¢ depending only on u°. By virtue of the embedding/trace
and inverse inequalities (2.2) and (2.5), the inequality

(3.45) R0 < 0,1) + 162 (0) | oo 75,y < ch?™/2

is valid with a constant depending, as before, only upon ug. Since ¢ > 2, there
exists h; depending only on u? through the constants in the two inequalities above
such that

_ 1
(346) B UCON w0 + G Olleimy < 50 for 0<h <y,

For h < hy, let t*(h) := sup{t > 0 : assumption (3.23) holds at ¢t}. In view of
(3.46) and the fact that ¢ is a continuous function of ¢, it is necessarily the case
that t*(h) > 0. Consequently, the inequality (3.24) must hold for all ¢ € [0,¢*(h)).
Taking account of (3.44), it follows that (3.43) must also hold up to t*(h). If t*(h) >
T, the theorem is proved with hg = hy. Otherwise, choose hg with 0 < hg < hy
such that

~ ct q—3/2 <
(3.47) QCOrgntanT{Ce bh <1,
where the constants C,c are those appearing in (3.43) and ¢ is a constant that
depends on the constants in (2.1), (2.2) and (2.5). We will show that for all h < hy,

t*(h) > T. Indeed, suppose to the contrary that t*(h) < T for some h < hy. Now
with (3.43) holding up to t = t*(h), the inequalities (2.1), (2.2) and (2.5) yield that

max (h—1||C(t)HL°°(0,1)+HCI(t)||Loo(7-h)) < 2¢ max {C@Ct}h873/2

0<t<t*(h) 0<t<t*(h)
< 2¢ max {C’ec’f}l“b((f?’/2 < 1.
0<t<T
which would contradict the assumption that t*(h) < 7. O

4. SEMI—CONSERVATIVE7 DISSIPATIVE AND FULLY DISCRETE SCHEMES

There are semi-discrete schemes where one or both of the nonlinear and dispersive
approximations N and D are defined in such a way that they are consistent, but
dissipative, e.g., those outlined in [27]. A dispersive approximation D attuned to
the projection @ introduced by (3.1) is defined by

M—-1 M—-1
(A1) (D@),0) = 3 (s vw)r = > (whalvn = vy ) + 3 wf o
IeTy, m=0 m=0
This operator is dissipative since
| M-t
_ 2
(4.2) (P()0) =5 3 el 20

as follows from the same sort of calculation as that appearing in the proof of Lemma
2.2.

Dissipative counterparts of the nonlinear operator N, e.g., those considered in
[27], can be constructed using one of many monotone numerical fluxes developed
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in the context of hyperbolic conservation laws. Typical monotone numerical fluxes
are exact or approximate Riemann solvers, including upwinding, Lax-Friedrichs-,
Godunov-, Boltzmann- and Harten-Lax-Van Leer-type. As in [27], consider a con-
tinuous function f (u™,u™) which is nonincreasing in u™, nondecreasing in 4~ and
satisfies f (u,u) = uPTL. For instance, we could use the upwind flux

(4.3) ft um)y = ()t

if the solution u of (1.1) always happens to be positive, which is the case for the
two exact solutions tested in this paper. It is easy to see that the corresponding
operator A is dissipative in the sense that the multi-linear form (N (v),v) > 0,
Vv € HY(Ty). Together with (4.2), the latter inequality implies global existence
of the semi-discrete approximation uj defined by these schemes. In particular, we
have [Jup (¢)|| < |lup(0)|| for all ¢ > 0.

Error estimates which are O(h?) as h | 0 can also be established for these
dissipative semi-discrete schemes by comparing uj, to w. In this case, the existence
and approximation properties of the projection are clear and the conditions on the
mesh required by Proposition 3.1 are not needed.

4.1. A conservative, fully discrete scheme. Not just any time-stepping method
employed in a fully discrete scheme will preserve the conservation properties of the
semi-discrete approximations. A family of temporal integrators having arbitrarily
high order in time and which does preserve the conservation laws up to round-off
error is the implicit Runge-Kutta collocation type methods associated with the
diagonal elements of the Padé table for e* (see e.g. [31]).

In this paper, we consider the first two members of this family of conservative
schemes. Let 0 = tg < t; < --- < ty = T be a partition of the interval [0,T]
and kK, = t,41 — t,. The fully discrete second-order in time approximations u"
to u(-,t,) are constructed using the midpoint rule in the following manner. Let
u® = up(-,0), and forn =0,--- ,N — 1, let u"*! € VI be defined as
(4.4) u™t = 2™t — "

)

where u™! is the solution of the equation
(4.5) u™t — "+ % (N(u"’l) + eD(u"’l)) =0.

Some of the numerical experiments to be reported presently that evidenced very
small spatial errors were conducted using fourth-order in time approximations con-
structed in the following manner: Let

(4.6) B S N (un72 _ u”’l),
with u™! and u™? given as solutions of the coupled system of equations,
(4.7) u™t — U+ Ry (anfn’1 + alzfn’Q) =0,
(4.8) u? — "+ Ky (Omf"’1 + a22f"’2) =0,

where fm¢ = N(u™) + eD(u™?), i = 1,2 and a1; = az = 1/4, a;p = 1/4 —
V3/6, ag1 = 1/4+ V/3/6.

Existence of {u"}Y_, can be established by using a variant of the Brouwer Fixed-
Point Theorem (cf. [10]). The L2-conservation property |u"| = |[u®]| is equally
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straightforward. Uniqueness and convergence can be established under the CFL-
type condition k,h~!' < c sufficiently small. In particular, assuming this CFL-
condition to be valid, the convergence rates
. _ | = q 2s _
lutn) — ™| = O(A? +£7), k= max fn,

can be rigorously proven for the fully discrete approximation. Here s = 1 for the
midpoint rule and s = 2 for the two-stage, fourth-order method. The arguments in
favor of these assertions are very similar to those appearing already in [10, 32], and
so we omit the details.

5. NUMERICAL EXPERIMENTS

Numerical experiments designed to gauge the performance of our conservative
schemes are reported in this section. Interest is given particularly to two issues:

(1) Validation of the theoretical results, including a study of the convergence
rates and, in particular, the dependence of these and other aspects of the
approximations on the conditions specified in Proposition 3.1.

(2) Comparing the performance of the conservative methods to the dissipative
methods of [27]. This includes not only a comparison of the convergence
rates, but also a comparison of the errors as a function of time.

We have implemented and tested four classes of spatial approximation schemes
corresponding to one of two choices for each of the operators N' and D. For each
of N and D, the spatial approximation was taken to be either the conservative dis-
cretization defined in Section 3 (indicated briefly by C) or the dissipative approxi-
mation as sketched in Section 4 (denoted by NC). The NC-NC method corresponds
to the scheme considered in [27] with the difference that we have implemented it
together with the conservative time-stepping method (4.4)-(4.5) so that compar-
isons between the various schemes, C-C, C-NC, NC-C and NC-NC are fair. The
notation C-NC, say, connotes that the spatial approximation uses the conservative
version for the nonlinear operator and the nonconservative approximation of the
dispersive operator, and similarly for the other three integration methods (see Ta-
ble 5.1). In fact, the outcome of the experiments using C-NC are not reported here
since it turned out the approximations generated thereby were almost identical to
those of the NC-NC scheme. This latter fact is part of the evidence supporting
our view that conservative treatment of the dispersive term has a much larger ef-
fect on the resulting approximation than does using a conservative scheme for the
nonlinearity. As mentioned already, the various spatial approximations were all
implemented in a fully discrete version with the conservative, second order time
stepping method (4.4)— (4.5). The nonlinear algebraic equations that arise in the
simulation were solved using two different methods, viz. Newton’s method and an
explicit-implicit scheme where the nonlinear term was made explicit and the disper-
sive term implicit. There was little difference in accuracy or performance between
the two schemes and, consequently, we do not dwell further on this issue.

The numerical experiments reported here are only for the KdV-equation

(5.1) Up + Uy + €Uggy = 0

itself, with € = 1/242. The computational domain was set to [0, 1] throughout and
the domain was divided into N cells. To check accuracy and convergence rates,
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TABLE 5.1. Definition of conservative, nonconservative and semi-
conservative schemes.

| N | D | Designation |
) | (2.13) C-C
)| (4.1) C-NC

3) | (2.13) NC-C
)| (4.1) NC-NC

two well-known solutions of (5.1) were used. The first is a so-called cnoidal-wave
solution,

(5.2) u(z,t) = acn® (4K (z — vt — x0))

where cn(z) = en(z : m) is the Jacobi elliptic function with modulus m € (0,1)
(see [3]) and the parameters have the values a = 192meK (m)? and v = 64¢(2m —
1)K (m)? whilst xq is an arbitrary, real translation. Here, the function K = K(m)
is the complete elliptic integral of the first kind and the parameters are so organized
that the solution w has spatial period 1. The choice of parameters is a specialization
of the general, cnoidal-wave solution which has three free parameters, though their
range is restricted (see, e.g., [35], Section 3) It is worth noting that the cnoidal waves
comprise stable solutions of the time dependent problem [9], so numerical errors
will not set off instabilities of the continuous problem. Thus, any instability that
manifests itself would be due solely to the numerical scheme. We used the value
m = 0.9 in all the numerical experiments involving the cnoidal-wave solutions.
The classical solitary-wave solution

(5.3) u(z,t) = Asech® (K (z — vt — 2))

was also used, with A =1, v = A/3, K = %\/% and zp = 1/2 so that the wave
commences its evolution centered in the period domain. This traveling wave, too,
is a stable solution of the KdV-equation (see [12] and [14] for the original proof of
this fact). Of course, the latter is not periodic in space, but owing to its exponential
decay, it can be treated as periodic by simply restricting it to the computational
domain [0, 1] and imposing periodic boundary conditions across = 0 and x = 1.
This truncation and the resulting evolution that occurs when solving the periodic
initial-value problem results in a solution of the KdV-equation (5.1) which is a high
accuracy approximation of the solitary-wave over long time scales. Much of the
numerical work on the KdV-equation has made use of this small trick to check
for accuracy and convergence. Theory and sharp error estimates of the time scale
over which such periodic approximations remain valid may be found in [16] and
[26]. Another popular method of approximating solutions on the line or the half-
line that decay rapidly to zero at infinity is to truncate it on a sufficiently long
spatial domain as above and then use two-point boundary-value problems with
homogeneous, Dirichlet conditions at the end-points (see, e.g., [18]). A numerical
scheme developed to directly simulate solutions on unbounded domains was put
forward by Guo and Shen (see [34] and several, subsequent papers expanding on
their original work).

5.1. Convergence rates. The results reported here begin with the case of a uni-
form mesh. Since the second order Crank-Nicholson time discretization is employed
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and our interest is in the effect of the various spatial discretizations, we determined
the time-step by the relation x = Ch%. This relationship guarantees that the error
will be dominated by the spatial discretization when ¢ = 2, 3. For ¢ = 4 and in
view of the very small spatial errors, we used the two-stage implicit Runge-Kutta
method of Gauss-Legendre type. This method is fourth-order accurate in time and
can also be shown to have the conservative property ||u”|| = [[u°|,n =1,2,---.

Tables 5.2, 5.3 and 5.4 contain the numerical errors and the calculated rates of
convergence for ¢ = 2, 3, 4. The simulations of solutions of (5.1) that underlie the
information in these tables were all made with the cnoidal-wave initial data with
the value of the elliptic modulus m = 0.9 and the other parameters as specified
below (5.2). It is worth pointing out that for the cnoidal-wave solutions, the value
of m carries with it the balance being struck between nonlinearity and dispersion.
Values of m > 0 near to zero correspond to nearly linear behavior, (the Jacobi
elliptic function cn is nearly a cosine) while values of m < 1 near to one are where
nonlinear effects cannot be ignored (cn has a sharper crest and a wider trough).
Starting with this initial data, the exact solution is as in (5.2) and it is compared
directly to the output of the fully discrete schemes at the time ¢ = 10 to determine
the error. The L?- and L*-norms of this error are calculated numerically and
reported in the tables. The computed convergence rates r are simply

_ logE(N) —1ogE(2N)
B log(2)

where E(M) is the L2- or L>-error made using M cells in the spatial approximation.

For the C-C method, the convergence rate appears to be four for ¢ = 2, three
for ¢ = 3 and five for ¢ = 4. Note that the reported rate for ¢ = 4 when x ~ h?
shows the second-order temporal convergence rate of the fully discrete scheme. As
far as the assumptions in Propositions 3.1 are concerned, the parity N of cells in
Tr does not have any detectable effect on the accuracy achieved by the scheme. On
the other hand, the parity of g certainly does seem to matter. Indeed, it appears
that the actual spatial convergence rate is ¢ + 1 when ¢ is even, but only ¢ when ¢
is odd. In the special case of ¢ = 2 we observe fourth-order accuracy for the spatial
error.

Next are reported simulations made when the mesh was far from uniform. In-
deed, the mesh 7; was taken to be 2h, h,---,2h, h. For such a mesh, the number
of adjacent cells with differing lengths is maximal, which is to say, v = M. Again,
using data obtained from simulating the cnoidal-wave solution described above,
the numerical error and orders of accuracy for ¢ = 2 are determined and shown in
Table 5.5.

The following points emerge from a study of the results reported in these tables.

(i) Care must be taken in comparing the results of Tables 5.2 and 5.5 since, for
the same number N of cells, the maximum cell sizes are different by a factor
of 4/3. Even taking this into account, there is a noticeable degradation in
the errors and convergence rates for the C-C method, whereas the NC-NC
method seems to be immune to this effect. Thus, we tentatively conclude
that accuracy and convergence rates both suffer in the presence of a non-
uniform mesh.
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(ii) Despite the observed reduction in the order of the C-C method, the errors
are smaller than those of the NC-NC method in the range of meshes em-
ployed (in this respect, see also Figure 5.1), although this is expected to be
reversed for larger values of N on account of the apparent higher order of
the NC-NC method.

TABLE 5.2. Cnoidal-wave problem, ¢ = 2, uniform mesh.

N K L2 error order L error order

10 4.0E-02 1.3169E-00 1.9388E-00
20 1.0E-02 1.2735E-00 | 0.0483 | 2.1475E-00 | -0.1475
C-C 40 2.5E-03 1.7869E-01 | 2.8333 | 3.0294E-01 | 2.8256
method | 80 6.25E-04 1.2017E-02 | 3.8943 | 2.0728E-02 | 3.8694
160 | 1.5625E-04 | 7.6271E-04 | 3.9778 | 1.3499E-03 | 3.9407
320 | 3.90625E-05 | 4.8290E-05 | 3.9813 | 9.2342E-05 | 3.8697

10 4.0E-02 9.0693E-01 1.5463E-00
20 1.0E-02 3.1383E-01 | 1.5310 | 6.0458E-01 | 1.3548
NC-C | 40 2.5E-03 1.9160E-01 | 0.7119 | 3.4252E-01 | 0.8197
method | 80 6.25E-04 3.9244E-03 | 5.6095 | 7.6569E-03 | 5.4833
160 | 1.5625E-04 | 5.4422E-04 | 2.8502 | 9.8365E-04 | 2.9605
320 | 3.90625E-05 | 4.1574E-05 | 3.7104 | 7.8722E-05 | 3.6433

10 4.0E-02 7.1270E-01 1.2985E-00
20 1.0E-02 5.9638E-01 | 0.2571 | 1.1130E-00 | 0.2224
NC-NC | 40 2.5E-03 5.7218E-01 | 0.0598 | 1.0403E-00 | 0.0975
method | 80 6.25E-04 1.0466E-00 | -0.8712 | 1.6738E-00 | -0.6861
160 | 1.5625E-04 | 2.0404E-01 | 2.3588 | 3.4832E-01 | 2.2646
320 | 3.90625E-05 | 2.6643E-02 | 2.9370 | 4.5632E-02 | 2.9323

TABLE 5.3. Cnoidal-wave problem, ¢ = 3, uniform mesh

N K L2 error order L°° error order

10 4.0E-02 1.2083E-00 2.1869E-00
20 1.0E-02 1.5809E-01 | 2.9342 | 3.5795E-01 | 2.6110
C-C 40 2.5E-03 1.2153E-02 | 3.7014 | 3.3732E-02 | 3.4076
method | 80 6.25E-04 | 1.2048E-03 | 3.3344 | 3.3640E-03 | 3.3259
160 | 1.5625E-04 | 1.3999E-04 | 3.1054 | 3.6877E-04 | 3.1894

10 4.0E-02 1.2644E-00 1.9401E-00
20 1.0E-02 1.9830E-01 | 2.6727 | 3.3587E-01 | 2.5302
NC-C 40 2.5E-03 1.1657E-02 | 4.0884 | 2.0516E-02 | 4.0331
method | 80 6.25E-04 | 6.4542E-04 | 4.1748 | 1.2238E-03 | 4.0673
160 | 1.5625E-04 | 3.7251E-05 | 4.1149 | 8.0597E-05 | 3.9245

10 4.0E-02 9.7806E-01 1.6220E-00
20 1.0E-02 7.4734E-01 | 0.3882 | 1.2326E-00 | 0.3961
NC-NC | 40 | 2.5E-03 | 3.6619E-02 | 4.3511 | 6.2686E-02 | 4.2074
method | 80 6.25E-04 | 1.3171E-03 | 4.7972 | 2.2584E-03 | 4.7948
160 | 1.5625E-04 | 4.8798E-05 | 4.7544 | 8.3729E-05 | 4.7534
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TABLE 5.4. Cnoidal-wave problem, ¢ = 4, uniform mesh

N K L? error order L error order

10 4.0E-02 7.6947E-02 1.3825E-01

20 1.0E-02 8.2647E-03 | 3.2188 | 1.8905E-02 | 2.8704
C-C 40 2.5E-03 3.8736E-06 | 11.0591 | 1.4713E-05 | 10.3274
method | 80 6.25E-04 | 5.3864E-08 | 6.1682 | 2.6274E-07 | 5.8073

160 | 1.5625E-04 | 1.5628E-09 | 5.1071 | 7.3846E-09 | 5.1529

10 4.0E-02 2.2960E-01 3.8102E-01

20 1.0E-02 6.3339E-02 | 1.8579 | 1.1280E-01 | 1.7561
NC-C | 40 2.5E-03 3.3763E-06 | 14.1954 | 1.2967E-05 | 13.0866
method | 80 6.25E-04 | 5.3809E-08 | 5.9714 | 2.6235E-07 | 5.6272

160 | 1.5625E-04 | 1.5628E-09 | 5.1056 | 7.3875E-09 | 5.1503

10 4.0E-02 7.1739E-01 1.1916E-00

20 1.0E-02 1.1308E-02 | 5.9873 | 1.9327E-02 | 5.9461
NC-NC | 40 2.5E-03 1.0106E-04 | 6.8059 | 1.7756E-04 | 6.7661
method | 80 6.25E-04 | 8.1893E-07 | 6.9472 | 1.5333E-06 | 6.8535

160 | 1.5625E-04 | 6.8941E-09 | 6.8922 | 1.6311E-08 | 6.5546

TABLE 5.5. Cnoidal-wave problem, ¢ = 2, nonuniform mesh of
type 2h, h,--- ,2h, h.

N K L2 error order L error order
10 4.0E-02 1.3340E-00 5.8547E-00
20 1.0E-02 9.1940E-01 | 0.5370 | 1.6786E-00 | 1.8023
C-C 40 2.5E-03 6.1914E-01 | 0.5704 | 1.0938E-00 | 0.6179
method | 80 6.25E-04 2.3766E-01 | 1.3814 | 3.9930E-01 | 1.4538
160 | 1.5625E-04 | 6.5006E-02 | 1.8703 | 1.1072E-01 | 1.8506
320 | 3.90625E-05 | 1.6573E-02 | 1.9718 | 2.8665E-02 | 1.9496
10 4.0E-02 5.6937E-01 1.0742E-00
20 1.0E-02 5.0389E-01 | 0.1763 | 9.5346E-01 | 0.1720
NC-C | 40 2.5E-03 4.9450E-01 | 0.0271 | 8.8893E-01 | 0.1011
method | 80 6.25E-04 8.7717E-01 | -0.8269 | 1.4354E-00 | -0.6913
160 | 1.5625E-04 | 1.8083E-01 | 2.2782 | 3.0860E-01 | 2.2176
320 | 3.90625E-05 | 3.1798E-02 | 2.5076 | 5.4337E-02 | 2.5057
10 4.0E-02 6.8821E-01 1.2660E-00
20 1.0E-02 6.5336E-01 | 0.0750 | 1.2087E-00 | 0.0668
NC-NC | 40 2.5E-03 9.7878E-01 | -0.5831 | 1.6384E-00 | -0.4388
method | 80 6.25E-04 1.2109E-00 | -0.3070 | 1.8813E-00 | -0.1994
160 | 1.5625E-04 | 3.2924E-01 | 1.8787 | 5.5988E-01 | 1.7485
320 | 3.90625E-05 | 4.4494E-02 | 2.8875 | 7.6207E-02 | 2.8771

5.2. Comparison of the conservative and nonconservative methods. In
this subsection, further numerical results are presented with the aim of acquiring a
deeper understanding of the performance of the conservative and nonconservative
methods. A graphical approach is adopted to capture behavior that may not be
revealed by simple tabulation of errors and convergence rates.
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FIGURE 5.1. Numerical approximations of the cnoidal-wave prob-
lem using the C-C, NC-C and NC-NC methods; comparisons with
the exact solution at time ¢ = 10 with ¢ = 2. Top left: 40 uniform
cells; Top right: 80 uniform cells; Bottom left: 160 uniform cells;
Bottom right: 80 nonuniform cells.

We start with the cnoidal-wave test problem with ¢ = 2 and « = 0.000625.
Figure 5.1 shows the plots of the numerical solutions of three proposed methods,
C-C, NC-C and NC-NC, respectively, at time ¢t = 10. The exact solution is also
provided as a reference in the plot. The NC-NC method has a large phase error,
which makes the solution very inaccurate. On the other hand, both C-C and NC-C
methods demonstrate quite a good approximation to the exact solution. We believe
the large phase error of NC-NC method comes from its nonconservative aspect.
Indeed, the change in the L?-norm of the numerical solution from ¢t = 0 to t = 10 was
3x 10716 for the C-C method, —3.06 x 10~ for the NC-C method and —4.97 x 10~2
for the NC-NC method. If the L2-norm is not conserved, the magnitude of the wave
decays as t increases, thereby slowing its speed of propagation since larger amplitude
waves travel faster in the KdV context. This explains at least partially the large
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phase error of the NC-NC method. On the other hand, the better performance of
NC-C method suggests that insisting upon a conservative version of the dispersive
approximation plays a more important role in maintaining accuracy than does a
conservative approach to approximating the nonlinear term.

We have also tried the nonuniform mesh of type 2k, h---2h, h with 80 cells.
The comparison of the three numerical solutions are shown in Figure 5.1, bottom
right. Again, better performance of the conservative method is observed.

Next, cubic polynomials were tested, i.e., the case ¢ = 3. The same test as above
was repeated with NV = 80 and the same . The solutions at time ¢ = 10 are shown
in Figure 5.2, which indicates only small differences among these three methods.
This fact can be observed from Table 5.3, where the L?-errors are all of order 1073.
However, when we ran this test for much longer, out to ¢ = 200, larger phase errors
appeared again in the approximation made via the NC-NC method, as shown in
the right graph of Figure 5.2.

The numerical tests conducted with the solitary-wave initial data were qualita-
tively entirely consistent with those conducted with the cnoidal-wave test problem.
For that reason, we present only a small sampling of the solitary-wave tests. With
q = 2 and k = 0.000625, the numerical solutions of the three proposed methods at
time ¢t = 25, with the uniform meshes N = 40 and 80, are plotted in Figure 5.3.
Again, one observes a large phase error in the NC-NC solution as well as a growing
amplitude error.

5.3. Time history of the L?-error and the shape-error. In this subsection, we
investigate the longer time temporal evolution of the L2-error of the three proposed
methods. An interesting outcome of the longer-time experiments is that the L2-
error of the conservative method increases linearly with time, for ¢ = 2 though we
do not know how to prove such a result. The linear temporal growth of the error
had been observed in an earlier work [22] where conservative, standard Galerkin
methods using smooth splines were employed. Moreover, the shape error, defined
below, is virtually constant in time for the fully conservative scheme.

Details of these simulations are now described. For the cnoidal-wave test problem
with a uniform mesh, N = 80, ¢ = 2 and x = 0.000625, the time evolutions of the
L%-norm of the solution errors up to time ¢ = 10 are shown in Figure 5.4, left.
Observe that the C-C and NC-C methods have much smaller errors. Indeed, at
time ¢t = 10, the error of the NC-NC method is about 100 times larger than that of
the C-C method. The C-C and NC-C methods show a linear and sublinear growth
of the L2-error, respectively. On the other hand, the left graph in Figure 5.4 shows
that the same error for the NC-NC method is growing superlinearly. However, an
examination of the same data in the logarithmic scale reveals that the error does
not grow at an exponential rate.

The same simulation was made using cubic polynomials, the case where ¢ = 3.
The relevant time histories are plotted up to time ¢ = 200 in Figure 5.5, left. As
observed earlier, for small time, the differences between the errors for all three
methods are small (as seen in Table 5.3). However, unlike the case ¢ = 2 exhibited
in Figure 5.4 we see that now all three methods exhibit superlinear growth with the
error of the NC-NC method growing at the fastest clip. Furthermore, the difference
between conservative and nonconservative methods becomes smaller as compared
to the case ¢ = 2. We feel that, as a general rule, these differences will become less
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pronounced as the degree of the polynomials increases and/or the mesh becomes
nonuniform.

Our attention is now turned to the solitary-wave test problem. Time histories
of the L2-errors up to time ¢ = 25 for ¢ = 2, are shown in Figure 5.5, right, and
results similar to those outlined above are seen.
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FIGURE 5.5. Time history of the L2-error of the numerical ap-
proximations obtained using the C-C, NC-C and NC-NC methods.
Left: the cnoidal-wave problem with ¢ = 3 and a uniform spatial
mesh with 80 cells; Right: the solitary-wave problem with ¢ = 2
and a uniform mesh with 80 cells.

Finally, we consider the shape error é = é(x,t) of an approximation uy, of a
true solution u of (5.1). The shape error compares how good the approximation is,
modulo the translation group on the period domain, and is defined precisely to be

é(l‘,t) = EE[E%IEI},OS] |‘uh(x7t) - U(l‘ +£7t)”7
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where u(z, t) is the exact solution and up(z,t) is the numerically obtained approx-
imation. Thus, the shape error is the minimization of the difference between the
numerical approximation and the spatially shifted exact solution. Of course, the
spatial L2-norms appearing here are in fact a high-order Gauss-Legendre integra-
tion of the square of the discrete solution minus the exact solution evaluated at
the nodes of the mesh. The concept of shape error was introduced in [22] with
the purpose of providing a detailed analysis of the error in terms of a shape and
a phase component. The shape error and the absolute error, both in L2-norm,
of the C-C method are both given in Figure 5.6. Observe that the shape error is
almost constant in time after an initial “settling down” period and shows a clearly
visible periodic behavior. We believe this behavior of the shape error to be indica-
tive of some very interesting phenomena, such as the existence of exact, discrete,
traveling-wave solutions to the conservative numerical scheme when the space- and
time-discretization lengths are constant and bear an appropriate relation to each

other.

Constructed, analyzed and tested are conservative numerical schemes for the
It is found that such schemes, in addition to possessing high
accuracy, mimic very well the properties of the traveling-wave solutions considered
here. As it is known that general initial data for the KdV-equation breaks up into
solitary waves and a dispersive tail, the results displayed here indicate that the
conservative scheme is likely to produce better approximations of general solutions

GKdV-equation.

than do the nonconservative ones.

Work in progress is aimed at broadening the range of initial data that are inves-
tigated numerically as well as considering higher powers of the nonlinearity. Similar

6. SUMMARY
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theory and simulations are also being carried out for coupled systems of nonlinear,
dispersive wave equations of the form investigated recently in [19] (see also [39]).
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