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Abstract. The two-way propagation of a certain class of long-crested
water waves is governed approximately by systems of Boussinesq-type
equations. First introduced by Boussinesq in the 1870’s, these equations
have been put forward in various forms by many authors.

Considered here is a class of such system which include the well known
one first introduced by Kaup. The Kaup system is especially interesting
since it features an associated inverse scattering formalism, which means
that quite detailed aspects of its solutions may be within reach. How-
ever, this system and others like it were called into question in earlier
work because the initial-value problems for their linearizations around
the rest state are ill posed. It is here shown that nonlinearity does not
erase this problem. That is to say, the initial-value problem for the
Kaup system and others in a certain class of Boussinesq-type systems
are ill posed in Sobolev spaces. Indeed, it is shown that arbitrarily small,
smooth solutions can blow up in arbitrarily short time in Sobolev-space
norms. This norm-inflation result indicates the system is not a good
candidate for use in practical problems.

1. Introduction

The purpose of the present essay is to establish the ill-posedness of the
initial-value problem for a certain class of Boussinesq systems. Boussinesq
systems were originally derived by Boussinesq in the 1870’s (see [7], [8])
as approximate models for small amplitude, long wavelength, long-crested
water waves propagating over a featureless, horizontal bottom. The original
system put forward by Boussinesq was

(1)

 ∂tη + ∂xw + ∂x(wη) = 0,

∂tw + ∂xη + w∂xw + ∂2
t ∂xη = 0,

(see Boussinesq [8] or Craik’s historical resumés [11] [12]). Here, a stan-
dard x−y−z coordinate system has been chosen in which z increases in the
direction opposite to which gravity acts and x and y are the horizontal coor-
dinates. As the system is derived for long-crested waves which vary little in
the y–direction orthogonal to the primary direction of propagation along the
x–axis, a one-space dimensional model is appropriate. Here, x specifies the
spatial location in the medium in the primary direction of propagation, t is
proportional to elapsed time, η(x, t) is the deviation of the free surface from
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its rest position at the point x at time t and w(x, t) is the depth-averaged
horizontal velocity at the station x at time t. Both the independent and
dependent variables are scaled so that various physically relevant constants
do not appear and the essentials of the partial differential equations are
more easily discerned. This system formally allows for propagation of dis-
turbances in both increasing and decreasing directions of x, but it suffers
mathematically from having a second-order derivative in time, so requiring
more auxiliary data than it is convenient to provide. It has become common
to ascribe the alternative system

(2)

 ∂tη + ∂xw + ∂x(wη) = 0,

∂tw + ∂xη + w∂xw − ∂t∂2
xw = 0,

as Boussinesq’s original system (see Whitham’s well known text [19]). The
latter system of partial differential equations has a satisfactory well-posedness
theory at the hands of Schonbek [18] and Amick [3]. Presumably, one could
in fact mount a physcially reasonable theory for the original system (1)
by inferring a further initial condition as in the work [10] on the Kruskal
variation of the Korteweg-de Vries equation (see [15]).

The regularized system (2) fits into the scheme of abcd-systems developed
by Bona, Chen and Saut in [4]. These systems take the form

(3)

{
∂tη + ∂xw + ∂x(wη) + a∂3

xw − b∂2
x∂tη = 0,

∂tw + ∂xη + w∂xw + c∂3
xη − d∂2

x∂tw = 0,

where η is as above, the deviation of the free surface from its rest postion and
w is the horizontal velocity at a particular height above the bottom. (Since
the flow is assumed irrotational and incompressible, the velocity potential is
harmonic and hence knowledge of u and η suffices to infer the velocity field
everywhere in the flow domain.) While the abcd-systems appear to depend
upon four parameters, these are not in fact independent. In particular, in
the standard scaling for this problem, it must be the case that a+b+c+d = 1

3
(for more details see [4]).

In [4], a complete analysis was made of which of the abcd-systems are
linearly well posed. This simply amounts to linearizing the system around
the rest state (η, u) = (0, 0) and solving the resulting linear system using
the Fourier transform. In the companion study [5], it was shown that all
the systems that are linearly well posed are in fact locally nonlinearly well
posed.

The question raised here has to do exactly with the class of abcd-systems
which are linearly ill-posed. Choosing the constants as a = 1

3 and b = c =
d = 0, which is admissible within the detailed formulas for the values of
these constants, yields one example that is linearly ill-posed, namely the
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Kaup system,

(4)

{
ηt + wx + (wη)x + 1

3wxxx = 0,

wt + ηx + wwx = 0.

This system was derived by Kaup in [14] as an early example of a coupled
pair of equations that admits an inverse-scattering formalism. It has been
the object of a number of studies connected with inverse scattering theory.

The theory developed in [6] implies that if the Kaup system has suffi-
ciently smooth solutions that respect the small amplitude, long wavelength
presumptions arising in the derivation of Boussinesq systems, then it is in-
deed a good approximation to the full water wave problem. However, sup-
plementing the linear ill-posedness result in [4], it will be shown here that
the initial-value problem with η(x, 0) = η0(x) and w(x, 0) = w0(x) for the
full nonlinear problem is indeed ill-posed. In fact, it transpires that very
smooth, small initial data can lead to solutions that lose regularity in a
short time. This result, derived for the particular example of the Kaup sys-
tem, will then be shown to hold true for a generic member of the class of
linearly ill-posed abcd–sytems.

To effect such results, an idea put forward by Duchon and Robert [13]
will come to the fore. Their paper dealt with the existence of small, global
solutions to the vortex sheet problem. The vortex sheet problem, like ill-
posed Boussinesq equations, has an elliptic flavor, and the Duchon-Robert
result can be viewed as solving a boundary-value problem in space-time
rather than solving an initial-value problem. This approach will be used
here to demonstrate in Section 3 that if suitably chosen, small, initial data
for w and η are specified, then global solutions of (4) exist. These solutions
are shown to be analytic at positive times, but can be quite rough initially.
Making use of the time reversability of the system, it is immediately inferred
that small, smooth solutions can lose regularity arbitrarily quickly. This in
turn leads to the conclusion propounded in Section 4 that the initial-value
problem for the Kaup system is ill-posed in Sobolev spaces.

The first and third authors have previously adapted the method of Duchon
and Robert for abcd-systems in [17], showing the existence of solutions for
temporal boundary value problems (problems in which either Dirichlet or
Neumann data is specified at times t = 0 and t = T > 0). We mention that
there is additional work on ill-posedness of the vortex sheet in the literature,
for example the early work of Caflisch and Orellana [9] and the more recent
foray by S. Wu [20].

2. Preliminaries

As the periodic initial-value problem is our focus, it is natural to consider
functions which are periodic on, say, the interval [0, 1]. Throughout, all
function classes will be presumed to be periodic of period 1 in the spatial
variable. Often in what follows, attention will be focussed on functions
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of the spatial variable which have mean zero, so having a Fourier series
representation of the form

(5) f(x) =
∑

k∈Z\{0}

f̂(k)e2πikx.

As the functions are real-valued, it must be the case that f̂(k) = f̂(−k).
For a pseudodifferential operator A, denote its symbol by σ(A) = σ(A)(k).
Thus A acts upon a function f by multiplication of the coefficients of the
Fourier expansion of f by the symbol σ(A)(k). From (5), it is clear that the
symbol of ∂x is

σ(∂x)(k) = 2πik.

The periodic Hilbert transform H will appear frequently in the analysis to
follow. It is defined in terms of its symbol, viz.

(6) σ(H )(k) = −isgn(k).

When the Hilbert transform acts on mean-zero functions, then (6) implies
that

(7) H 2 = −I ,

where I represents the identity operator. Also appearing prominenetly in
our analysis is the operator Λ = H ∂x, which has symbol

σ(Λ)(k) = 2π|k|.

2.1. Function Spaces. For any ρ ∈ R, the space Bρ is the set of all func-
tions for which the norm

‖f‖Bρ =
∑
k∈Z

eρ|k||f̂(k)|

is finite. This is the periodic analogue of the Gevrey spaces used in [13]
(see [17]). It is clear that for any periodic functions f and g and ρ ≥ 0, the
inequality ∣∣∣eρ|k|f̂g(k)

∣∣∣ ≤∑
j

∣∣∣eρ|k−j|f̂(k − j)
∣∣∣ ∣∣∣eρ|j|ĝ(j)

∣∣∣ ,
holds, from which is concluded that Bρ is a Banach algebra with

‖fg‖Bρ ≤ ‖f‖Bρ‖g‖Bρ .

Remark 1. Note that if f ∈ Bρ for some ρ > 0, then f ∈ Hs for every
s ∈ R. Furthermore, for any ρ > 0, for any s ∈ R, there exists Cρ,s > 0 such
that ‖f‖Hs ≤ Cρ,s‖f‖Bρ for all f ∈ Bρ. The best constant for which the
last inequality holds depends directly on s for s ≥ 0 and inversely on ρ > 0.
Indeed, if ρ ≥ s

2 , then Cs,ρ = 1 while for 0 < ρ < s
2 ,

(8) Cs,ρ ≤ Cs

(
1

ρs

)
where Cs is a constant depending only on the Sobolev index s.
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Again following Duchon and Robert, a space-time version of the Bρ–norm
is set forth in which ρ = ρ(t) is a function of time. For α ≥ 0, define the space
Bα to be the real-valued functions on [0, 1]× [0,∞) which are continuous in
time, and for which the norm

‖f‖Bα =
∑
k∈Z

sup
t∈[0,∞)

(
eαt|k||f̂(k, t)|

)
is finite. Just as for Bρ, the space Bα is a Banach algebra with

‖fg‖Bα ≤ ‖f‖Bα‖g‖Bα .

For α ≥ 0 and j ∈ N, define Bjα to be the space of functions f such that

∂jxf ∈ Bα, with norm

‖f‖Bjα = ‖f‖Bα + ‖∂jxf‖Bα .

In the present discussion, interest is especially focussed upon the space B1
α.

Notice that if f ∈ B1
α, then f ∈ Bα and

‖f‖Bα ≤ ‖f‖B1
α
.

This inequality implies that

‖fg‖B1
α
≤ 3‖f‖B1

α
‖g‖B1

α

on account of Leibnitz’ rule ∂x(fg) = f∂xg + (∂xf)g.

3. Global Solutions

This section is devoted to establishing existence of global solutions of the
Kaup system for suitably restricted values of α and small initial data. A
word is deserved about the choice of initial data. Henceforth, initial data
will be drawn from the closed subspace of mean zero functions, so that their
Fourier expansion has the form depicted in (5).

Observe that since the nonlinearities in the Kaup system all appear as
derivatives with respect to space and such derivatives always have mean
zero, this assumption propagates forward in time for putative solutions of
the Kaup system. This point will be important presently.

We begin by rewriting the Kaup system in terms of the variable u, where
u = H η. In the presence of the mean-zero assumption, in force from now
on, it is the case that η = −H u. In terms of u and w, the system (4) then
becomes

(9)

 ∂tu+
(

Λ− 1
3Λ3

)
w = ∂x

(
H
(
wH (u)

))
,

∂tw − Λu = −1
2∂x
(
w2
)
;

recall that Λ = H∂x. An invertible Fourier multiplier operator Θ is now
introduced to symmetrize the linear part of the system. Since Θ is a Fourier
multiplier operator, it will naturally commute with H and ∂x. Make the
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change of dependent variables v = Θu, so that u = Θ−1v. In terms of v, the
system (9) then becomes

∂tv + Θ

(
Λ− 1

3
Λ3

)
w = ∂xΘH

(
wHΘ−1(v)

)
,

∂tw − ΛΘ−1v = −1

2
∂x
(
w2
)
.

It will be convenient to specify Θ so that

Θ

(
Λ− 1

3
Λ3

)
= −ΛΘ−1.

A brief calculation reveals that the latter relation holds when

(10) σ(Θ)(k) =

(
−2π|k|

2π|k| − 8π3

3 |k|3

)1/2

=

(
4π2

3
k2 − 1

)−1/2

.

Notice that for all k ∈ Z \ {0}, the quantity on the right-hand side of (10)
is obviously positive. The related Fourier multiplier operator

A = ΛΘ−1 = −Θ
(

Λ− 1

3
Λ3
)

has the symbol

(11) σ(A)(k) = (2π|k|)
(

4π2

3
k2 − 1

)1/2

.

In terms of the operator A, the Kaup system with mean zero initial data is
seen to be equivalent to the symmetric system

(12)

{
∂tv −Aw = ∂x

(
ΘH

(
wH Θ−1v

))
,

∂tw −Av = −1
2∂x
(
w2
)
.

3.1. Solution Representation. Adding and subtracting the equations in
(12) leads to the system

∂t(v + w)−A(v + w) = ∂x
(
F (v, w) +G(v, w)

)
,

∂t(v − w) +A(v − w) = ∂x
(
F (v, w)−G(v, w)

)
,

where

(13) F (y, z) = ΘH
(
zH Θ−1y

)
and G(y, z) = −1

2
z2.

In Fourier transformed variables, the latter system amounts to the coupled
pair

∂t(v̂ + ŵ)− σ(A)(v̂ + ŵ) = 2πik
(
F̂ (v, w) + Ĝ(v, w)

)
,(14)

∂t(v̂ − ŵ) + σ(A)(v̂ − ŵ) = 2πik
(
F̂ (v, w)− Ĝ(v, w)

)
,(15)
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where k has been supressed for ease of reading. Duhamel’s principle applied
to (14) yields

(16)
(v̂ + ŵ)(·, t) = eσ(A)(t−T )(v̂ + ŵ)(·, T )

− 2πik

∫ T

t

(
F̂ (v, w) + Ĝ(v, w)

)
(·, τ)eσ(A)(t−τ)dτ.

Imposing the convenient boundary conditions

(17) lim
T→∞

v̂ = lim
T→∞

ŵ = 0

and formally taking the limit of (16) as T → +∞ leads to

(18) (v̂ + ŵ)(·, t) = −2πik

∫ ∞
t

(
F̂ (v, w) + Ĝ(v, w)

)
(·, τ)eσ(A)(t−τ)dτ.

On the other hand, multiplying (15) by the integrating factor eσ(A)t followed
by an integration in time gives the equation

(19) (v̂−ŵ)(·, t) = e−σ(A)tf̂+2πik

∫ t

0
(F̂ (v, w)−Ĝ(v, w))(·, τ)eσ(A)(τ−t)dτ,

where
f̂ := (v̂ − ŵ)

∣∣∣
t=0

.

These calculations suggest introducing the operators I+ and I−, viz.

I+h(k, t) = 2πik

∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ,

I−h(k, t) = 2πik

∫ ∞
t

eσ(A)(k)(t−τ)ĥ(k, τ) dτ.

Notice that both I+ and I− map into the mean zero subspace. In terms of
these operators, equations (18) and (19) may be written in the form

v̂ + ŵ = −I−(F +G),

v̂ − ŵ = e−σ(A)tf̂ + I+(F −G).

Solving for v̂ and ŵ, there appears the potentially useful formulas

v̂ =
1

2

(
e−σ(A)tf̂ + I+(F −G)− I−(F +G)

)
,(20)

ŵ = −1

2

(
e−σ(A)tf̂ + I+(F −G) + I−(F +G)

)
.(21)

It will be helpful to eliminate f in favor of w(·, 0). Equation (21), evaluated
at t = 0 implies that

ŵ(k, 0) = −1

2
f̂(k)− 1

2
I0(k),

where

I0(k) = I−(F +G)(k, 0)

= 2πik

∫ ∞
0

e−σ(A)(k)τ
(
F̂ (v, w)(k, τ) + Ĝ(v, w)(k, τ)

)
dτ.
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Denoting w(·, 0) by w0, the latter formula becomes

f̂ = −2ŵ0 − I0,

and the system (20–21) then takes the final form

(22)

 v̂ = −e−σ(A)tŵ0 − 1
2e
−σ(A)tI0 + 1

2I
+(F −G)− 1

2I
−(F +G),

ŵ = e−σ(A)tŵ0 + 1
2e
−σ(A)tI0 − 1

2I
+(F −G)− 1

2I
−(F +G).

Remark that if (v̂, ŵ) satisfies (22), then ŵ(k, 0) = ŵ0(k) holds automat-
ically. However, notice also that v̂(k, 0) = −ŵ(k, 0) − I0(k) has not been
specified independently in this formulation. Once ŵ0 is specified, so is v̂0.

The contraction mapping theorem will be used to prove existence of small
global solutions of the system (22). To this end, define a mapping T via the
right-hand side of (22) so that

T̂ (v, w) =

(
−e−σ(A)tŵ0 − 1

2e
−σ(A)tI0 + 1

2I
+(F −G)− 1

2I
−(F +G)

e−σ(A)tŵ0 + 1
2e
−σ(A)tI0 − 1

2I
+(F −G)− 1

2I
−(F +G)

)
.

Of course, it must be kept in mind that the quantities I0, F and G all depend
on (v, w). Notice, however, that they all vanish when v = w = 0.

3.2. Operator Estimates. In this subsection, the linear operators I+ and

I− are shown to be bounded on the space Bjα for any j ∈ N, at least for
sufficiently small α > 0.

Fix j ∈ N and let h ∈ Bjα. The definition of the norm and the definition
of I+ combine to give

‖I+h‖Bjα(23)

=
∑

k∈Z\{0}

sup
t∈[0,∞)

∣∣∣∣(2π)j+1kj+1eαt|k|
∫ t

0
e−(t−τ)σ(A)(k)ĥ(k, τ) dτ

∣∣∣∣ .
Rearranging the exponentials, one obtains the estimate

‖I+h‖Bjα

≤ c
∑

k∈Z\{0}

|k|j+1 sup
t∈[0,∞)

(
et
(
α|k|−σ(A)(k)

)
×

∫ t

0
eτ
(
σ(A)(k)−α|k|

) ∣∣∣eατ |k|ĥ(k, τ)
∣∣∣dτ)

≤ c
∑

k∈Z\{0}

|k|j+1

(
sup

t∈[0,∞)

∣∣∣eαt|k|ĥ(k, t)
∣∣∣)×

(
sup

t∈[0,∞)
et(α|k|−σ(A)(k))

∫ t

0
eτ
(
σ(A)(k)−α|k|

)
dτ

)
.
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Elementary inequalities employed after evaluating the integral on the right-
hand side lead to the more explicit upper bound

‖I+h‖Bjα(24)

≤
∑

k∈Z\{0}

|k|j+1

(
sup

t∈[0,∞)

∣∣∣eαt|k|ĥ(k, t)
∣∣∣) sup

t∈[0,∞)

∣∣∣∣∣∣1− e
t
(
α|k|−σ(A)(k)

)
σ(A)(k)− α|k|

∣∣∣∣∣∣.
Inspection of the symbol of A, which is given above in (11), allows the

conclusion that, for sufficiently small α,

σ(A)(k)− α|k| > 0, ∀k ∈ Z \ {0}.

Furthermore, if α is in the range

(25) α ∈

(
0, 2π

√
4π2

3
− 1

)
,

the quantity

(26)

∣∣∣∣ k

σ(A)(k)− α|k|

∣∣∣∣ =
1

2π
√

4π2k2

3 − 1− α

is bounded by a constant which is independent of k.
Returning to (24), we see that there exists c+ > 0 such that, for all

h ∈ Bjα,

(27) ‖I+h‖Bjα ≤ c
∑
k∈Z

sup
t∈[0,∞)

∣∣∣kjeαt|k|ĥ(k, t)
∣∣∣ ≤ c+‖h‖Bjα .

Attention is now turned to obtaining a bound for I−. This follows much
as did the estimate for I+. The definition of the norm and of I− imply that

for and h ∈ Bjα,

‖I−h‖Bjα =
∑
k∈Z

sup
t∈[0,∞)

∣∣∣∣(2π)j+1kj+1eαt|k|
∫ ∞
t

eσ(A)(k)(t−τ)ĥ(k, τ) dτ

∣∣∣∣.
As before, straightforward machinations lead quickly to the inequality

‖I−h‖Bjα

≤ c
∑
k∈Z
|k|j+1 sup

t∈[0,∞)
et(α|k|+σ(A)(k))

∫ ∞
t

e−τ(σ(A)(k)+α|k|)
∣∣∣eατ |k|ĥ(k, τ)

∣∣∣dτ
≤ c

∑
k∈Z
|k|j+1

(
sup

t∈[0,∞)

∣∣∣eαt|k|ĥ(k, t)
∣∣∣)

×

(
sup

t∈[0,∞)
et(α|k|+σ(A)(k))

∫ ∞
t

e−τ(σ(A)(k)+α|k|) dτ

)
.
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Evaluating the integral simplifies this to

‖I−h‖Bjα ≤ c
∑

k∈Z\{0}

(
sup

t∈[0,∞)

∣∣∣kjeαt|k|ĥ(k, t)
∣∣∣) |k|

σ(A)(k) + α|k|
.

Consulting (11) again, it is clear that the quantity |k|
σ(A)(k)+α|k| is bounded by

a constant which is independent of k. (In this case, the boundedness holds
for any α ≥ 0.) The conclusion is

(28) ‖I−h‖Bjα ≤ c−‖h‖Bjα
for some constant c− which only depends upon j and α.

3.3. Contraction Estimate. The stage is set to show that the system
(22) has a global solution corresponding to sufficiently small data. This is
accomplished by applying the contraction mapping theorem to the operator
T defined via the right-hand side of the system (22). The first step is to
choose an appropriate Banach space that T maps to itself. The crux of the
matter is then to find a closed subset X, say, of this Banach space that T
maps to itself and on which T is contractive.

To begin, note that if w0 ∈ B0, has mean zero and α satisfies (25), then

e−σ(A)tw0 ∈ B1
α and has mean zero for all t ≥ 0. Indeed, e−σ(A)t is a bounded

linear operator from B0 to B1
α provided α > 0 is small enough. It follows

from this remark and the mapping properties exposed in Section 3.2 that T
maps the set of mean zero pairs in B1

α × B1
α to itself as long as α satisfies

(25). Let X be the closed ball of radius r > 0 centered at the origin in
B1
α×B1

α, where r is to be determined. We claim that T is contractive on X
provided r is chosen small enough.

First, local Lipschitz estimates for the nonlinearities F and G are estab-
lished. Let (v1, w1), (v2, w2) ∈ B1

α × B1
α be two elements of X. Note that

from (10), it is clear that the operator Θ−1 acts like one derivative and that
Θ smooths by one derivative. Also recall that the Hilbert transform H is
a bounded operator of order zero. Using the definition of F in (13) and the
definition of the norm on B1

α, it is thus inferred that∥∥F (v1, w1)− F (v2, w2)
∥∥
B1
α

=
∥∥∂xΘH

(
w1HΘ−1v1 − w2HΘ−1v2

) ∥∥
Bα

≤ c
∥∥w1HΘ−1v1 − w2HΘ−1v2

∥∥
Bα .

The fact that Bα is an algebra together with the triangle inequality leads to
the further estimate∥∥F (v1, w1)−F (v2, w2)

∥∥
B1
α
≤ c‖w1

∥∥
Bα‖∂x(v1−v2)

∥∥
Bα+‖w1−w2

∥∥
Bα‖∂xv2

∥∥
Bα .

As (v1, w1) and (v2, w2) both lie in X, this in turn implies that

(29)
∥∥F (v1, w1)− F (v2, w2)

∥∥
B1
α
≤ rCF

∥∥(v1 − v2, w1 − w2)
∥∥
B1
α×B1

α
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for a suitable constant CF that is independent of r. The corresponding
Lipschitz estimate for G is similar and easier to derive. The final result is

(30) ‖G(v1, w1)−G(v2, w2)‖B1
α
≤ rCG‖w1 − w2‖B1

α

for a possibly different constant CG which is still independent of r.
It follows immediately from the mapping properties of the linear operators

I+ and I− derived in Subsection 3.2 that I±F and I±G are both Lipschitz
on X with Lipschitz constants bounded by terms of the form Cr where C
can be chosen independently of small values of r. The mapping

ĥ 7→ 2πik

∫ ∞
0

e−σ(A)(k)τ ĥ(k, τ)dτ

defined via its Fourier transform is linear and bounded from B1
α into mean

zero elements of B0 because α satisfies (25). Composing with e−σ(A)t then
provides a bounded linear operator from B1

α to itself. It thus follows from
(29) and (30) again that the contribution from I0 is Lipschitz on X with a
Lipschitz constant of the form Cr with C independent of small values of r.

In light of this discussion, it is evident that as long as r is sufficiently
small,

(31)
∥∥T (v1, w1)− T (v2, w2)

∥∥
B1
α×B1

α
≤ λ

∥∥(v1, w1)− (v2, w2)
∥∥
B1
α×B1

α
,

for some λ < 1. Indeed, by choosing r small enough, we can guarantee that
the Lipschitz constant λ for T can be taken to be at most 1

2 , say. Notice that
the choice of r does not depend in a direct way upon w0. It does depend
upon the values of the mapping constants c± in (27) and (28) together with
the constants CF and CG appearing in the local Lipschitz estimates (29)
and (30).

Fix a value of r = r(α) such that λ ≤ 1
2 , let (v, w) ∈ X and focus upon

the inequality∥∥T (v, w)
∥∥
B1
α×B1

α
≤
∥∥T (0, 0)‖B1

α×B1
α

+
∥∥T (v, w)− T (0, 0)

∥∥
B1
α×B1

α

≤
∥∥T (0, 0)‖B1

α×B1
α

+
1

2

∥∥(v, w)
∥∥
B1
α×B1

α

≤
∥∥T (0, 0)

∥∥
B1
α×B1

α
+

1

2
r.

This calculation calls attention to the norm of T (0, 0). As already re-
marked, both F and G vanish at the origin, so

T (0, 0) =

(
−e−σ(A)tŵ0

e−σ(A)tŵ0

)
.

Since e−σ(A)t is a bounded linear operator from B0 to B1
α, there is an r0 > 0

such that if ‖w0‖B0 ≤ r0, then ‖T (0, 0)‖B1
α×B1

α
< 1

2r. In summary, if r is as
fixed above and ‖w0‖B0 ≤ r0, then T maps X to itself and is contractive
there. The value of r0 only depends upon r and the norm of the operator
e−σ(A)t considered as a mapping of B0 to B1

α. The following theorem results.
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Theorem 1. Let α satisfy (25). There is an r0 = r0(α) > 0 and a constant
C = C(α) such that if 0 < r < r0, then for w0 ∈ B0 with ‖w0‖B0 ≤ r, there
exists a solution (v, w) ∈ B1

α × B1
α that solves the system (22) and

(32) ‖(v, w)‖B1
α×B1

α
≤ Cr.

4. Ill-Posedness in Sobolev Spaces

The result of Duchon and Robert [13] on global small solutions for the
vortex sheet problem does in fact imply that the vortex sheet problem is
ill-posed in Sobolev spaces. In the present section, details are presented of
an ill-posedness argument for the Kaup system which carries over mutatis
mutandis to the vortex sheet problem via the theory developed in [13].

Theorem 2. The Kaup system is ill-posed in Sobolev spaces. More pre-
cisely, for any s1, s2 > 0, there is a sequence {(ηn0 , wn0 )}n∈N of initial data
in Hs1(T)×Hs2(T) and positive times {tn}n∈N, both of which tend to zero
in their respective norms, such that

lim
t↑tn

∥∥(ηn(·, t), wn(·, t))
∥∥
Hs1 (T)×Hs2 (T)

= +∞.

Proof. Choose α in the range specified in (25) and let r0 = r0(α) > 0 be
the value appearing in Theorem 1. Let w0 ∈ B0 with ‖w0‖B0 = 1 have
mean zero and suppose that w0 /∈ Hs(R) for all s > 0. Let {tn}n∈N be any
sequence of positive times tending to zero as n → ∞. Define a sequence
{εn}n∈N drawn from (0, r0) with εn → 0 sufficiently rapidly as n → ∞.
What ‘sufficiently rapidly’ means will be made precise presently. Theorem
1 implies there are global solutions (vn, wn) of the transformed system (22)
corresponding to the initial data wn0 = εnw0, that lie in B1

α × B1
α, for each

n = 1, 2, · · · . Since ‖wn0 ‖B0 = εn < r0 for all n ∈ N, Theorem 1 further
implies that

(33)
∥∥(vn, wn)

∥∥
B1
α×B1

α
≤ Cεn

for a constant C which is independent of n.
Retracing the change of dependent variables introduced in Subsection 3.1,

define ηn = HΘ−1vn. Then, (ηn, wn) ∈ Bα × B1
α. Moreover, (ηn, wn) solves

the original version (4) of the Kaup system with the mean zero initial data(
−HΘ−1

(
wn0 + I0(vn, wn)

)
, wn0

)
.

Observe that wn0 lies in H0(T), but not in any smaller L2–based Sobolev
class on account of the assumption about w0. Also, because of (33),

(34)
∥∥(ηn, wn)

∥∥
Bα×B1

α
≤ Dεn

for another constant D which is also independent of n.
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On the other hand, if f ∈ Bα has mean zero and if t̄ > 0, then f(·, t̄) ∈ Bαt̄
and

(35)

‖f(·, t̄)‖Bαt̄ =
∑

k∈Z\{0}

eαt̄|k||f̂(k, t̄)|

≤
∑

k∈Z\{0}

sup
t∈[0,∞)

eαt|k||f̂(k, t)| = ‖f‖Bα .

It thus transpires that f(·, t̄) ∈ Hs(T) for any s ∈ R (see Remark 1).
In light of (35) and (34), the solutions (ηn, wn) at the time tn can be

estimated in Hs1(T)×Hs2(T) as follows:∥∥ (ηn(·, tn), wn(·, tn))
∥∥
Hs1 (T)×Hs2 (T)

≤ Cnεn

for n = 1, 2, · · · . The constant Cn depends on n because it depends on tn.
Indeed, according to (8) in Remark 1,

Cn ≤ E
1

(tn)s

where E is a constant depending on α and s, but not on n. It remains
to choose the {εn}n∈N ⊂ (0, r0) so that it tends to zero faster than does
the sequence {Cn}n∈N determined by the given sequence {tn}n∈N of positive
times. Once this is done, the inequality∥∥ (ηn(·, tn), wn(·, tn))

∥∥
Hs1 (T)×Hs2 (T)

≤ γn

emerges, where γn = Cnεn → 0 as n→∞.
Define new dependent variables

η̃n(x, t) = ηn(−x, tn − t) and w̃n(x, t) = wn(−x, tn − t).

Since the Kaup system is time reversible and translation invariant, (η̃n, w̃n)
is also a solution when tn − t ≥ 0. At time t = 0,

‖(η̃n(·, 0), w̃n(·, 0))‖Hs(T)×Hs(T) ≤ γn
for n = 1, 2, · · · , which can be made as small as desired by choosing n large
enough. However, because of the choice of w0,

lim
t↑tn
‖w̃n(·, t)‖Hs(T) = +∞.

This completes the proof of the theorem. �

5. Related Systems

While the above arguments were developed specifically for the Kaup sys-
tem, they can be generalized to a variety of the abcd-systems (3). However,
it will turn out that the analog of the operator Θ that appeared in the anal-
ysis of the Kaup system, and which is of order −1, may have a different
order for other values of a, b, c and d. Because of this, other selections of the

spaces Bjα will be needed.
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In [4], the following choices were shown to ensure linear well-posedness of
the initial-vaue problems on the real line for the abcd-systems:

(36) b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0;

(37) b ≥ 0, d ≥ 0, a = c > 0;

(38) b = d < 0, a = c > 0.

The authors in [4] referred to the case depicted in (36) as the generic case, for
obvious reasons. Local well-posedness for the associated nonlinear initial-
value problems on the real line was then established in [5]. Of the three
classes just listed, we will not concern ourselves with the non-generic cases
(37) or (38). Both of these cases depend upon the rigid condition a = c to
cancel out latent singularities in the dispersion. Their use in practice would
be problematic because this delicate cancellation could be disrupted in the
discrete world of numerical simulation unless special care was taken with
the discretization. Moreover, for the class (38), notice that if either b < 0 or
d < 0, there is a problem even with potential local existence. More precisely,
suppose that b < 0. Then,

(I − b∂2
x)ut(x, 0) = −∂x

(
w0 + w0η0 + a∂2

xw0

)
.

The right-hand side of the last equation is a more or less arbitrary function
∂xW which lies in some Sobolev class determined by where one is working.
Thus, in the Fourier variables, one is facing

(1 + bk2)∂tη̂(k, 0) = 2πikŴ (k).

As b < 0, certain values of b would not allow the conculusion that ηt lies in
any Sobolev space. (Indeed, for the problem posed on the whole real line,
this is the case, no matter what the value of b < 0.)

Attention is now turned to ill-posedness when condition (36) is negated.
This has us concerned with the two cases

(39) b ≥ 0, d ≥ 0, a ≤ 0, c > 0

and

(40) b ≥ 0, d ≥ 0, a > 0, c ≤ 0.

The present argument requires a kind of nonresonance condition on the
parameters a and c. Define the set S to be S = {(2πk)−2 : k ∈ Z \ {0}}.
The nonresonance condition is

(41) a /∈ S, c /∈ S.

Clearly, the Kaup system is a special case of (40), which satisfies (41).
The analysis begins as in the Kaup case. Define u = H η, which imme-

diately implies (since we continue to use the same function spaces, which
includes maintaining the requirement that the data, and hence the solutions,
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have mean zero) η = −H u. With this change of variable, the system (3)
becomes

(42)

{
∂tu+ Λw − Λ(wH u)− aΛ3w − b∂2

x∂tu = 0,

∂tw − Λu+ w∂xw + cΛ3u− d∂2
x∂tw = 0.

Introduce the change of dependent variable v = Θu. As will appear
shortly, the Fourier multiplier operator Θ will be invertible, so that u =
Θ−1v. Of course, since it is a Fourier multiplier operator, Θ commutes with
the Hilbert transform and differentiation. In terms of the new variable v,
equation (42) becomes

(43)

{
∂tv + ΛΘw − ΛΘ(wH Θ−1v)− aΛ3Θw − b∂2

x∂tv = 0,

∂tw − ΛΘ−1v + w∂xw + cΛ3Θ−1v − d∂2
x∂tw = 0.

In the case of the Kaup system, b = d = 0. This is no longer necessarily
the case. It is propitious to invert the operators (1 − b∂2

x) and (1 − d∂2
x)

in (43). At the same time, we take the opportunity to move the nonlinear
terms to the right-hand sides of the equations, thereby coming to the system

(44)

{
∂tv + (1− b∂2

x)−1(Λ− aΛ3)Θw = (1− b∂2
x)−1ΛΘ(wH Θ−1v),

∂tw + (1− d∂2
x)−1(−Λ + cΛ3)Θ−1v = −(1− d∂2

x)−1(w∂xw).

Choose the operator Θ so that

(1− b∂2
x)−1(Λ− aΛ3)Θ = (1− d∂2

x)−1(−Λ + cΛ3)Θ−1

and notice that a common factor of Λ can be canceled from each side. Calcu-
lating in the Fourier transformed variables allows one to solve for the square
Υ(k) of the symbol of Θ, viz.

(45)
(
σ(Θ)(k)

)2
=

(1 + b(2πk)2)(−1 + c(2πk)2)

(1 + d(2πk)2)(1− a(2πk)2)
= Υ(k).

Since (39), (40) and (41) are being assumed, both the numerator and de-
nominator of (45) are nonzero for all k ∈ Z \ {0}. Thus if the symbol of Θ
is chosen to satisfy (45), then Θ is indeed an invertible Fourier multiplier
operator.

Define sets Ω+ and Ω− to be

Ω+ = {k ∈ Z \ {0} : Υ(k) > 0} and Ω− = {k ∈ Z \ {0} : Υ(k) < 0}.

Under either set of assumptions (39) or (40), it is true that if |k| is sufficiently
large, then Υ(k) > 0, and so Ω− is a finite (possibly empty) set.

Keeping in mind the required property that Θ maps real-valued functions
to real-valued functions, Θ is defined via its symbol by

(46) σ(Θ)(k) =


γ
√

Υ(k), k ∈ Ω+,

i
√
−Υ(k), k ∈ Ω−, k > 0,

−i
√
−Υ(k), k ∈ Ω−, k < 0.
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Here, the positive square root of the positive number under the radical is
meant in all cases. The number γ is taken to be 1 if a ≥ 0, whereas γ = −1
if a < 0. Clearly, this definition leads to a Θ that satisfies (45).

The order of the operator Θ varies depending on the values of the con-
stants a, b, c, and d. This is important as it influences which function space
is used in the analysis. More precisely, the associated operator A turns out
to be

A = −(1− b∂2
x)−1(Λ− aΛ3)Θ = (1− d∂2

x)(Λ− cΛ3)Θ−1.

The symbol of A may be calculated from (46). In case k ∈ Ω+, the symbol
is

(47) σ(A)(k) = 2π|k|

√
(1− a(2πk)2)(−1 + c(2πk)2)

(1 + b(2πk)2)(1 + d(2πk)2)
.

Clearly, the orders of A and Θ depend strongly on the values of the
coefficients a, b, c and d. Table 1 details the cases.

Cases Order of Θ Order of A Name

a = 0, c 6= 0
b = 0

d = 0 1 2 (a)
d 6= 0 0 1 (b)

b 6= 0
d = 0 2 1 (c)
d 6= 0 1 0 (d)

a 6= 0, c 6= 0
b = 0

d = 0 0 3 (e)
d 6= 0 −1 2 (f)

b 6= 0
d = 0 1 2 (g)
d 6= 0 0 1 (h)

a 6= 0, c = 0
b = 0

d = 0 −1 2 (i)
d 6= 0 −2 1 (j)

b 6= 0
d = 0 0 1 (k)
d 6= 0 −1 0 (l)

Table 1. The dependence of the orders of the operator Θ
and A on the parameters. For cases (d) and (l), in which the
order of A is zero, no result is available.

The remainder of the paper provides a sketch of the modifications of the
ill-posedness argument, successful for the Kaup system, that are telling in
the present, more general circumstances. Whether Ω− is empty or not makes
a difference at one step of the proof, so these cases are considered separately.

5.1. When Ω− is empty. In the argument for the Kaup system, the oper-

ators I+ and I− were shown to be bounded linear operators from Bjα to Bjα.
The proof of this statement depended on the fact that the operator A was
of order at least 1. For I+, for example, our argument for the Kaup system
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required us to show that there exists an α > 0 such that

(48) sup
k∈Z\{0}

sup
t∈[0,∞)

∣∣∣∣∣ |k|
(
1− et(α|k|−σ(A)(k))

)
σ(A)(k)− α|k|

∣∣∣∣∣ <∞.
Obviously, it is important at this stage that Ω− is empty so that σ(A)(k) ∈
R, for all k. Then, since A is of order at least one, for α sufficiently small,

|1− et(α|k|−σ(A)(k))| < 1, ∀k ∈ Z \ {0}, ∀t ∈ [0,∞).

For convenience, let α∗ > 0 be chosen so that for all α ∈ (0, α∗), the bound
(48) is satisfied for such operators A. Similar considerations apply to the
boundedness of I−.

Another important point in the argument for the Kaup system is that the

operators F and G appearing in (13) are maps from Bjα × Bjα to Bjα where
j = 1. In the Kaup case, this depended on the fact that Θ was an operator
of order −1. The analogue of (13) in the present cases is

(49)

{
F (y, z) = (1 + b∂2

x)−1ΘH
(
zH Θ−1y

)
,

G(y, z) = −1
2(1 + d∂2

x)−1
(
z2
)
.

In cases where the order of Θ is less than or equal to 0 while the order of
A is at least equal to one, the proof of the mapping properties of F and G
offered in the Kaup case goes through without modification if j is taken to
be the negative of the order of Θ. Thus it continues to be true that for any

positive α, F and G map Bjα ×Bjα to Bjα for the chosen value of j, with the
desired quadratic estimate. This remark applies to cases (b), (e), (f), (h),
(i), (j) and (k).

Cases (c) and (g) are similar, but additional benefit is gained from the
condition b 6= 0. Indeed, because b 6= 0 in (c) and (g), it is again true that F

maps Bjα to itself, and we choose j in these cases to be the order of Θ (that
is to say, in case (c) we use the space B2

α, while in case (g) B1
α is a suitable

choice).
Continuing to suppose that Ω− is empty the earlier argument is modified

to deal with case (a). A more precise version of the mapping properties of
I+ and I− are needed. Notice that for the Kaup case use was only made of
the fact that I+ and I− are bounded from B1

α to B1
α. However, a perusal of

the calculations (24)-(27), especially (26), indicate that in fact I+ and I−

are in fact bounded from B1
α to B2

α. In case (a), the operator A is of order
2, so the same boundedness property holds. That is, both I+ and I− are

smoothing operators on the relevant Bjα spaces. Inspecting (49), one notes
that in case (a), F is bounded from B1

α to B0
α. So, although F loses one

derivative in this case, there is an offsetting gain of one derivative from I+

and I−. The remainder of the argument for case (a) is then the same as
before.

Once these preliminaries are in hand, the contraction mapping argument
of Section 3.3 may be used to find existence of global in time, small solutions
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and then the argument of Section 4 allows the conclusion of ill-posedness of
the initial value problem in Sobolev spaces. We pass over the details.

Theorem 3. Let a, b, c and d satisfy (39) or (40), as well as (41) and one
of the cases (a), (b), (c), (e), (f), (g), (h), (i), (j) or (k), and be such that
the set Ω− is empty. Let α∗ be as above, and let α ∈ (0, α∗) be given. Let j
be as described above for the various cases.

(i) There is an r0 > 0 such that for all w0 ∈ B0 with ‖w0‖B0 < r0, there

exists a unique solution (η, w) of (3) lying in Bjα×Bjα such that w(·, 0) = w0.
(ii) Let s1, s2 be given. There exist a sequence of initial data (ηn0 , w

n
0 ) ∈

Hs1 ×Hs2 and a sequence of times tn ∈ R such that ‖(ηn0 , wn0 )‖Hs1×Hs2 → 0
and tn → 0 as n→∞, but the corresponding solutions (ηn, wn) satisfy

lim
t↑tn
‖(ηn, wn)‖Hs1×Hs2 = +∞.

Thus, the initial value problem for (3) is ill-posed in Sobolev spaces for such
values of a, b, c, d.

5.2. When Ω− is nonempty. The estimate for the numerator in (48) is

problematic if σ(A) is imaginary for some k. Specifically, the term eαt|k|

is not controlled by the σ(A) term for smaller values of |k|, so no matter

how small the positive parameter α is chosen, eαt|k|−σ(A)(k) will exceed any
bound for large values of t. Something different must be entertained in this
case.

One solution is to abandon global solutions and focus directly on ill-
posedness. This is accomplished by working on a finite time interval rather
than all of R+, but continuing to search for solutions which instantaneously
become infinitely smooth whilst starting from nonsmooth initial data. The
time reversibilty of the system then comes to our rescue just as before and
ill-posedness is concluded. As much of the argument mirrors what has gone
before, we content ourselves with an outline.

For any T > 0 and α > 0 and j ∈ N, define function spaces Bjα,T as

follows. Consider first the auxiliary function β : [0, T ]→ [0, α] given by

β(s) =

{
2αs/T, s ∈ [0, T/2],
2α− 2αs/T, s ∈ [T/2, T ].

The norm of f ∈ Bjα,T is

‖f‖Bjα,T =
∑
k∈Z

sup
t∈[0,T ]

(1 + |k|j)eβ(t)|k||f̂(k, t)|.

These Wiener-algebra based spaces were introduced by the first author in
work on mean field games [1], [2]. We remark that these spaces are Banach

algebras, just are were the spaces Bjα.
Finding solutions on intervals of the form [0, T ] requires specifying ‘final’

data as well as initial data. In the previous situation in which the time
interval was [0,∞), we specified w(·, 0) = w0 as initial data and, implicitly,



ILL-POSEDNESS OF THE KAUP SYSTEM 19

zero data at t = ∞. The data for the other dependent variable was then
determined (see below (22)).

Thus, the view is that one is solving a boundary-value problem in space-
time, so ‘half’ the boundary data should be specified. For the pair (v, w) on
the interval [0, T ], specifying half the data means specifying one function at
time t = T in addition to continuing to assign w(·, 0) = w0. As explored in
some detail in [17], there are several choices that can work, including giving
v(·, T ), w(·, T ), vt(·, T ) or wt(·, T ). For the purposes at hand, take it that
v(·, T ) = vT is assigned. This choice has the advantage of a simpler version
of the resulting Duhamel formula than obtains for the other options.

Following the same procedure as previously leads to the representation
formulas

(50) v̂(·, t) = e−tσ(A)f̂ + e(t−T )σ(A)ĝ+
1

2
I+(F −G)(·, t)− 1

2
I−(F +G)(·, t),

(51) ŵ(·, t) = −e−tσ(A)f̂+e(t−T )σ(A)ĝ− 1

2
I+(F−G)(·, t)− 1

2
I−(F+G)(·, t)

where k has been suppressed again for ease of reading. The definition of I+

is the same as before, but I− is given as the integral

I−h(k, t) = 2πik

∫ T

t
eσ(A)(k)(t−τ)ĥ(k, τ) dτ,

to reflect the finite temporal domain. For a function h ∈ Bjα,T , define

I0h(k) = I−h(k, 0) and ITh(k) = I+h(k, T ). The formulas

(52)



f̂ =
(
1 + e−2Tσ(A)

)−1
[
− ŵ0 − 1

2I0(F +G)

+e−Tσ(A)
(
v̂T − 1

2IT (F −G)
)]
,

ĝ =
(
1 + e−2Tσ(A)

)−1
[
v̂T − 1

2IT (F −G))

+e−Tσ(A)(ŵ0 + 1
2I0(F +G))

]
,

for f̂ and ĝ in terms of the boundary data w0 and vT are then forthcoming.
The wavenumber k has again been suppressed. These formulas then allow
one to infer initial data for v and final data for w and full representation
formulas for both v and w.

The primary remaining ingredient is the proof that I+ and I− are bounded
linear operators on the newly-defined function spaces. We present the details
only for I+, those for I− being entirely similar. Let m denote the order of
the operator A. We claim that for sufficiently small positive values of α, the

operator I+ is bounded from Bjα,T to Bj+m−1
α,T .
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To begin, for h ∈ Bjα,T , write out the norm of I+h, and split this into the
contributions from Ω− and Ω+ :

‖I+h‖Bj+m−1
α,T

=
∑
k∈Z

sup
t∈[0,T ]

(1+|k|j+m−1)eβ(t)|k|
(

2π|k|
∣∣∣∣∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ

∣∣∣∣)

=
∑
k∈Ω−

sup
t∈[0,T ]

(1 + |k|j+m−1)eβ(t)|k|
(

2π|k|
∣∣∣∣∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ

∣∣∣∣)

+
∑
k∈Ω+

sup
t∈[0,T ]

(1 + |k|j+m−1)eβ(t)|k|
(

2π|k|
∣∣∣∣∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ

∣∣∣∣)
Recall that the focus is upon when Ω− is a nonempty. As seen earlier, it is
always a finite set and for all k ∈ Ω−, the symbol σ(A) is purely imaginary.
By contrast, Ω+ is infinite and for all k ∈ Ω+, the symbol σ(A) is real.

Attention is first given to the contribution to the norm stemming from
Ω−. Take the value k∗ to be

k∗ = max
k∈Ω−

|k|.

Since 0 ≤ β(s) ≤ α for s ∈ [0, T ] the triangle inequality and the fact that
σ(A) is purely imaginary implies

(53)
∑
k∈Ω−

sup
t∈[0,T ]

(1 + |k|j+m−1)eβ(t)|k|
(

2π|k|
∣∣∣∣∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ

∣∣∣∣)

≤ 2πkm∗ e
αk∗

∑
k∈Ω−

sup
t∈[0,T ]

(1 + |k|j)
∫ t

0
|ĥ(k, τ)| dτ.

≤ 2πkm∗ e
αk∗

∑
k∈Ω−

sup
t∈[0,T ]

(1 + |k|j)
∫ t

0

(
sup
s∈[0,t]

eβ(s)|k||ĥ(k, s)|

)
dτ

≤ 2πkm∗ e
αk∗T

∑
k∈Z

sup
t∈[0,T ]

(1 + |k|j)eβ(t)|k||ĥ(k, t)| = 2πkm∗ e
αk∗T‖h‖Bjα,T .

Consider next the contribution from Ω+. Start with the elementary esti-
mate∑

k∈Ω+

sup
t∈[0,T ]

(1 + |k|j+m−1)eβ(t)|k|
(

2π|k|
∣∣∣∣∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ

∣∣∣∣)

≤ 4π
∑
k∈Ω+

sup
t∈[0,T ]

|k|j+meβ(t)|k|
∫ t

0
eσ(A)(k)(τ−t)|ĥ(k, τ)| dτ.

Multiply and divide by eβ(τ)|k| and take the supremum of |eβ(τ)|k|ĥ(k, τ)|.
Pulling this through the integral and making additional elementary bounds
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leads to

(54)
∑
k∈Ω+

sup
t∈[0,T ]

(1 + |k|j+m−1)eβ(t)|k|
(

2π|k|
∣∣∣∣∫ t

0
eσ(A)(k)(τ−t)ĥ(k, τ) dτ

∣∣∣∣)

≤ 4π
∑
k∈Ω+

sup
t∈[0,T ]

|k|j+meβ(t)|k|
∫ t

0
eσ(A)(k)(τ−t)−β(τ)|k||eβ(τ)|k|ĥ(k, τ)| dτ

≤ 4π

(∑
k∈Z

(1 + |k|j) sup
t∈[0,T ]

eβ(t)|k||ĥ(k, t)|

)

×

(
sup
k∈Ω+

sup
t∈[0,T ]

|k|meβ(t)|k|−σ(A)(k)t

∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ

)

= 4π‖h‖Bjα,T

(
sup
k∈Ω+

sup
t∈[0,T ]

|k|meβ(t)|k|−σ(A)(k)t

∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ

)
.

To conclude that I+ is bounded between the given spaces, it suffices to verify
that the final quantity in parentheses on the right-hand side of (54) is finite.

For this task, examine separately t ∈ [0, T/2] and t ∈ [T/2, T ]. For t ∈
[0, T/2], the integration variable τ ∈ [0, T/2] so that β(τ) = 2ατ/T. In
consequence, we have exactly that∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ =

∫ t

0
eσ(A)(k)τ−2ατ |k|/T dτ =

eσ(A)(k)t−2αt|k|/T − 1

σ(A)(k)− 2α|k|
T

.

Now consider the quantity

(55) sup
k∈Ω+

sup
t∈[0,T/2]

|k|meβ(t)|k|−σ(A)(k)t

∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ

= sup
k∈Ω+

sup
t∈[0,T/2]

|k|me2αt|k|/T−σ(A)(k)t

∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ

≤ sup
k∈Ω+

|k|m

σ(A)(k)− 2α|k|
T

sup
t∈[0,T/2]

(
1− e2αt|k|/T−σ(A)(k)t

)
.

Referring back to equation (47), it is observed that σ(A) is positive for all
k ∈ Ω+. Together with the assumption that the order of A is m ≥ 1, it
is concluded that there exists α∗ > 0 such that for all α ∈ (0, α∗) and all
k ∈ Ω+, |k|m/(σ(A)(k)− 2α|k|/T ) > 0. Using again that A is of order m, it
then follows immediately that

(56) sup
k∈Ω+

sup
t∈[0,T/2]

|k|meβ(t)|k|−σ(A)(k)t

∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ

≤ sup
k∈Ω+

|k|m

σ(A)(k)− 2α|k|
T

< c.
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Now consider k ∈ Ω+ with t ∈ [T/2, T ] and calculate the integral∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ

=

∫ T/2

0
eσ(A)(k)τ−2ατ |k|/T dτ +

∫ t

T/2
eσ(A)(k)τ−2α|k|+2ατ |k|/T dτ

=
eσ(A)T/2−α|k| − 1

σ(A)(k)− 2α|k|
T

+ e−2α|k|

(
eσ(A)(k)t+2αt|k|/T − eσ(A)(k)T/2+α|k|

σ(A)(k) + 2α|k|
T

)
from the right-hand side of (54). Arguing as above, we find that

(57) sup
k∈Ω+

sup
t∈[T/2,T ]

|k|meβ(t)|k|−σ(A)(k)t

∫ t

0
eσ(A)(k)τ−β(τ)|k| dτ ≤ B1 +B2,

where

B1 = sup
k∈Ω+

sup
t∈[T/2,T ]

(
|k|me2α|k|−2α|k|t/T−σ(A)(k)t

)(eσ(A)(k)T/2−α|k| − 1

σ(A)(k)− 2α|k|
T

)
,

and

B2 = sup
k∈Ω+

sup
t∈[T/2,T ]

(
|k|me−2α|k|t/T−σ(A)(k)t

)
×(

eσ(A)(k)t+2αt|k|/T − eσ(A)(k)T/2+α|k|

σ(A)(k) + 2α|k|
T

)
.

For α ∈ (0, α∗), it is the case that σ(A)(k)−2α|k|/T > 0. Thus the negative
term in the numerator of B1 can be discarded. A small caclulation using
the fact that t ≥ T/2 then reveals that that the remaining exponential has
a negative argument. It thus transpires that

(58) B1 ≤ sup
k∈Ω+

|k|m

σ(A)(k)− 2α|k|
T

< c,

where this is actually the same constant c as appears in (56). To bound
B2, first neglect the negative term in the numerator, and then note that for
what remains, the exponentials cancel. Thus the estimate

(59) B2 ≤ sup
k∈Ω+

|k|m

σ(A)(k) + 2α|k|
T

≤ sup
k∈Ω+

|k|m

σ(A)(k)− 2α|k|
T

< c

obtains, where the constant c is as before.
Combining (53), (54), (56), (57), (58) and (59), it is deduced that if

α ∈ (0, α∗), then I+ is indeed a bounded linear operator from Bjα,T to

Bj+m−1
α,T , with operator norm bounded above by 2πkm∗ e

αk∗T + 8πc.

As already mentioned, the details for I− are completely analagous, and
the conclusion is the same.
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With these bounds on I+ and I− in hand, the representatation formulas
obtaining by using (52) in (50) and (51) provides an operator equation for
(v̂, ŵ) to which the contraction mapping theorem may be applied, just as in
Section 3.3. The existence of these solutions and the instantaneous gain of
analyticity, then implies ill-posedness of the initial value problem in Sobolev
spaces, as in Section 4 above. These ruminations are summarized in the
next theorem.

Theorem 4. Let a, b, c and d be given satisfying (39), (40), (41), one of
the cases (a), (b), (c), (e), (f), (g), (h), (i), (j), or (k) and are such that
the set Ω− is nonempty. Let α∗ be as above and α ∈ (0, α∗) be given. Let j
be as described above.

(i) For any T > 0, there is an r0 > 0 so that if (w0, vT ) ∈ B0×B0 satisfies

‖(w0, vT )‖B0×B0 < r0, then there is a unique (v, w) ∈ Bjα,T ×B
j
α,T , such that

(η, w) satisfy (43), with v(·, T ) = vT and w(·, 0) = w0.
(ii) Let s1, s2 > 0 be given. There exist a sequence of initial data

(vn0 , w
n
0 ) ∈ Hs1 × Hs2 and a sequence of times tn ∈ R such that tn → 0

and ‖(vn0 , wn0 )‖Hs1×Hs2 → 0 as n → ∞ for which the corresponding solu-
tions (vn, wn) satisfy

lim
t↑tn
‖(vn, wn)‖Hs1×Hs2 = +∞.

Thus, the initial value problem for (43) is ill-posed in Sobolev spaces for
such values of a, b, c and d.
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