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Introduction

This overview of rational homotopy theory consists of an extended version of
lecture notes from a minicourse based primarily on the encyclopedic text [17] of
Félix, Halperin and Thomas. With only three hours to devote to such a broad
and rich subject, it was difficult to choose among the numerous possible topics to
present. Based on the subjects covered in the first week of this summer school, I
decided that the goal of this course should be to establish carefully the foundations
of the rational homotopy theory, then to treat more superficially one of its most
important tools, the Sullivan model. Finally, I provided a brief summary of the
extremely fruitful interactions between rational homotopy theory and local algebra,
in the spirit of the summer school theme “Interactions between Homotopy Theory
and Algebra.” I hoped to motivate the students to delve more deeply into the
subject themselves, while providing them with a solid enough background to do so
with relative ease.

As these lecture notes do not constitute a history of rational homotopy theory,
I have chosen to refer the reader to [17], instead of to the original papers, for the
proofs of almost all of the results cited, at least in Sections 1 and 2. The reader
interested in proper attributions will find them in [17] or [23].

Basic notation and terminology. We assume in this chapter that the reader is
familiar with the elements of the theories of simplicial sets and of model categories.
As references we recommend [12] and [24] or the chapter of these lecture notes by
Paul Goerss [19].

In this chapter, sSet and Top are the categories of simplicial sets and of topolog-
ical spaces, respectively. Furthermore, | · | : sSet //Top denotes the geometric
realization functor, while S• : Top //sSet denotes its right adjoint, the singular
simplices functor.

If K is a simplicial set, then C∗(K) and C∗(K) denote its normalized chain
and cochain complexes, respectively. If X is a topological space, then S∗(X) :=
C∗(S•(X)) and S∗(X) := C∗(S•(X)), the singular chains and cochains on X.
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A morphism of (co)chain complexes inducing an isomorphism in (co)homology
is called a quasi-isomorphism and denoted ∼ // .

A graded vector space is said to be of finite type if it is finite dimensional in each
degree.

Given a category C and two objects A and B in C, we write C(A,B) for the
class of morphisms with source A and target B.

1. Foundations

For the sake of simplicity, we work throughout these notes only with simply
connected spaces. Many of the results presented hold for connected, nilpotent
spaces as well.

1.1 Rationalization and rational homotopy type.

Definition. A simply connected space X is rational if the following, equivalent
conditions are satisfied.

(1) π∗X is a Q-vector space.
(2) H∗(X; Z) is a Q-vector space.
(3) H∗(ΩX; Z) is a Q-vector space.

Remarks on the proof. To prove the equivalence of these conditions, one begins
by observing that H∗(K(Q, 1); Fp) ∼= H∗(pt.; Fp) for all primes p. An inductive
Serre spectral sequence argument then shows that H∗(K(Q, n); Fp) ∼= H∗(pt.; Fp)
for all primes p and for all n ≥ 1. The equivalence of conditions (1) and (2) for
an arbitrary X then follows from an inductive argument on the Postnikov tower of
X. �

Example: the rational sphere and disk. For any n ≥ 2, let ιn,k denote the
homotopy class of the inclusion of Sn as the kth summand of

∨
k∈N Snk . The rational

n-sphere is defined to be the complex

Sn0 :=
( ∨
k∈N

Snk

) ⋃
h

( ∐
l∈N

Dn+1
l

)
where Dn+1

m is attached to Snm−1 ∨ Snm by a representative

hSn
m

: Snm // Snm−1 ∨ Snm

of ιn,m − (m + 1) · ιn,m+1. The rational (n + 1)-disk is then

Dn+1
0 := Sn0 × I/Sn0 × {0}.

Let

X(r) =
( ∨

1≤k≤r

Snk

) ⋃
h

( ∐
1≤l≤r−1

Dn+1
l

)
.

It is clear that for all r, Snr is a strong deformation retract of X(r), which implies
that Hk X(r) = 0 if k 6= 0, n. Furthermore, the homomorphism induced in reduced
homology by the inclusion X(r) ↪→ X(r + 1) is multiplication by r + 1. Since
homology commutes with direct limits and Sn0 = lim

→
X(r),

Hk(Sn0 ; Z) =


Z : k = 0
Q: k = n

0 : else.
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Definition. A pair of spaces (X, A) is a relative CW0-complex if X =
⋃
n≥1 X(n)

where
(1) X(1) = A,
(2) for all n ≥ 1, there is a pushout

∐
α∈Jn

(Sn0 )α

incl.

��

‘
α fα // X(n)

��∐
α∈Jn

(Dn+1
0 )α // X(n + 1),

(3) X has the weak topology, i.e., A ⊆ X is open if and only if A ∩ X(n) is
open in X(n) for all n.

The pairs (Sn0 , Sn) and (Dn+1
0 , Dn+1) are the fundamental examples of relative

CW0-complexes.

Remark. If A is a rational space and (X, A) is a relative CW0-complex, then X is
rational as well.

Definition. Let X be a simply connected space. A continuous map ` : X //Y ,
is a rationalization of X if Y is simply connected and rational and

π∗`⊗Q : π∗X ⊗Q // π∗Y ⊗Q ∼= π∗Y

is an isomorphism.

Remark. A map ` : X //Y of simply connected spaces is a rationalization if and
only if H∗(`; Q) is an isomorphism.

The inclusions of Sn into Sn0 and of Dn+1 into Dn+1
0 are rationalizations. The

rationalization of an abitrary simply connected space, as constructed in the next
theorem, generalizes these fundamental examples.

Theorem 1.1.1. Let X be a simply connected space. There exists a relative
CW complex (X0, X) with no zero-cells and no one-cells such that the inclusion
j : X //X0 is a rationalization. Furthermore, if Y is a simply connected ratio-
nal space, then any continuous map f : X //Y can be extended over X0, i.e.,
there is a continuous map g : X0

//Y , which is unique up to homotopy, such
that

X

j

��

f // Y

X0

g

>>}}}}}}}}

commutes.

Sketch of proof. We can restrict to the case where X is a 1-reduced CW-complex.
The rationalization X0 can then be constructed as a CW0-complex with rational
n-cells in bijection with the n-cells of X, for all n. The attaching maps of X0 are
obtained by rationalizing the attaching maps of X. The complete proof can be
found in [17], Theorem 9.7. �
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Continuing in the same vein, one can show that such a cellular rationalization is
unique up to homotopy equivalence relative to X.

Given a continuous map ϕ : X //Y between simply connected spaces, we
let ϕ0 : X0

//Y0 denote the induced map between their rationalizations, the
existence and uniqueness (up to homotopy) of which is guaranteed by the theorem
above.

Definition. The rational homotopy type of a simply connected space X is the
weak homotopy type of X0.

Definition. A continuous map ϕ : X //Y between simply connected spaces is
a rational homotopy equivalence if the following, equivalent conditions are satisfied.

(1) π∗ϕ⊗Q is an isomorphism.
(2) H∗(ϕ; Q) is an isomorphism.
(3) H∗(ϕ; Q) is an isomorphism.
(4) ϕ0 : X0

//Y0 is a weak homotopy equivalence.

To facilitate computations, it is common in rational homotopy theory to restrict
to the class of spaces defined by the following proposition, the proof of which is in
[17], Theorem 9.11.

Proposition 1.1.2. For any simply connected space X, there is CW-complex Z
and a rational homotopy equivalence ϕ : Z //X such that

(1) H∗(X; Q) is of finite type if and only if Z is of finite type; and
(2) if dimQ H∗(X; Q) < ∞, then H∗(X; Q) = H≤N (X; Q) if and only if Z is a

finite CW-complex of dimension at most N .

Definition. A simply connected space X is of finite rational type if condition (1)
of Proposition 1.1.2 is satisfied.

We can now finally specify clearly the subject presented in these notes.

Rational homotopy theory is the study of rational homotopy
types of spaces and of the properties of spaces and maps that
are invariant under rational homotopy equivalence.

For further information on rationalization, the reader is refered to section 9 of
[17].

1.2 The passage to commutative cochain algebras.
We show in this section that the category of rational homotopy types of sim-

ply connected, finite-type spaces and of homotopy classes of maps between their
representatives is equivalent to an appropriately defined homotopy category of com-
mutative differential graded algebras over Q.

The algebraic category and its homotopy structure. We begin by a rather careful
introduction to the algebraic category in which the Sullivan model of a topological
space lives.

A commutative differential graded algebra (CDGA) over Q is a commutative
monoid in the category of non-negatively graded, rational cochain complexes. In
other words, a CDGA is a cochain complex (A∗, d) over Q, endowed with cochain
maps

η : Q //(A∗, d)
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called the unit and

µ : (A∗, d)⊗Q (A∗, d) //(A∗, d) : a⊗ b � //a · b,

called the product such that
(1) µ is graded commutative, i.e., if a ∈ Ap and b ∈ Aq, then a · b = (−1)pqb · a;
(2) µ is associative; and
(3) µ(η ⊗ 1A) = 1A = µ(1A ⊗ η).

Let r ≥ 0. A CDGA A is r-connected if A0 = Q and Ak = 0 for all 0 < k < r + 1.
A morphism of CDGA’s f : (A∗, d, µ, η) //(Ā∗, d̄, µ̄, η̄) is a cochain map such

that fµ = µ̄(f ⊗ f) and fη = η̄. The category of CDGA’s over Q and their
morphisms is denoted CDGAQ.

To simplify notation, we frequently write either A or (A, d) to denote (A∗, d, µ, η).
Furthermore, henceforth in these notes, the notation ⊗ means the tensor product
over Q.

In rational homotopy theory, CDGA’s with free underlying commutative, graded
algebra play an essential role. Given a non-negatively graded vector space V =⊕

i≥0 V i, let ΛV denote the free, commutative, graded algebra generated by V ,
i.e.,

ΛV = S[V even]⊗ E(V odd),

the tensor product of the symmetric algebra on the vectors of even degree and of
the exterior algebra on the vectors of odd degree. Given a basis {vj | j ∈ J} of V ,
we often write Λ(vj)j∈J for ΛV .

A homomorphism of commutative, graded algebras ϕ : ΛV //A is deter-
mined by its restriction to V , as is any derivation of commutative, graded algebras
δ : ΛV //A . In particular, the differential d of a CDGA (ΛV, d) is determined
by its restriction to V .

More generally, the following class of CDGA morphisms is particularly important
in rational homotopy theory.

Definition. A relative Sullivan algebra consists of an inclusion of CDGA’s (A, d) ↪→
(A ⊗ ΛV,D) such that V has a basis {vα | α ∈ J}, where J is a well-ordered set,
such that dvβ ∈ A⊗ ΛV<β for all β ∈ J , where V<β is the span of {vα | α < β}. A
relative Sullivan algebra (A⊗ ΛV,D) is minimal if

α < β ⇒ deg vα ≤ deg vβ .

A (minimal) relative Sullivan algebra (ΛV, d) extending (A, d) = (Q, 0) is called a
(minimal) Sullivan algebra.

Remark. If V 0 = 0 = V 1, then (ΛV, d) is minimal if and only if dV ⊆ Λ≥2V .

Example. The CDGA (Λ(x, y, z), d), where x, y and z are all of degree 1 and
dx = yz, dy = zx and dz = yx is an example of CDGA with free underlying graded
algebra that is not a Sullivan algebra.

Recall from Example 1.7 and Example 3.4 (1) in [19] that the category Ch∗(Q)
of non-negatively graded cochain complexes over Q admits a cofibrantly generated
model category structure in which

(1) weak equivalences are quasi-isomorphisms;
(2) fibrations are degreewise surjections; and
(3) cofibrations are degreewise injections, in positive degrees.
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The set of generating acyclic cofibrations is

J = {jn : 0 −→ D(n) | n ≥ 1}

where

D(n)k =
{ Q : k = n− 1, n

0 : else

and dn−1 : D(n)n−1 −→ D(n)n is the identity map. The set I of generating cofibra-
tions consists of the obvious inclusions

in : S(n− 1) −→ D(n) for n ≥ 1 and i0 : 0 −→ S(0)

where

S(n− 1)k =
{ Q : k = n− 1

0 : else.

Consider the pair of adjoint functors

Λ : Ch∗(Q) � CDGAQ : U,

where Λ is the “free commutative cochain algebra functor” satisfying Λ(C, d) =
(ΛC, d̃), where d̃ is the derivation extending d, and U is the forgetful functor. It
is not difficult, as indicated in Example 3.7 in [19], to show that this adjoint pair
satisfies the hypotheses of Theorem 3.6 of [19].

There is thus a cofibrantly generated model structure on CDGAQ, with gener-
ating cofibrations and acyclic cofibrations

I = {Λin | n ≥ 0} and J = {Λjn | n ≥ 1}

where Λ(0) := Q. Let I − cell denote the smallest class of morphisms in CDGAQ
that contains I and that is closed under coproducts, cobase change and sequential
colimits. It is easy to see that I−cell is exactly the class of relative Sullivan algebras.
In this model structure on CDGAQ, weak equivalences are quasi-isomorphisms,
and fibrations are degreewise surjections. Cofibrations are retracts of relative Sul-
livan algebras. All CDGA’s are fibrant, and the Sullivan algebras are the cofibrant
CDGA’s.

The next result, which rephrases the Lifting Axiom of model categories in the
specific case of CDGAQ, is an important tool in rational homotopy theory.

Proposition 1.2.1 (The Lifting Lemma). Let

(A, d)

i

��

f // (B, d)

p

��
(A⊗ ΛV,D)

g // (C, d)

be a commuting diagram in CDGAQ, where i is a relative Sullivan algebra and p is
a surjection. If i or p is a quasi-isomorphism, then g lifts through p to an extension
of f , i.e., there exists a CDGA map h : (A⊗ΛV,D) −→ (B, d) such that hi = f and
ph = g. Furthermore, any two lifts are homotopic rel A.

We can describe homotopy of CDGA morphisms with source a Sullivan algebra
in terms of the following path objects. Let I denote the CDGA (Λ(t, y), d), where
deg t = 0, deg y = 1 and dt = y. Let ε0 : I −→ Q and ε1 : I −→ Q denote the
augmentations specified by ε0(t) = 0 and ε1(t) = 1.
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Proposition 1.2.2. Let (ΛV, d) be a Sullivan algebra. Two CDGA morphisms
f, g : (ΛV, d) −→ (A, d) are homotopic if and only if there is a CDGA morphism
H : (ΛV, d) −→ (A, d)⊗ I such that (Id⊗ ε0)H = f and (Id⊗ ε1)H = g.

A careful, degree-by-degree version of the proof of the Small Object Argument
(Theorem 3.5 in [19]) establishes the following useful result.

Proposition 1.2.3. Any morphism f : (A, d) −→ (B, d) in CDGAQ can be fac-
tored as

(A⊗ ΛU,D)
p

&&MMMMMMMMMM

(A, d)

i

'

88qqqqqqqqqq
f //

j &&MMMMMMMMMM
(B, d)

(A⊗ ΛV,D)

q

'
88qqqqqqqqqq

where i and j are relative Sullivan algebras, and p and q are surjections.

If we are willing to sacrifice surjectivity of q, we can obtain minimality of j, again
via a degree-by-degree construction.

Proposition 1.2.4. Any morphism f : (A, d) −→ (B, d) in CDGAQ can be fac-
tored as

(A, d)
f //

ι
&&MMMMMMMMMM

(B, d)

(A⊗ ΛW,D)

ϕ

'
88qqqqqqqqqq

where ι is a minimal relative Sullivan algebra. In particular, if H0A = Q = H0B,
H1f is injective, and H∗B is of finite type, then W is of finite type and W = W≥2.

Definition. The quasi-isomorphism ϕ : (A ⊗ ΛW,D) '−→ (B, d) is a relative Sul-
livan minimal model of f : A −→ B. A Sullivan minimal model of the CDGA
(B, d) is a relative Sullivan minimal model ϕ : (ΛW,d) '−→ (B, d) of the unit map
η : (Q, 0) −→ (B, d).

It is very convenient to know that (relative) Sullivan minimal models are unique
up to isomorphism, which is an immediate consequence of the following proposition.

Proposition 1.2.5. Suppose that

(A, d)

i

��

f

∼=
// (B, d)

j

��
(A⊗ ΛV,D)

f̂

'
// (B ⊗ ΛW,D)

is a commuting diagram in CDGAQ, where i and j are minimal relative Sullivan
algebras, f is an isomorphism and f̂ is a quasi-isomorphism. Then f̂ is also an
isomorphism.
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The proof of this proposition reduces to showing that if a CDGA endomorphism
of a minimal relative Sullivan algebra (B ⊗ ΛW,D) fixing B is homotopic to the
identity, then it is equal to the identity.

The functors. We now explain the passage from topology to algebra, starting
with the relationship between simplicial sets and CDGA’s.

Definition. The algebra of polynomial differential forms, A∗•, is the simplicial
CDGA given by

A∗n =
(
Λ(t0, ..., tn; y0, ..., yn)/Jn, d

)
where deg ti = 0 and dti = yi for all i and Jn is the ideal generated by {1 −∑n
i=0 ti,

∑n
j=0 yj}, and the faces and degeneracies are specified by

∂i : A∗n // A∗n−1 : tk
� //


tk : k < i

0 : k = i

tk−1: k > i

and

si : A∗n // A∗n+1 : tk
� //


tk : k < i

tk + tk+1: k = i

tk+1 : k > i.

The terminology used in this definition is justified by the following observation.
Let ΩDR(∆n) be the cochain algebra of smooth forms on ∆n, the standard topo-
logical n-simplex. Then

ΩDR(∆n) = C∞(∆n) ⊗
A0

n

A∗n,

where the induced face and degeneracy maps satisfy ∂i = ΩDR(ith face inclusion)
and si = ΩDR(ith degeneracy).

Definition. Let A∗ : sSet //CDGA be the functor specified by A∗(K) =
sSet(K, A∗•), with operations defined objectwise. For any topological space, let
APL(X) := A∗

(
S•(X)

)
, which we call the CDGA of piecewise-linear de Rham

forms on X.

Since for any simplicial set K, A∗(K) is a commutative algebra, while C∗(K; Q)
is usually not, we cannot expect to be able to define a natural quasi-isomorphism
of cochain algebras directly from the former to the latter. However, as explained
below, there is a cochain map between them that is close to being an algebra map.

Given f ∈ An(K), i.e., f : K //An• , and x ∈ Kn, write

f(x) = f̂(x)dt1 · · · dtn,

so that f̂(x) ∈ Q[t1, ..., tn]. Define a graded linear map
∮

: A∗(K) //C∗(K; Q)
by (∮

f
)
(x) =

∫
∆n

f̂(x)dt1 · · · dtn.
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Theorem 1.2.6 (Polynomial Stokes-DeRham Theorem). The map
∮

is a
map of cochain complexes, inducing an isomorphism of algebras in cohomology.

The proof of this theorem, which can be found in [9], Theorem 2.2 and Corollary
3.4, proceeds by methods of acyclic models.

Theorem 1.2.6 can in fact be strengthened: as proved in Proposition 3.3 in [9],
the cochain map

∮
is actually a strongly homotopy multiplicative map, in the sense

of e.g., Gugenheim and Munkholm [20].
To compare the homotopy theory of CDGA’s and of simplicial sets via the functor

A∗, we need for A∗ to be a member of an adjoint pair. We construct its adjoint as
follows.

Definition. Let K• : CDGA //sSet be the functor specified by K•(A) =
CDGA(A,A∗•), with faces and degeneracies defined objectwise.

Let sCDGA denote the category of simplicial CDGA’s. Given any CDGA A
and any simplicial set K, their cartesian product A × K is naturally a simplicial
CDGA. Furthermore, there are natural isomorphisms

CDGA
(
A, sSet(K, A∗•)

)∼= sCDGA(A×K, A∗•) ∼= sSet
(
K,CDGA(A,A∗•)

)
,

i.e.,
CDGA

(
A,A∗(K)

) ∼= sSet
(
K,K•(A)

)
.

We therefore have an adjoint pair

(1.2.1) A∗ : sSet � CDGAop : K•,

which Bousfield and Gugenheim proved to be a Quillen pair in Section 8 of [9].

Definition. The composite functor

CDGAQ

K• %%KKKKKKKKKK
<−> // Top

sSet
|−|

;;wwwwwwww

is called spatial realization.

Let (ΛV, d) be any Sullivan algebra. Consider the commuting diagram

Q

��

// APL

(
< (ΛV, d) >

)
APL(εK•(ΛV,d))'
��

(ΛV, d)
η(ΛV,d) // A∗

(
K•(ΛV, d)

)
where η : Id −→ A∗ ◦ K• is the unit of the adjoint pair (1.2.1) and ε : S• ◦ | −
| −→ Id is the counit of the adjoint pair (S•, | − |). Since (ΛV, d) is a Sullivan
algebra and APL(εK•(ΛV,d)) is a surjective quasi-isomorphism, the Lifting Lemma
(Proposition 1.2.1) can be applied to this diagram, establishing the existence of a
CDGA morphism m(ΛV,d) : (ΛV, d) −→ APL

(
< (ΛV, d) >

)
, unique up to homotopy,

lifting η(ΛV,d).
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Theorem 1.2.7. If (ΛV, d) is a simply connected Sullivan algebra of finite type,
then

(1) m(ΛV,d) : (ΛV, d) −→ APL

(
< (ΛV, d) >

)
is a quasi-isomorphism; and

(2) < (ΛV, d) > is a simply connected, rational space of finite type, such that
there is an isomorphism of graded rational vector spaces

π∗
(
< (ΛV, d) >

) ∼= HomQ(V, Q).

We refer the reader to Section 17 of [17] for the details of the proof of this
extremely important theorem.

To complete the picture, we need to specify the relationship between spatial
realization and homotopy of morphisms.

Theorem 1.2.8. Let (ΛV, d) and (ΛW,d) be simply connected Sullivan algebras of
finite type.

(1) Let f : (ΛV, d) −→ (ΛW,d) be a CDGA morphism. Then

(ΛV, d)

m(ΛV,d)'
��

f // (ΛW,d)

m(ΛW,d)'
��

APL

(
< (ΛV, d) >

) APL

(
<f>

)
// APL

(
< (ΛW,d) >

)
commutes up to homotopy.

(2) Two CDGA morphisms f, g : (ΛV, d) −→ (ΛW,d) are homotopic if and only
if < f > and < g > are homotopic.

(3) Let α : X −→ Y be a continuous map between simply connected CW-
complexes of finite rational type. If there is a homotopy-commutative di-
agram of CDGA’s

(ΛV, d)

ϕ'
��

f // (ΛW,d)

ψ'
��

APL(Y )
APL(α) // APL(X),

then there is a homotopy-commutative diagram

X

β

��

α // Y

γ

��
< (ΛW,d) >

<f> // < (ΛV, d) >

in which π∗(β)⊗Q and π∗(γ)⊗Q are isomorphims.

Again, we refer the reader to Section 17 in [17] for the proof of this theorem.
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Corollary 1.2.9. Rational homotopy types of simply connected spaces of finite
rational type are in bijective correspondence with isomorphism classes of minimal
Sullivan algebras. Furthermore, homotopy classes of continuous maps of simply
connected, finite-type rational spaces are in bijective correspondence with homotopy
classes of morphisms of simply connected, finite-type Sullivan algebras.

We are now ready to introduce one of the very most important tools in rational
homotopy theory.

Definition. The Sullivan minimal model of a simply connected topological space
X of finite rational type is the unique (up to isomorphism) Sullivan minimal model
of its algebra of piecewise-linear de Rham forms

ϕ : (ΛV, d) '−→ APL(X).

As a consequence of Theorems 1.2.7 and 1.2.8, if ϕ : (ΛV, d) '−→ APL(X) is a
Sullivan minimal model, then there is isomorphism of graded rational vector spaces

HomQ(V, Q) ∼= π∗X ⊗Q.

In other words, given a Sullivan minimal model of a space, we can read off the
nontorsion part of its homotopy groups from the generators of the model.

2. Sullivan models

Since the CDGA APL(X) is huge and has a complicated product, rational homo-
topy theorists prefer to carry out computations with the Sullivan minimal model,
which has only finitely many generators in each dimension if X is of finite rational
type and which is free as an algebra. In this section, we provide a brief overview
of the power of the Sullivan model. We begin by providing a few explicit examples
of Sullivan minimal models. We then explore the relationship between topological
fibrations and the Sullivan model. In particular, we explain the slogan “the Sullivan
model of fiber is the cofiber of the Sullivan model” and illustrate its application. A
classical and essential numerical homotopy invariant, Lusternik-Schnirelmann cat-
egory, is our next subject: its elementary properties, how to calculate it using the
Sullivan model and its additivity. Finally, we present the beautiful and striking
rational dichotomy of finite CW-complexes, the proof of which depends crucially
on Lusternik-Schnirelmann category.

2.1 Examples and elementary constructions.
As a warmup and an aid to developing the reader’s intuition, we calculate a

few explicit examples of Sullivan models. Here, a subscript on a generator always
indicates its degree.

Spheres. The Sullivan model of an odd sphere S2n+1 is

ϕ : (Λ(x2n+1), 0) −→ APL(S2n+1),

where ϕ(x) is any representative of the unique cohomology generator of degree
2n + 1. Since ϕ is obviously a quasi-isomorphism of CDGA’s, the nontorsion part
of π∗S

2n+1 is concentrated in degree 2n + 1, where it is of rank 1.
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On the other hand, the Sullivan model of an even sphere S2n is

ϕ : (Λ(y2n, z4n−1), d) −→ APL(S2n),

where dz = y2 and ϕ(y) represents the unique cohomology generator of degree 2n.
Since the square of ϕ(y) must be a boundary, there is an acceptable choice of ϕ(z).
Again, ϕ is clearly a quasi-isomorphism of CDGA’s, implying that the nontorsion
part of π∗S

2n is concentrated in degrees 2n and 4n − 1 and that it is of rank 1 in
each of those degrees.

Complex projective spaces. From the long exact sequences in homotopy of the
fibrations

S1 −→ S2n+1 −→ CPn

and
S1 −→ S∞ −→ CP∞,

and the computation above of π∗S
2n+1 ⊗Q, we conclude that

π∗CPn ⊗Q = Q · u2 ⊕Q · x2n+1 and π∗CP∞ ⊗Q = Q · u2.

Consequently, the Sullivan model of CPn is of the form

ϕ :
(
Λ(u2, x2n+1), d

)
−→ APL(CPn),

where dx = un+1, ϕ(u) represents the algebra generator of H∗(CPn; Q), which is a
truncated polynomial algebra on a generator of degree 2, and ϕ(x) kills its (n+1)st

power. The value of dx is nonzero since H∗(CPn; Q) is zero in odd degrees.
The Sullivan model for CP∞ is even easier to specify since there can be no

nontrivial differential. It is

ϕ : (Λ(u), 0) −→ APL(CP∞),

where ϕ(u) represents the algebra generator of H∗(CP∞; Q), which is a polynomial
algebra on a generator of degree 2

Products. Observe that APL is a lax monoidal functor, via the natural quasi-
isomorphism αX,Y , defined to be the composite

APL(X)⊗APL(Y )
APL(p1)⊗APL(p2)−−−−−−−−−−−−→ APL(X × Y )⊗APL(X × Y )

µ−→ APL(X × Y ),

where pi is projection onto the ith component, and µ is the product on APL(X×Y ).
Given Sullivan models ϕ : (ΛV, d) −→ APL(X) and ϕ′ : (ΛV ′, d′) −→ APL(X ′),

the Sullivan model of the product space X ×X ′ is given by

(ΛV, d)⊗ (ΛV ′, d′)
ϕ⊗ϕ′−−−→ APL(X)⊗APL(X ′)

αX,X′
−−−−→ APL(X ×X ′).

Formal spaces. A space is formal if its rational homotopy is a formal consequence
of its rational cohomology, in the sense of the following definition.
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Definition. A rational CDGA A is formal if there is a quasi-isomorphism of
cochain algebras A // H∗(A). A space X is formal if APL(X) is a formal CDGA.

From the previous examples, we see that spheres and complex projective spaces
are formal. Furthermore, products of formal spaces are clearly formal. We can also
show that wedges of formal spaces are formal, as follows.

Observe that for any family of pointed spaces {Xj | j ∈ J},

APL(
∨
j∈J

Xj) = A∗
(
S•(

∨
j∈J

Xj)
)

= sSet
(
S•(

∨
j∈J

Xj),A∗•
)

= sSet
(∨
j∈J

S•(Xj),A∗•
)

=
∏
j∈J

sSet
(
S•(Xj),A∗•

)
=

∏
j∈J

APL(Xj).

Since a product of formal CDGA’s is clearly formal, we obtain that a wedge of
formal spaces is formal, too.

Further examples of formal spaces can be found in geometry. Given a compact,
connected Lie group G, let K denote the connected component of its neutral element
e, in the subgroup of elements fixed by a given involution. The quotient G/K, which
is a symmetric space, is then a formal space, as proved in [10]. Furthermore, Deligne,
Griffiths, Morgan and Sullivan showed in [11] that compact Kähler manifolds are
also formal.

It is easy to construct an example of a nonformal CDGA. Let A = (Λ(u, v, w), d),
where |u| = |v| = 3 and |w| = 5 and where dw = uv. Then

Hn(A) =


Q : n = 0, 11
Q⊕Q: n = 3, 8
0 : else,

where the classes in degree 3 are represented by uw and vw and the class in degree
11 by uvw. If ϕ : A // H∗(A) is a CDGA map, then ϕ(w) = 0 for degree reasons,
which implies that ϕ(uw) = 0 = ϕ(vw), since ϕ is an algebra map. Consequently,
ϕ cannot be a quasi-isomorphism.

2.2 Models of fiber squares.
The Sullivan model is especially well adapted to studying fibrations. In particu-

lar, as expressed more precisely in the next theorem, “the Sullivan model of a fiber
is the cofiber of the model.”

Theorem 2.2.1. Let p : E //B be a Serre fibration such that B is simply con-
nected and E is path connected. Let F denote the fiber of p. Suppose that B or F
is of finite rational type.

(1) Given a Sullivan model µ : (ΛV, d) //APL(B) , let

(ΛV, d)
APL(p)◦µ //

ι
''NNNNNNNNNNN

APL(E)

(ΛV ⊗ ΛW,D)
µ′

'
77ooooooooooo

be a factorization of APL(p) ◦ µ as a relative Sullivan algebra, followed by
a quasi-isomorphism. Let (ΛW,D) = Q ⊗(ΛV,d) (ΛV ⊗ ΛW,D), and let
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µ′′ : (ΛW,D) //APL(F ) denote the induced map. Then µ′′ is a quasi-
isomorphism, i.e., there is a commuting diagram in CDGAQ

(2.2.1) (ΛV, d)

µ'
��

ι // (ΛV ⊗ ΛW,D)

µ′'
��

ρ // (ΛW,D)

µ′′

��
APL(B)

APL(p) // APL(E)
APL(j) // APL(F )

where ρ is the quotient map and j is the inclusion map.
(2) Given a Sullivan model µ : (ΛV, d) //APL(B) and a Sullivan minimal

model µ′′ : (ΛW,d) //APL(F ) , there is a relative Sullivan algebra

ι : (ΛV, d) −→ (ΛV ⊗ ΛW,D)

such that (ΛW,d) ∼= Q ⊗(ΛV,d) (ΛV ⊗ ΛW,D) and a quasi-isomorphism of
cochain algebras

µ′ : (ΛV ⊗ ΛW,D) //APL(E)

such that the diagram (2.2.1) commutes, i.e., E has a Sullivan model that
is a twisted extension of a Sullivan model of the base by a Sullivan model of
the fiber.

We refer the reader to Proposition 15.5 in [17] for the proof of the theorem above.

Example. Let ΩSn //PSn
p //Sn be the based path-space fibration, where

n is odd. Let µ : (Λu, 0) //APL(Sn) be the Sullivan model of Sn, and con-
sider the relative Sullivan algebra (Λu, 0) //(Λ(u, v), d), where |v| = n − 1 and
dv = u. The cochain algebra (Λ(u, v), d) is clearly acyclic, as is APL(PSn), which
implies that APL(p) ◦µ extends over (Λ(u, v), d) to a quasi-isomorphism of cochain
algebras µ′ : (Λ(u, v), d) //APL(PSn). By Theorem 2.2.1, the induced cochain
algebra map µ′′ : (Λv, 0) //APL(ΩSn) is a quasi-isomorphism, which implies
that H∗(ΩSn; Q) ∼= Q[v], when n is odd.

More generally, consider the based path-space fibration ΩX //PX
p //X ,

where X is a simply connected space. Suppose that µ : (ΛV, d) //APL(X) is the
Sullivan model of X.

Let V be the graded Q-vector space, which is the suspension of V , i.e., V
n

=
V n+1. Let S be the derivation of Λ(V ⊕ V ) specified by S(v) = v̄ and S(v̄) = 0 for
all v ∈ V . Define (Λ(V ⊕ V ), D) by Dv̄ = −S(dv). Then (Λ(V ⊕ V ), D) is easily
seen to be acyclic, as is APL(PX), and therefore there is a quasi-isomorphism
of cochain algebras µ′ : (Λ(V ⊕ V ), D) //APL(PX) extending APL(p) ◦ µ. By
Theorem 2.2.1, the induced map of cochain algebras µ′′ : (ΛV , 0) //APL(ΩX)
is a quasi-isomorphism.

Theorem 2.2.1 is a consequence of the following, more general result concerning
fiber squares, for which the slogan is “the model of the pullback is the pushout of
the models.”
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Theorem 2.2.2. Let p : E −→ B be a Serre fibration, where E is path connected
and B is simply connected, with fiber F . Let f : X −→ B be a continuous map, where
X is simply connected. Suppose that B or F is of finite rational type. Consider the
pullback

E ×
B

X f̄ //

p̄

��

E

p

��
X

f // B.

Given a commuting diagram of CDGA’s

(ΛU, d)

' ν

��

(ΛV, d)
ϕoo ι //

' µ

��

(ΛV ⊗ ΛW,D)

' µ′

��
APL(X) APL(B)

APL(f)oo APL(p) // APL(E),

the induced map of cochain algebras

(ΛU, d)⊗(ΛV,d) (ΛV ⊗ ΛW,D) // APL(E ×
B

X)

is a quasi-isomorphism of CDGA’s.

We again refer the reader to [17] for the proof of this theorem, in the guise of
their Proposition 15.8.

Example. Let X be a simply connected space of finite rational type, with Sullivan
model ϕ : (ΛV, d) //APL(X). Consider the free-loop fiber square.

LX

e

��

j // XI

(ev0,ev1)=p

��
X

∆ // X ×X

It is easy to check that

(ΛV, d)⊗ (ΛV, d)

bϕ'
��

m // (ΛV, d)

ϕ'
��

APL(X ×X)
APL(∆) // APL(X)

commutes, where m is the multiplication map on (ΛV, d) and ϕ̂ is the composite

(ΛV, d)⊗ (ΛV, d)
ϕ⊗ϕ−−−→ APL(X)⊗APL(X)

αX,X−−−→ APL(X ×X).

Furthermore

(ΛV, d)⊗ (ΛV, d)

bϕ'
��

ι // (Λ(V ′ ⊕ V ′′ ⊕ V ), D)

Φ'
��

APL(X ×X)
APL(p) // APL(XI)
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commutes as well, where ι is a relative Sullivan algebra (V ′ and V ′′ are two copies
of V ), Φ is an appropriate extension of ϕ̂ and D is specified as follows.

Let S : Λ(V ′ ⊕ V ′′ ⊕ V ) −→ Λ(V ′ ⊕ V ′′ ⊕ V ) be the derivation of degree −1
specified by S(v′) = v̄ = S(v′) and S(v̄) = 0. Then

D(v̄) := v′′ − v′ −
∑
n≥1

(SD)n

n!
(v′).

Applying Theorem 2.2.2 we obtain as a Sullivan model of LX(
Λ(V ⊕ V ), D) ∼= (ΛV, d) ⊗

(ΛV,d)⊗2
(Λ(V ′ ⊕ V ′′ ⊕ V ), D),

i.e., D(v̄) = −S(dv), where S(v) = v̄ and S(v̄) = 0.
Sullivan and Vigué used this model to prove that if H∗(X; Q) requires at least

two algebra generators, then the rational Betti numbers of H∗(LX; Q) grow expo-
nentially, which implies in turn that X admits an infinite number of distinct closed
geodesics, when X is a closed Riemannian manifold [31].

2.3 Lusternik-Schnirelmann category.
One of the most spectacular successes of the Sullivan minimal model has been in

its application to studying and exploiting the numerical homotopy invariant known
as Lusternik-Schnirelmann (L.-S.) category.

Definition. A categorical covering of a space X is an open cover of X such that
each member of the cover is contractible in X. The L.-S. category of a topological
space X, denoted catX, is equal to n if the cardinality of the smallest categorical
covering of X is n + 1.

L.-S. category is in general extremely difficult to compute. It is trivial, however,
to prove that the L.-S. category of a contractible space is 0 and that cat Sn = 1 for
all n. Similarly, the L.-S. category of any suspension is 1. More generally, a space
X is a co-H-space if and only if cat X ≤ 1.

The proof of this last equivalence is most easily formulated in terms of an equiv-
alent definition of L.-S. category, which requires the following construction, due to
Ganea.

Definition. Let p : E −→ X be a fibration over a based topological space (X, x0).
Let j : F ↪→ E denote the inclusion of the fiber of p over x0, with mapping cone
Cj . Let p̂ : Cj −→ X denote the induced continuous map, which can be factored
naturally as a homotopy equivalence followed by a fibration:

Cj
∼ // E′ p′ // // X.

There is then a commutative diagram

E //

p
  @

@@
@@

@@
@ E′

p′~~}}
}}

}}
}}

X
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called the fiber-cofiber construction on p.
Let p : PX −→ X denote the (based) path fibration over X. Iterating the fiber-

cofiber construction repeatedly leads to a commutative diagram

P0X = PX

p

��

// P1X

p1

xxrrrrrrrrrrr
// P2X

p2

ttjjjjjjjjjjjjjjjjjjjj
// · · · // PnX

pn

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee // · · ·

X,

in which PnX is the nth Ganea space for X and pn is the nth Ganea fibration.

Proposition 2.3.1. If X is a normal space, then cat X ≤ n if and only if the
fibration pn admits a section.

For a proof of this proposition, we refer the reader to Proposition 27.8 in [17].
Another equivalent definition of the L.-S. category of a based space (X, x0) is

expressed in terms of the fat wedge on X

TnX := {(x1, ..., xn) ∈ Xn | ∃ i such that xi = x0}.

Proposition 2.3.2. If X is a path-connected CW-complex, then the following con-
ditions are equivalent.

(1) cat X ≤ n.
(2) The iterated diagonal ∆(n) : X //Xn+1 factors up to homotopy through

the fat wedge T (n+1)X, i.e., there is a map δ : X //Tn+1X such that
the diagram

X

δ

##G
GG

GG
GG

GG
∆(n)

// Xn+1

Tn+1X

i

99ttttttttt

commutes up to homotopy.

We refer the reader to Proposition 27.4 in [17] for the proof of this equivalence.
Applying Proposition 2.3.2, we obtain the following useful upper bound on L.-S.

category (cf., Proposition 27.5 in [17]).

Corollary 2.3.3. If X is an (r−1)-connected CW-complex of dimension d, where
r ≥ 1, then cat X ≤ d/r.

On the other hand, a lower bound on cat X is given by the cuplength c(X) of
H∗(X; Q), i.e, the greatest integer n such that there exist a1, ..., an ∈ H∗(X; Q)
satisfying a1∪· · ·∪an 6= 0. We leave it as an easy exercise to prove that c(X) ≤ cat X
for all path-connected, normal spaces X.

Example. Observe that c(CPn) = n, so that cat CPn ≥ n. On the other hand,
CPn is 1-connected and of dimension 2n, implying that cat CPn ≤ 2n/2 = n.
Thus, cat CPn = n.

Within the realm of rational homotopy theory, it makes sense to consider the
following invariant derived from L.-S. category.
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Definition. The rational category of a simply connected space X, denoted cat0 X,
is defined by

cat0 X := min{cat Y | X and Y have the same rational homotopy type}.

As proved in [17] (Proposition 28.1), if X is a simply connected CW-complex,
then cat0 X = catX0. Furthermore, it is obvious that cat0 X ≤ cat X for all X.
As we show below, this inequality is sharp, i.e., there are spaces X for which
cat0 X = cat X. On the other hand, the inequality can certainly be strict, as the
case of a mod p Moore space easily illustrates.

The next theorem has turned out to be a crucial tool in proving numerous
significant results in rational homotopy theory, such as many of the dichotomy
theorems (cf., Section 2.4).

Theorem 2.3.4 (The Mapping Theorem). Let f : X −→ Y be a continuous
map between simply connected spaces. If π∗f⊗Q is injective, then cat0 X ≤ cat0 Y .

The original proof of the Mapping Theorem relied on Sullivan models. There is
now a purely topological and relatively simple proof, which is given in [17] (Theorem
28.6).

As a first application of the Mapping Theorem, we mention the amusing and
useful corollary below, which follows immediately from the fact that the natural
map from the (n+1)st Postnikov fiber to the nth Postnikov fiber of a space induces
an injection on homotopy groups.

Corollary 2.3.5. Let X be a connected CW-complex. Let X(n) denote the nth

Postnikov fiber of X, for all n ≥ 1. Then

· · · ≤ cat0 X(n + 1) ≤ cat0 X(n) ≤ · · · ≤ cat0 X(2) ≤ cat0 X.

One great advantage of rational category, as opposed to the usual L.-S. category,
is that it can explicitly calculated in terms of the Sullivan model, as stated in the
next theorem.

Theorem 2.3.5. Let ϕ : (ΛV, d) ∼ //APL(X) be the Sullivan minimal model of
a simply connected space X of finite rational type. Let (ΛV/Λ>nV, d̄) denote the
CDGA obtained by taking the quotient of (ΛV, d) by the ideal of words of length
greater than n, and let

(2.3.1) (ΛV, d)
q //

i ''NNNNNNNNNNN (ΛV/Λ>nV, d̄)

(Λ(V ⊕W ), d)

p

∼
66mmmmmmmmmmmm

be a factorization of the quotient map q as a relative Sullivan algebra, followed by
a surjective quasi-isomorphism. Then cat0X ≤ n if and only if i admits a CDGA
retraction ρ : (Λ(V ⊕W ), d) //(ΛV, d) , i.e., ρi = Id(ΛV,d).

The fat wedge formulation of the definition of L.-S. category is crucial in the
proof of this theorem, for which we refer the reader to Propositions 29.3 and 29.4
in [17].
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Examples. Since Hn(Sn; Q) = Q, the rationalization Sn0 of the n-sphere is not
contractible and therefore cat0 Sn = catSn0 > 0. On the other hand, cat0 Sn ≤
cat Sn = 1, whence cat0 Sn = 1, providing the promised example of equality be-
tween rational category and L.-S. category of a space.

This calculation can also be carried out easily using the Sullivan model (cf.,
Section 2.1). If n is odd, then the Sullivan model is (Λ(x), 0), where x is of degree
n. Observe that Λ(x)/Λ>1(x) is isomorphic to Λ(x), since x is of odd degree. Since
the quotient map q is itself the identity map in this case, it follows trivially that
cat0 Sn ≤ 1.

If n is even, the relevant Sullivan model is (Λ(y, z), d), where deg y = n, deg z =
2n− 1 and dz = y2. An easy calculation shows that

(Λ(y, z)/Λ>1(y, z), d̄) = (Q⊕Q · y ⊕Q · z, 0).

It is not too difficult to show that the quotient map q factors as

(Λ(y, z), d)
q //

i ((QQQQQQQQQQQQQ
(Q⊕Q · y ⊕Q · z, , 0)

(Λ(y, z)⊗ ΛW,D)

p

∼
55jjjjjjjjjjjjjjj

where DW ⊂ Λ(y, z)⊗Λ+W , i.e., the differential of any generator of W , if nonzero,
is a sum of words, all of which contain at least one letter from W . We can therefore
define a CDGA retraction ρ by setting ρ(w) = 0 for all w ∈ W , implying that
cat0 Sn ≤ 1.

Though Theorem 2.3.5 does simplify the calculation of rational category by
making it purely algebraic, the computations involved are still difficult, which led
Halperin and Lemaire to propose the following, apparently weaker numerical in-
variant of rational homotopy [22].

Definition. Let X be a simply connected space of finite rational type, with Sul-
livan model ϕ : (ΛV, d) ∼ //APL(X). If the map i in diagram (2.3.1) admits a
retraction as morphisms in the category of (ΛV, d)-modules, then Mcat0 X ≤ n.

As it turned out, however, the apparent weakness of Mcat0 was only an illusion.

Theorem 2.3.6. Mcat0 X = cat0 X for all simply connected spaces X of finite
rational type.

For the proof of this theorem, which requires a deep understanding of the fac-
torization of the quotient map, we refer the reader to Theorem 29.9 in [17].

Theorem 2.3.6 implies that to show that cat0 X ≤ n, it suffices to find a (ΛV, d)-
module retraction of i in diagram (2.3.1), which has proven to be a very effective
simplification. We next outline briefly one application of this simplification, to the
study of the additivity of L.-S. category.

It is not difficult to show that cat(X×Y ) ≤ cat X+catY for all normal spaces X
and Y . At the end of the 1960’s Ganea observed that in the only known examples
for which cat(X × Y ) 6= cat X + cat Y , the spaces X and Y had homology torsion
at distinct primes. He conjectured therefore that cat(X × Sn) = cat X + 1 for all
spaces X and all n ≥ 1, since Sn has no homology torsion whatsoever.

In fact, as stated precisely below, if we forget torsion completely and work ra-
tionally, then L.-S. category is indeed additive.
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Theorem 2.3.7. If X and Y are simply connected topological spaces of finite ra-
tional type, then cat0(X × Y ) = cat0 X + cat0 Y.

The proof of this theorem depends in an essential way on Theorem 2.3.6. We
refer the reader to Sections 29(h) and 30(a) in [17] for further details.

As an epilogue to this story of Sullivan minimal models and L.-S. category, we
mention that in 1997 Iwase applied classical homotopy-theoretic methods to the
construction of a counter-example to Ganea’s conjecture [14]. In particular, he
built a 2-cell complex X such that cat(X × Sn) = 2 = catX.

2.4 Dichotomy.
There is a beautiful dichotomy governing finite CW-complexes in rational ho-

motopy theory, expressed as follows: the rational homotopy groups of a finite CW-
complex either are of finite total dimension as graded rational vector space or grow
exponentially. We first examine the former case, that of elliptic spaces, then the
latter case, that of hyperbolic spaces.

Definition. A simply connected topological space X is rationally elliptic if

dim H∗(X; Q) < ∞ and dim π∗(X)⊗Q < ∞.

The formal dimension fdim X of a rationally elliptic space X is defined by

fdim X := max{k | Hk(ΛV, d) 6= 0}.

The even exponents of a rationally elliptic space X are the postive integers a1, ..., aq
such that there is a basis (yj)1≤j≤q of πevenX ⊗ Q with deg yj = 2aj . Similarly,
the odd exponents of X are the positive integers b1, ..., bp such that there is a basis
(xi)1≤i≤p of πoddX ⊗Q with deg xi = 2bi − 1.

Examples. Spheres, complex projective spaces, products of elliptic spaces, and
homogeneous spaces are examples of elliptic spaces.

The following special case of elliptic spaces is important for understanding gen-
eral elliptic spaces.

Definition. A CDGA (ΛV, d) is pure if dim V < ∞, d|V even = 0 and d(V odd) ⊆
ΛV even. A space is pure if its Sullivan model is pure.

A pure CDGA (ΛV, d) admits a differential filtration Fk(ΛV, d) = ΛV even ⊗
Λ≤kV odd. In particular, d(ΛV even ⊗ ΛkV odd) ⊆ ΛV even ⊗ Λk−1V odd. Write

Hk(ΛV, d) =
ker(d : ΛV even ⊗ ΛkV odd −→ ΛV even ⊗ Λk−1V odd)
Im(d : ΛV even ⊗ Λk+1V odd −→ ΛV even ⊗ ΛkV odd)

.

The following list of the most important properties of pure CDGA’s summarizes
Propositions 32.1 and 32.2 in [17].

Proposition 2.4.1. Let (ΛV, d) be a pure CDGA.
(1) dim H∗(ΛV, d) < ∞⇔ dim H0(ΛV, d) < ∞.
(2) If dim H∗(ΛV, d) < ∞, then Hn(ΛV, d) is a 1-dimensional subspace of Hr(ΛV, d),

where n is the formal dimension of (ΛV, d) and r = max{k | Hk(ΛV, d) 6= 0}.
(3) r = dim V odd − dim V even, thus

dim V odd = dim V even ⇔ H∗(ΛV, d) = H0(ΛV, d).

(4) fdim X =
∑
i(2bi − 1)−

∑
j(2aj − 1).
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We present next a tool for determining whether spaces are elliptic, based on the
notion of pure spaces.

Definition. Let (ΛV, d) be a Sullivan algebra such that dim V < ∞. Filter (ΛV, d)
by

Fp(ΛV, d) =
⊕
k+l≥p

(ΛV even ⊗ ΛkV odd)l.

The induced spectral sequence is the odd spectral sequence and converges to H∗(ΛV, d).

Observe that the E0-term of the odd spectral sequence is the associated graded of
(ΛV, dσ), where dσ(V even) = 0, dσ(V odd) ⊆ ΛV even and (d−dσ)(V odd) ⊆ ΛV even⊗
Λ+V odd. We call (ΛV, dσ) the associated pure Sullivan algebra of (ΛV, d).

Proposition 2.4.2. Under the hypotheses of the definition above,

dim H∗(ΛV, d) < ∞⇔ dim H∗(ΛV, dσ) < ∞.

Thus, (ΛV, d) is elliptic if and only if (ΛV, dσ) is elliptic.

Proof. Since the odd spectral sequence converges from H∗(ΛV, dσ) to H∗(ΛV, d), one
implication is clear. An algebraic version of the Mapping Theorem (Theorem 2.3.4)
plays an essential role in the rest of the proof. We refer the reader to Proposition
32.4 in [17] for the complete proof. �

Example. Consider (ΛV, d) = (Λ(a2, x3, u3, b4, v5, w7), d), where the subscript of
a generator equals its degree and d is specified by da = 0, dx = 0, du = a2,
db = ax, dv = ab − ux and dw = b2 − wx. Its associated pure Sullivan algebra is
(Λ(a, x, u, b, v, w), dσ), where dσa = 0, dσx = 0, dσu = a2, dσb = 0, dσv = ab and
dσw = b2. A straightforward calculation shows that

H∗(ΛV, dσ) = Q · a⊕Q · b⊕ Λy/(y3)⊕ Λz/(z3),

where y is represented by bu − av and z is represented by aw − bv. In particular
dim H∗(ΛV, dσ) < ∞, which implies that (ΛV, d) is elliptic.

The next theorem describes the amazing numerology of elliptic spaces, which
imposes formidable constraints on their form.

Theorem 2.4.3. Let (ΛV, d) be an elliptic Sullivan algebra of formal dimension n
and with even and odd exponents a1, ..., aq; b1, ..., bp. Then:

(1)
∑p
i=1(2bi − 1)−

∑q
j=1(2aj − 1) = n;

(2)
∑q
j=1 2aj ≤ n;

(3)
∑p
i=1(2b1 − 1) ≤ 2n− 1; and

(4) dim V even ≤ dim V odd.

As a consequence of this theorem, we know, for example, that if (ΛV, d) is an
elliptic Sullivan algebra of formal dimension n, then V = V ≤2n−1, dimV >n ≤ 1
and dim V ≤ n.

Remarks on the proof. One first proves by induction on dim V that the formal
dimensions of (ΛV, d) and of its associated pure tower are the same, reducing the
proof of the theorem to the pure case. For further details, we refer the reader to
Theorem 32.6 in [17]. �
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Definition. The Euler-Poincaré characteristic of a graded vector space W is the
integer

χW =
∑
i

(−1) dim W i = dim W even − dim W odd.

It is easy to show that χW = χH∗(W,d), for any choice of differential d on W .

Proposition 2.4.4. If (ΛV, d) is an elliptic Sullivan algebra, then χΛV ≥ 0 and
χV ≤ 0. Furthermore, the following statements are equivalent.

(1) χΛV > 0.
(2) H∗(ΛV, d) = Heven(ΛV, d).
(3) H∗(ΛV, d) = Λ(y1, ..., yq)/(u1, ..., up), where (u1, ..., up) is a regular sequence.
(4) (ΛV, d) is isomorphic to a pure complex.
(5) χV = 0.

Remarks on the proof. The proof of this proposition reduces essentially to Poincaré
series calculations. We refer the reader to Proposition 32.10 in [17] for details of
the calculations. �

Application to free torus actions. (Example 3 in section 32(e) of [17]) Let T
denote the r-torus, i.e., the product of r copies of S1. Suppose that T acts smoothly
and freely on a simply connected, compact, smooth manifold M . There exists then
a smooth principal bundle M −→ M/T and thus a classifying map M/T −→ BT
with homotopy fiber M .

If M is elliptic, then M/T is also elliptic, since M/T is compact and BT =
(CP∞)r. Furthermore,

0 ≥ χπ(M/T ) = χπ(M) + χπ(BT ) = χπ(M) + r,

implying that r ≤ −χπ(M).

Now we go to the other extreme.

Definition. A simply connected space X with the homotopy type of a finite CW-
complex is rationally hyperbolic if dim π∗(X)⊗Q = ∞.

The following theorem, which justifies the terminology “hyperbolic,” is Theorem
33.2 in [17]. Its proof depends strongly on the Mapping Theorem (Theorem 2.3.4).

Theorem 2.4.5. If X is a rationally hyperbolic space, then there exist C > 1 and
N ∈ Z such that

n∑
i=0

dim πi(X)⊗Q ≥ Cn

for all n ≥ N .

In other words, the rational homotopy groups of X grow exponentially. More-
over, as stated more precisely in the next theorem (Theorem 33.3 in [17]), there are
no “long gaps” in the rational homotopy groups of X.
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Theorem 2.4.6. If X is a rationally hyperbolic space of formal dimension n, then
for all k ≥ 1, there exists i ∈ (k, k + n) such that πiX ⊗ Q 6= 0. Furthermore, for
k � 0,

k+n−1∑
i=k+1

dim πi(X)⊗Q ≥ dim πkX ⊗Q
dim H∗(X; Q)

.

Consequently, if X has formal dimension n, then

X is rationally elliptic ⇔ πj(X)⊗Q = 0 ∀j ∈ [2n, 3n− 2],

a simple and lovely test of ellipticity.

3. Commutative algebra and rational homotopy theory

In the late 1970’s two algebraists, Luchezar Avramov of the University of Sofia
and Jan-Erik Roos of the University of Stockholm, discovered and began to exploit
a deep connection between local algebra and rational homotopy theory. In 1981
they established contact with the rational homotopy theorists, initiating a powerful
synergy that led to a multitude of important results in both fields. In this section,
of a more expository nature than the preceding sections, we describe certain of the
most important results of this collaboration. For further details we refer the reader
to Section 4 of [23].

Roos’ interest in rational homotopy theory was inspired by Jean-Michel Lemaire’s
work on Serre’s question concerning Poincaré series of the rational homology of loop
spaces and by the work of local algebraists on the analogous question of Kaplansky
and Serre for local rings. More precisely, Lemaire had studied the Poincaré series∑

n≥0

dimQ Hn(ΩE; Q) · zn

for E a finite, simply connected CW-complex, while local algebraists were interested
in the series ∑

n≥0

dimk ExtnR(k, k) · zn

for R a local, commutative, noetherian ring with residue field k. In both cases,
the goal was to determine under what conditions the series represented a rational
function.

Roos established a research program to study the homological properties of local
rings, in particular those whose maximal ideal m satisfied m3 = 0, the first nontrivial
case for Poincaré series calculations. He realized that in order to study local rings,
it was useful, or even necessary, to work in the larger category of (co)chain algebras.
By 1976 he had proved the equivalence of Serre’s problem for CW-complexes E such
that dim E = 4 and of the Kaplansky-Serre problem for local rings (R,m) such that
m3 = 0[29].

Avaramov ascribes his original interest in rational homotopy theory to Levin’s
result from 1965 that if R is a local, commutative ring with residue field k, then
TorR(k, k) is a graded, divided powers Hopf algebra [26]. Since the dual of a graded,
divided powers Hopf algebra is the universal enveloping algebra of a uniquely defined
graded Lie algebra (char k = 0 [28], char k > 2 [7], char k = 2 [30]), it is possible
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to associate to any noetherian, local, commmutative ring R a uniquely defined
graded Lie algebra π∗(R), the homotopy Lie algebra of R. Based on results in
characteristic 0 due to Gulliksen in the late 1960’s, Avramov proved that if R −→ S
is a homomorphism of noetherian, local, commutative rings with the same residue
field k such that S is R-flat, then there is an exact sequence of groups

... −→ πn(S ⊗R k) −→ πn(S) −→ πn(R) δn−→ πn+1(S ⊗R k) −→ ... .

The existence of such a long exact sequence of homotopy groups confirmed Avramov’s
intuition that rational homotopy invariants provided the correct analogy for homol-
ogy invariants of local rings in arbitrary characteristic.

In 1980 David Anick, constructed a finite, simply connected CW-complex E of
dimension ≤ 4 such that the Poincaré series of the homology of ΩE was not ra-
tional, thus answering Serre’s question [2]. Anick’s construction interested rational
homotopy theorists because of its relation to the dichotomy between elliptic and
hyperbolic spaces; see Section 2.4. Local algebraists were interested because of
Roos’s result, which allowed the transcription of Anick’s space into a local ring
(R,m) with m3 = 0 and with irrational Poincaré series. Shortly after Anick’s result
became known, Roos and his student Clas Löfwall discovered other examples of lo-
cal rings with irrational Poincaré series that they obtained by completely different
methods [27].

The converging interests of rational homotopy theorists and of local algebraists
led to direct contact between the two groups in 1981. Inspired by the work of Roos
and his colleagues, Félix and Thomas began to work on calculating the radius of
convergence of the Poincaré series of a loop space [18], establishing the following
beautiful characterization, the proof of which relies heavily on results from []: a
simply connected space E is rationally elliptic if and only if the radius of con-
vergence of the Poincaré series of ΩE is 1. If E is rationally hyperbolic, then the
radius of convergence is strictly less than 1. Moreover, they found a relatively easily
computable upper bound for the radius of convergence in the case of a hyperbolic,
formal space. They also showed that if A is a noetherian, connected graded com-
mutative algebra over a field k of characteristic zero and ρA denotes the radius of
convergence of

PA(z) =
∑
n≥o

dim TorAn (k, k) · zn,

then either ρA = +∞ and A is a polynomial algebra; or ρA = 1, A is a complete
intersection, and the coefficients of PA(z) grow polynomially; or ρA < 1, A is not a
complete intersection, and the coefficients of PA(z) grow exponentially. Avramov
later generalized this result to any characteristic.

The written version of Avramov’s Luminy talk on the close links between local
algebra and rational homotopy theory provides an excellent and thorough introduc-
tion to the subject [5]. His article contains the first “dictionary” between rational
homotopy theory and local algebra, explaining how to translate notions and tech-
niques from one field to the other. Given a theorem in one field, applying the
dictionary leads to a statement in the other field that stands a reasonable chance
of being true, though the method of proof may be completely different.

Avramov and Halperin wrote another thorough introduction to the subject in
the proceedings of the Stockholm conference of 1983[7]. It begins at a more ele-
mentary level than the survey article of Avramov in the proceedings of the Luminy



RATIONAL HOMOTOPY THEORY 25

conference, leading the reader from first principles of differential graded homolog-
ical algebra to notions of homotopy fiber and loop space and on to the homotopy
Lie algebra.

In his introductory article [5] Avramov emphasized the importance of minimal
models in local ring theory. If KR is the Koszul complex of a local, commuta-
tive ring such that the Yoneda algebra Ext∗R(k, k) is noetherian, then there is a
minimal, commutative cochain algebra (ΛV, d) over the residue field of R that is
quasi-isomorphic to KR. Avaramov called (ΛV, d) the minimal model of R. He
established its relevance by observing that in degrees greater than 1, the graded
Lie algebra derived from (ΛV, d2) was isomorphic to the homotopy Lie algebra of
R.

In [16] Félix, Halperin, and Thomas continued the in-depth study of the homo-
topy Lie algebra of a rationally hyperbolic space begun by Félix and Halperin in
[13]. They showed, for example, that if E is rationally hyperbolic, then its ratio-
nal homotopy Lie algebra is not solvable. Moreover they proposed as conjectures
translations of their theorems into local algebra, where, for a local ring (R,m) with
residue field k, L.-S. category is replaced by dimk(m/m2) − depth R and infinite
dimensional rational homotopy is replaced by R not being a complete intersection.
Recall that

depth R = inf{j | ExtjR(k, R) 6= 0}.

Avramov and Halperin quickly proved a weaker version of one of the conjectures in
[16], when they showed that R is a complete intersection if and only if its homotopy
Lie algebra is nilpotent [6].

In [16] Félix, Halperin and Thomas also mentioned a very important conjecture
due to Avramov and Félix, stating that the homotopy Lie algebra of a rationally
hyperbolic space should contain a free Lie algebra on at least two generators. This
conjecture has motivated much interesting work in the study of the homotopy Lie
algebra and has not as yet (2005) been proved.

Using minimal model techniques, Halperin and Bøgvad proved two conjectures
due to Roos, which are “translations” of each other [8]. They showed that

(1) if R is a local, commutative ring such that the Yoneda algebra Ext∗R(k, k)
is noetherian, then R is a complete intersection; and

(2) if E is a simply connected, finite CW-complex such that the Pontryagin
algebra H∗(ΩE; Q) is noetherian, then E is rationally elliptic.

Their proof is based on a slightly weakened form of the Mapping Theorem that
holds over a field of any characteristic, as well as on ideas from the article of Félix,
Halperin and Thomas of the previous year [16].

In the spring of 1985 Halperin applied minimal model techniques to answering
on old question concerning the deviations of a local ring [21]. The jth deviation,
ej , of a noetherian, local, commutative ring R with residue field k is dimk πj(R).
Assmus had shown in 1959 that R is a weak complete intersection if and only if
ej = 0 for all j > 2 [3], raising the question of whether any deviation could vanish
if R were not a weak complete intersection. Halperin succeeded in answering this
question, showing that if R is not a weak complete intersection, then ej 6= 0 for all
j.

The Five Author paper [14] represents a great leap forward in understanding
of the structure of the homotopy Lie algebra of a space or of a local ring. The
principal innovation of the Five Author paper consists in exploiting the radical of
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the homotopy Lie algebra, i.e., the sum of all of its solvable ideals, which rational
homotopy theorists had begun to study in 1983. The radical itself is in general not
solvable.

Expressed in topological terms, the main theorem of the Five Author paper states
that if E is a simply connected CW-complex of finite type and cat(E) = m < ∞,
then the radical of the homotopy Lie algebra, Rad(E) is finite dimensional and
dim Rad(E)even ≤ m. This is a consequence of two further theorems, both of which
are of great interest themselves. The first concerns the relations among the rational
L.-S. category of a space and the depth and global dimension of its homotopy Lie
algebra. Recall that the gobal dimension of a local ring R with residue field k is
defined by

gl.dim.(R) = sup{j | ExtjR(k, k) 6= 0}.

The precise statement of this theorem in topological terms is then that if L is the
homotopy Lie algebra of a simply-connected CW-complex of finite type E, then
either

depth UL < cat0(E) < gl.dim. UL

or
depth UL = cat0(E) = gl.dim. UL.

The second theorem states that under the same hypotheses, if depth UL < ∞, then
Rad(E) is finite dimensional and satisfies dim Rad(E)even ≤ depth UL. Moreover,
if dim Rad(E)even = depthUL, then Rad(E) = L.

Rational homotopy theorists have exploited extensively the results of [14] in de-
veloping a deep understanding of the homotopy Lie algebra of rationally hyperbolic
spaces. The methods the five authors devised to prove their results have turned
out to be extremely important as well. For example, since their goal was to relate
cat0(E) to depth(L), they needed to construct a model of the quotient cochain
algebra (ΛV/Λ>nV, d̄), where (ΛV, d) is the Sullivan minimal model of E. Their
method for doing so, based on perturbation of a model for (ΛV/Λ>nV, d2), proved
to be useful in a number of other circumstances, such as in the proof of Theorem
2.3.6.
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Betti non rationnelles, C. R. Acad. Sci. Paris 290 (1980), 733–736.

[28] J. Milnor and J. Moore, On the structure of Hopf algebras, Annals of Math. 81 (1965),
211–264.
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