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Abstract. We develop a new system of model structures on the modules,
algebras and commutative algebras over symmetric spectra. In addition to
the same properties as the standard stable model structures defined in [HSS]
and [MMSS], these model structures have better compatibility properties be-
tween commutative algebras and the underlying modules.

Introduction

In this paper we develop the S-model structure on symmetric spectra where
S is the sphere spectrum and the associated R-model structures on R-modules,
associative R-algebras, and commutative R-algebras. The S-model structure was
defined in [HSS, 5.3.6], but the axioms for a model category were not verified there.
These model structures have all of the same properties as the standard stable model
structures developed in [HSS] and [MMSS]. The advantage though of this system
of model structures is the unique compatibility between the model structures on
commutative ring spectra and on the underlying spectra.

This compatibility does not exist in any of the model structures already con-
structed on the various symmetric monoidal categories of spectra and their associ-
ated commutative monoids [EKMM, HSS, MMSS, Man]. This compatibility prop-
erty has already been useful in [Sch01, 4.3] and [GS], and may have helped with
some of the technical points in [Bas99, Section 9]. As discussed in Remark 2.9,
analogues of the S-model structures here could also be constructed on orthogonal
spectra and commutative orthogonal ring spectra as well.

The first special property of the R-model structures is that the associated cofi-
brations of commutative R-algebras are also R-cofibrations of the underlying R-
modules; see Proposition 4.1. Also, the positive stable cofibrations of commu-
tative R-algebras from the model categories developed in [MMSS, Man] are un-
derlying R-cofibrations. This property has already been used in [Sch01]. (Note
the S-cofibrations of R-modules from [Sch01] are the maps we refer to here as
R-cofibrations.)

The second special property is an extension of the first and is the property re-
quired in [GS]. The cofibrations and fibrations in the R-model structure on commu-
tative R-algebras forget to cofibrations and fibrations in a monoidal model structure
on R-modules (namely the positive R-model structure, see Proposition 4.1). This
property is not shared by the positive stable model structure on commutative R-
algebras from [MMSS] or [Man]. Basically, this means that a cofibrant and fibrant
replacement of a given commutative R-algebra is also cofibrant and fibrant as an
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underlying R-module. (There is a small technicality here which is dealt with in
Section 4.) This is used in [GS] for constructing homotopy invariant mapping spec-
tra in the category of R-modules while maintaining the extra commutative algebra
structure on the source and target; see Corollary 4.6.

In Section 1 we develop a model structure on G-spaces which lies in between
the usual naive and genuine equivariant model categories. In Section 2, we define
model structures on symmetric sequences, symmetric spectra, module spectra and
associative algebra spectra. We then consider commutative algebras in Section 3.
In the final section, Section 4, we consider the special properties of the model
structures developed in Sections 2 and 3.

We assume the reader is familiar with the standard model structures on symmet-
ric spectra developed in [HSS] and [MMSS]. We also assume familiarity with the
standard model category techniques and terminology; see [DS95] for an introduc-
tion and [Hov98] for a more thorough account. Specifically, to establish several of
the model categories here we use the criterion for cofibrantly generated model cate-
gories from [Hov98, 2.1.19] which is based on [DHK]. Throughout the paper we work
with categories built from simplicial sets which are thus locally presentable [Bor94,
5.2.2b, 5.3.3, 5.5.9, 5.7.5]. The smallness conditions in [Hov98, 2.1.19] then follow
from [Bor94, 5.2.10] since each object is small.

Acknowledgments: Jeff Smith first defined the S-model structure on symmetric
spectra. I’d like to thank him for encouraging me to develop this structure further.
I had many useful conversations about this material with Mike Mandell and thank
him for sharing his preprint [Man] with me. It was also an observation of his which
led me to the current formulation of Corollary 4.5. I would also like to thank Stefan
Schwede for several suggestions and questions about an earlier version of this paper.

1. Equivariant spaces

There are two well-known model categories on the category of pointed G-equivariant
simplicial sets (pointed G-spaces) for G a finite group. In the naive version, weak
equivalences and fibrations are determined on the underlying space. In the gen-
uine equivariant model category we begin with below, the weak equivalences and
fibrations are determined on the fixed point sets with respect to all subgroups H
in G.

Definition 1.1. A map f of pointed G-spaces is an equivariant weak equivalence
(equivariant fibration) if the induced map on the fixed points fH is a weak equiva-
lence (fibration) of spaces for each subgroup H of G.

Let I ′ = {ik ∧ (G/H)+ : (∂∆[k] × G/H)+ → (∆[k] × G/H)+} for k ≥ 0 and
J ′ = {jrk ∧ (G/H)+ : (Λr[k]×G/H)+ → (∆[k]×G/H)+} for k > 0, 0 ≤ r ≤ k, and
H varies over all subgroups of G in both I ′ and J ′. Here Λr[k] is the rth horn of
∆[k], obtained by removing its rth face. It is easy to check that the J ′-injectives are
the equivariant fibrations and the I ′-injectives are the equivariant acyclic fibrations,
i.e., the J ′-injectives which are also equivariant weak equivalences. One can also
show that the I ′-cofibrations are the monomorphisms. After checking that each
map in J ′ is an equivariant weak equivalence, [Hov98, 2.1.19] implies the following
statement.

Proposition 1.2. The monomorphisms, equivariant weak equivalences and equi-
variant fibrations form a cofibrantly generated model structure on the category of
pointed G-spaces.
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The model structure on pointed G-spaces which is of interest for the rest of this
paper is a localization of this equivariant model structure which we refer to as the
mixed model structure. The mixed cofibrations are again the monomorphisms, but
the mixed weak equivalences are the underlying weak equivalences of spaces and
the mixed fibrations are those maps with the right lifting property with respect to
mixed acyclic cofibrations. We use the pushout product to define the generating
acyclic cofibrations here; given f : A → B and g : X → Y then f � g is the map
A ∧ Y ∪A∧X B ∧X → B ∧ Y .

Proposition 1.3. The monomorphisms, underlying weak equivalences and mixed
fibrations form a cofibrantly generated model structure on the category of pointed
G-spaces.

Proof. Let IG = I ′ from the proof of Proposition 1.2. The generating acyclic
cofibrations require an extra step. Let πH be the projection (G ×H EH)+ →
(G/H)+. Use the mapping cylinder construction, see [HSS, 3.1.7] for example,

to factor πH as (G ×H EH)+
jH−−→ MπH

rH−−→ (G/H)+ with jH a monomorphism
and (G/H)+ a simplicial deformation retract of MπH . Let JG = J ′ ∪ {jH � ik}
where ik is as in I ′, H varies over all subgroups of G and k > 0. We now check
the statements required by [Hov98, 2.1.19]. Since the pushout product preserves
monomorphisms, JG ⊆ IG-cof. Thus, JG-cof ⊆ IG-cof and IG-inj ⊆ JG-inj. Since
pushouts of G-spaces are determined by the underlying pushout of spaces and such
pushouts preserve acyclic cofibrations of spaces, it follows that any map in JG-cof is
an underlying weak equivalence. Since the IG-injective maps are equivariant weak
equivalences, they are also underlying weak equivalences.

The last statement which we need to check is that any map which is JG-injective
and an underlying weak equivalence is IG-injective. One can check by adjoint-
ness that the JG-injectives are the equivariant fibrations f : X → Y such that
fπH : XH → Y H ×Y hH XhH is a weak equivalence for each subgroup H in
G or equivalently that f jH is an acyclic fibration for each H ; this uses the fact
that (G/H)+ is a simplicial deformation retract of MπH , for a similar argument
see [HSS, 3.4.12]. If f is also an underlying weak equivalence, then it follows that
fhH and hence also fH is a weak equivalence. That is, any acyclic JG-injective is
an equivariant acyclic fibration. �

2. Symmetric spectra

Given the background material on G-spaces we now turn to symmetric sequences
(SΣ
∗ , see [HSS, 2.1]) as one more preparatory step before considering symmetric

spectra.

Proposition 2.1. The monomorphisms, level equivalences and level mixed fibra-
tions form a cofibrantly generated model structure on the category of symmetric
sequences.

Proof. Let Gn : Σn-S∗ → SΣ
∗ be the left adjoint of the evaluation functor which

takes a symmetric sequence to the pointed Σn-space in level n. Note that in the
notation of [HSS, 2.1.7], Gn(X) = Gn(X ∧ Σn+). Let I l be the union of the sets
Gn(IΣn) and J l be the union of the sets Gn(JΣn) for n ≥ 0 . Since SΣ

∗ is just a
product category it is easy to check that I l and J l generate a model category on
SΣ
∗ with the stated structure. �
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Next we lift this model structure to a level S-model structure on symmetric
spectra. Recall from [HSS, 5.3.6] that an S-cofibration is a map of spectra in
(S ⊗M)-cof where M is the class of monomorphisms in SΣ

∗ . A map of symmetric
spectra is a level S-fibration if it has the right lifting property with respect to every
map which is both an S-cofibration and a level equivalence.

Proposition 2.2. The S-cofibrations, level equivalences and level S-fibrations form
a cofibrantly generated model structure on the category of symmetric spectra.

Proof. Here we use the lifting lemma for model categories established in [SS00,
2.3]. We consider the adjoint pair of functors between symmetric sequences and
symmetric spectra with left adjoint S ⊗ − and right adjoint the forgetful functor.
Let SI l = S⊗ I l and SJ l = S⊗J l. To show that these generate a model structure
we need to check that any map in SJ l-cof is a level equivalence. Let f : X → Y be a
map in JΣn . Then (S⊗Gn(X))q = Σq∧Σq−n×ΣnS

q−n∧X which is a wedge of copies

of Sq−n ∧X since Σq is free over Σq−n ×Σn. Since Sq−n ∧− and wedges preserve

monomorphisms and underlying weak equivalences we see that S ⊗ Gn(f) is a
monomorphism and a level weak equivalence. Since pushouts, colimits and retracts
are constructed levelwise, they also preserve maps which are monomorphisms and
level weak equivalences.

Note that by tracing through the definitions one can show that the SI l-injective
maps, or the level S-fibrations which are level equivalences, are level equivariant
acyclic fibrations as in Proposition 1.2. Also note that since SI l ⊆ S⊗M ⊆ SI l-cof,
by [HSS, 5.3.4] we have SI l-cof = (S ⊗M)-cof. �

Since the stable cofibrations in [HSS] are generated by maps of the form S ⊗
Gn(∂∆[k]+ → ∆[k]+), the following holds.

Lemma 2.3. Any stable cofibration in the sense of [HSS] is an S-cofibration.

We are now finally ready to consider the stable S-model structure on symmetric
spectra. As in [HSS, 5.3.6], call a map an S-fibration if it has the right lifting
property with respect to every map which is both an S-cofibration and a stable
equivalence.

Theorem 2.4. The S-cofibrations, stable equivalences and S-fibrations form a cofi-
brantly generated model structure on the category of symmetric spectra.

Proof. We use the criteria for a cofibrantly generated model category from [Hov98,
2.1.19]. Let SI = SI l and let SJ = SJ l∪K whereK is the set defined in [HSS, 3.4.9]
which is built from the stably cofibrant replacements of the maps Fn+1S

1 → FnS
0.

First note that each map in SJ is an S-cofibration. It is easy to see that the maps in
SJ l are in S⊗M ; for the maps in K note that they are stable cofibrations and hence
also S-cofibrations by Lemma 2.3. Thus SJ-cof ⊆ SI-cof and SI-inj ⊆ SJ-inj. Next
note that each map in SJ is a monomorphism and a stable equivalence. In the proof
of [HSS, 5.4.1] it is shown that such maps are preserved under pushouts, colimits
and retracts. Thus the maps in SJ-cof are all stable equivalences. Because of the
level S-model structure, we also know that the SI-injectives are the level acyclic
SJ l-injectives, or the level equivariant acyclic fibrations. So any SI-injective is a
stable equivalence.

Finally we must show that the maps which are SJ-injectives and stable equiv-
alences are SI-injective. First note that each of the standard generating acyclic
stable cofibrations defined in [HSS, 3.4.9] is in SJ . Thus any SJ-injective map is a
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stable fibration. So the stably acyclic SJ-injective maps are stably acyclic fibrations
in the usual model category and hence are level acyclic fibrations. So the stably
acyclic SJ-injective maps are level acyclic SJ-injective maps. Since SJ l is a subset
of SJ , any SJ-injective map is SJ l-injective. So any level acyclic SJ-injective map
is a level acyclic SJ l-injective map. But these are just the SI-injectives, so we are
done. �

Proposition 2.5. The stable S-model structure is a monoidal model category which
satisfies the monoid axiom.

Proof. The monoidal model structure follows, as noted after [HSS, 5.3.8], by [HSS,
5.3.7(2) and (5)] since any S-cofibration is also a level cofibration (monomorphism).
The monoid axiom also follows from [HSS, 5.3.7(5)] since any S-module is level
cofibrant and stably acyclic level cofibrations are preserved under pushouts and
colimits by the proof of [HSS, 5.4.1]. �

It follows from [SS00, 4.1] that the analogous model structure can be formed for
R-modules where R is any associative symmetric ring spectrum. An R-cofibration
is a map of R-modules in (R ⊗M)-cof where M is the class of monomorphisms
in SΣ

∗ . A map of R-modules is a (level) R-fibration if it is a (level) S-fibration as
a map of underlying S-modules. For R a commutative symmetric ring spectrum,
by [SS00, 4.1] one can also define a model structure on the category of associative
R-algebras with weak equivalences and fibrations determined on the underlying
category of R-modules.

Theorem 2.6.

(1) The R-cofibrations, stable equivalences and R-fibrations form a cofibrantly
generated model structure on the category of R-modules.

(2) For R a commutative symmetric ring spectrum, the R-model structure is a
monoidal model category which satisfies the monoid axiom.

(3) For R a commutative symmetric ring spectrum, the category of associative
R-algebras is a cofibrantly generated model category. Every R-cofibration of
associative R-algebras whose source is R-cofibrant as an R-module is also
an R-cofibration of R-modules. In particular, every R-cofibrant associative
R-algebra is also R-cofibrant as an R-module.

This theorem shows that the R-model structure has the same properties as
the standard stable model structure on R-modules. Since every R-cofibration is
a level cofibration and every R-fibration is a stable fibration and hence a level
fibration, [HSS, 5.5.3] we also have the following.

Proposition 2.7. The R-model category of R-modules is proper.

Also, the R-model structure and the usual stable model structure on R-modules
are Quillen equivalent.

Proposition 2.8. The identity functor from the stable model structure to the R-
model structure on R-modules is the left adjoint of a Quillen equivalence.

Proof. The analogue of Lemma 2.3 with S replaced by R shows that this left adjoint
preserves cofibrations. Since the weak equivalences agree in both structures the
Quillen equivalence follows. �

Remark 2.9. Analogues of the model structures here could be carried out for
orthogonal spectra as well. Because orthogonal spectra use topological spaces,
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instead of mimicking the monomorphisms of simplicial sets, one would use analogues
of the generators. The S-cofibrations would be generated by {S ⊗ Gn(Sk−1

+ ∧
(On/H)+) → S ⊗ Gn(Dk

+ ∧ (On/H)+)}. Here one can either let H vary through
all subgroups of On or only vary through the subgroups of Σn.

3. Commutative R-algebras

As with the standard stable model category, before building a model category
on the commutative ring spectra one must consider a “positive” variation. We say
a map is a positive R-cofibration if it is an R-cofibration and it is an isomorphism
in level zero. The positive R-fibrations are then defined as the maps with the right
lifting property with respect to any stably acyclic positive R-cofibrations.

Proposition 3.1. The positive R-cofibrations, stable equivalences and positive R-
fibrations form a cofibrantly generated, proper model structure on the category of
R-modules. If R is a commutative ring spectrum then this is a monoidal model
category which satisfies the monoid axiom.

Proof. Define R+I = R ⊗ I l+, R+J l = R ⊗ J l+, K+
R and R+J = R+J l ∪K+

R as
the subsets of maps with n > 0 in the sets defined above. R+I and R+J form the
generating (acyclic) cofibrations for the positive R-model structure. The arguments
here follow just as in the last section by referring to the positive stable model
category as developed in [MMSS, 14]. In the intermediary level model category
one uses positive level equivalences, i.e. maps which are weak equivalences in all
positive levels. Notice that any R-cofibration which is an isomorphism in level zero
can be built using only the maps in R+I. �
Theorem 3.2. For R any commutative symmetric ring spectrum there is a cofi-
brantly generated model structure on the category of commutative R-algebras with
weak equivalences and fibrations the maps which are underlying stable equivalences
and underlying positive R-fibrations of R-modules. The cofibrations in this model
category are referred to as the R-alg-cofibrations.

To establish this model category we use the lifting property from [SS00, 2.3]
applied to the adjoint pair of functors with right adjoint the forgetful functor from
commutative R-algebras to R-modules. We denote the left adjoint by PR; PR(M) =
∨i≥0M

(i)/Σi where M (i) = M ∧R M ∧R · · · ∧R M , the ith smash power of M

over R, with M (0) = R. We need to verify that the maps in PR(R+J)-cof are
stable equivalences. We only discuss the case where R = S; the general case
follows from [DS95, 3.10] since commutative R-algebras are just the commutative
S-algebras under R.

We first show that the maps in PS(S+J) are stable equivalences by showing that
in the source and target the orbit constructions can be replaced by homotopy orbits
without changing the homotopy type.

Proposition 3.3. If X is positive S-cofibrant, n > 0 and Σ is a subgroup of Σn,
then for any symmetric spectrum Y the map

(EΣ+ ∧Σ X
(n)) ∧ Y → (X(n)/Σ) ∧ Y

is a stable equivalence.

Proof. First note that if X = S ⊗Gi(K ∧ (Σi/H)+) with i > 0 then in level z

[(X(n)/Σ) ∧ Y ]z = Σz+ ∧(H(n)oΣ)×Σz−ni K
(n) ∧ Yz−ni.
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Since Σz is free over the subgroup appearing in the subscript, this is just a wedge
of copies of K(n) ∧ Yz−ni. Similarly, [(EΣ+ ∧Σ X(n)) ∧ Y ]z is the same wedge of
copies of EΣ+∧K(n)∧Yz−ni and the map is induced by the weak equivalence from
EΣ to a point. As in the proofs for [Man, 8.2, 8.10] or [MMSS, 15.5] (compare
also [EKMM, III.5.1]) the statement holds for general positive S-cofibrant X by
induction up the cellular filtration. �

We next show that pushouts of maps in PS(S+J) are stable equivalences and
level cofibrations. Since directed colimits of such maps are again stable equivalences
by the proof of [HSS, 5.4.1], it follows that all maps in PS(S+J)-cof are stable
equivalences. Theorem 3.2 then follows from Propositions 3.3 and 3.4 by [SS00,
2.3].

Proposition 3.4. If f : X → Y is in S+J and Z is a PX-module, then Z →
Z ∧PX PY is a stable equivalence and level cofibration.

Proof. This follows just as in the filtration arguments of [Man, 7.5, 8.6] with only
slight modifications to the preparatory statements, so we do not repeat the full
argument here. The statements in [Man] concern G-equivariant spectra. Here we
only consider G = e, the trivial group. The first modification needs to be made
to [Man, 8.2]. The notation S−x is used there instead of S ⊗Gx(S0 ∧Σx+). All of
the parts of this proposition hold when S−i is replaced by S−i/H = S ⊗ Gi(S0 ∧
(Σi/H)+) where H is any subgroup of Σi. Similarly, instead of (S−x)(n)∧X one can
consider [S⊗Gi(K∧(Σi/H)+)](n); here X is replaced by K(n). This generalization
is necessary because these spectra appear as the source and target of the generating
(acyclic) cofibrations for the positive S-model structure.

A similar modification needs to be made to [Man, 8.8] with S−x replaced by
S−x/H . Then the filtration F ij f is

(S−n)(i) ∧H(i)oΣi Y
i
j = S ⊗Gni(Y ij ∧ (Σni/(H

(i) o Σi))+).

The last modification is that [Man, 8.10] should be replaced by Proposition 3.3
above so that it applies to all positive S-cofibrant spectra.

Finally, the first statement of [Man, 8.6] holds for positive S-cofibrations by using
the modified versions of [Man, 8.2, 8.8] discussed above. (The statements of [Man,
8.7, 8.9] hold without any modifications.) The second statement of [Man, 8.6] holds
for stably acyclic positive S-cofibrations if we use Proposition 3.3 instead of [Man,
8.10] and note that the generating acyclic positive S-cofibrations are maps between
positive S-cofibrant objects. The proposition follows. �

This R-model structure on commutative R-algebras is Quillen equivalent to the
usual one.

Proposition 3.5. The identity functor from the stable model structure [Man, 7.6]
(see also [MMSS, 15.2]) to the R-model structure on commutative R-algebras is the
left adjoint of a Quillen equivalence.

Proof. Since the positive stable generating cofibrations from [MMSS, 15.2] are a
subset of the R-model generating cofibrations, the positive stable cofibrations are
R-alg-cofibrations. Since the weak equivalences agree in both structures, the Quillen
equivalence follows. �
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4. Properties of R-cofibrations

Throughout this section let R be a commutative symmetric ring spectrum. First
we consider the crucial property that the maps underlying R-alg-cofibrations are
R-cofibrations. This is the main reason for developing this whole new system of
model structures.

Proposition 4.1. If f is an R-alg-cofibration of commutative R-algebras then the
underlying map of f on R-modules is a positive R-cofibration (and hence also an
R-cofibration).

Proof. First note that PR(R+I) = PR(R ⊗ I l+) = R ⊗ P(I l+). If we show that
the maps in P(I l+) are monomorphisms, then it follows that the underlying maps
in PR(R+I) are positive R-cofibrations. Also any PR(R+I)-cofibration would be a
positive R-cofibration. The maps in P(I l+) are coproducts of maps of the form

Gni((∂∆[k]+)(i) ∧ (Σni/H
(i))+)→ Gni((∆[k]+)(i) ∧ (Σni/H

(i))+)

with n > 0. Since each of these pieces is a monomorphism the maps in P(I l+)
are also monomorphisms. Thus, underlying any R-alg-cofibration is a positive R-
cofibration. The last comment holds because any positive R-cofibration is also an
R-cofibration. �

Proposition 4.2. If f is a cofibration in the model structure from [MMSS, 15.2] on
commutative R-algebras then it is also an R-alg-cofibration. Thus, the underlying
map of f on R-modules is a positive R-cofibration (and also an R-cofibration).
Moreover, the underlying map of f is not necessarily a positive stable cofibration
(as defined in [MMSS].)

A related statement appeared in [Sch01, 4.3]; it follows from this statement and
Lemma 4.8.

Proof. The first statement follows since the positive stable cofibrations (from [MMSS,
14.2]) are a subset of the positive S-cofibrations. The second statement then fol-
lows from Proposition 4.1. For the third statement, one can show that P(F1S

1) is
not positive stably cofibrant as an underlying S-module by checking the criterion
given in [HSS, 5.2.2]. Specifically, [(F1S

1)(2)/Σ2]2 = (S1 ∧ S1)/Σ2 which is not
Σ2-free. �

Since fibrations of commutative R-algebras are defined to be those maps which
are underlying positive R-fibrations, we can conclude from Proposition 4.1 that
cofibrations and fibrations of commutative R-algebras are underlying positive R-
cofibrations and positive R-fibrations of R-modules. Unfortunately this doesn’t
translate as easily to cofibrant objects because the initial commutative R-algebra
is R whereas the initial R-module is trivial. We do have the following though.

Corollary 4.3. If A is cofibrant as an R-algebra, then A is R-cofibrant as an R-
module. If A is fibrant as an R-algebra, then A is positive R-fibrant as an R-module.

Proof. Since A is R-alg-cofibrant, the map i : R → A is an R-alg-cofibration. By
Proposition 4.1, i is also a positive R-cofibration and an R-cofibration. Since R is
R-cofibrant it follows that A is also. The second statement follows from the fact
that fibrations of commutative R-algebras are defined to be those maps which are
underlying positive R-fibrations. �
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Note that R is not positive R-cofibrant, so we cannot conclude that A is positive
R-cofibrant. Also, not all positive R-fibrations are R-fibrations (since R+J is a
proper subset of RJ), so A is not necessarily R-fibrant. So even if A is cofibrant
and fibrant as an R-algebra, A is not necessarily both cofibrant and fibrant in any
one model category on R-modules. Because of the next proposition though, this
turns out to be enough to still produce morphism spectra with the right homotopy
type.

The necessary properties on the morphism spectra follow from properties of
the monoidal product. We consider the closed symmetric monoidal structure on
R-modules as constructed in [HSS, 2.2.4, 5.4.2]; see also Theorem 2.6 (2) and
Proposition 3.1. Here we show that the action of the usual R-model structure on the
positive R-model structure is compatible with this monoidal structure; see [Hov98,
4.2.18] for a general definition which extends [Qui67, SM7].

Proposition 4.4. If i is a positive R-cofibration and j is an R-cofibration then the
pushout product i� j is a positive R-cofibration which is acyclic if either i or j is.
That is, the positive R-model structure is a Quillen module over the (non-negative)
R-model structure on R-modules.

Proof. Since any positive R-cofibration is also an R-cofibration and the R-model
structure is a monoidal model category by Theorem 2.6 (2) we only need to check
that the pushout product of a positive R-cofibration with an R-cofibration is an
isomorphism in level zero (and hence a positive R-cofibration instead of just an R-
cofibration.) This is easy to check on the generators since they are maps between
free R-modules. �

Using adjunction and lifting properties this compatibility also extends to the
morphism spectra by [Hov98, 4.2.2]. Given maps of R-modules i : A → B and
p : X → Y then as in [HSS, 5.3] define HomR�(i, p) to be the map HomR(B,X)→
HomR(B, Y )×HomR(A,Y ) HomR(A,X).

Corollary 4.5.

(1) If i is a positive R-cofibration and p is a positive R-fibration, then HomR�(i, p)
is an R-fibration which is acyclic if either i or p is.

(2) If i is an R-cofibration and p is a positive R-fibration, then HomR�(i, p) is
a positive R-fibration which is acyclic if either i or p is.

Specifically, this implies the following statement. Since a cofibrant and fibrant
commutative R-algebra is R-cofibrant and positive R-fibrant by Corollary 4.3, this
is the homotopy invariance statement needed in [GS].

Corollary 4.6. If X is R-cofibrant and Y is positive R-fibrant, then HomR(X,Y )
is weakly equivalent to the derived morphism spectrum. In particular, for R = S
it has the same homotopy type as the standard derived morphism spectrum on the
homotopy category of spectra.

Proof. Let Y → Y f be the R-fibrant replacement of Y . Since R-fibrant objects are
also positive R-fibrant, HomR(X,Y ) → HomR(X,Y f ) is a stable equivalence by
Corollary 4.5 (2) and Ken Brown’s Lemma [Hov98, 1.1.12]. Since X is R-cofibrant
and Y f is R-fibrant, this means HomR(X,Y ) has the same homotopy type as the
derived morphism spectrum induced by the monoidal R-model structure on R-
modules; see [Hov98, 4.3.2]. Note, by Corollary 4.5 (2) HomR(X,Y ) is positive
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R-fibrant. So although HomR(X,Y ) is the right homotopy type, its zeroth level
may not be.

To see that this derived morphism spectrum is independent of the model for
R-modules, note that Proposition 2.8 can be generalized to show that the R-model
structure is monoidally equivalent [Hov98, 4.2.16] to the usual stable structure on
symmetric spectra since the identity functor is monoidal. Then [Hov98, 4.3.3] and
the various comparisons of symmetric monoidal categories of spectra in [MMSS,
Sch01, MM02] provide the further comparisons. Since [MMSS, 0.3] shows that the
derived closed symmetric structure on symmetric spectra agrees with the standard
structure on the homotopy category of spectra, the second statement follows. �

We end this section by stating some of the useful properties of the R-model
structure on commutative R-algebras.

Proposition 4.7. The category of commutative R-algebras is proper. It follows
that if f : A→ B is a weak equivalence of commutative R-algebras, then restriction
and extension of scalars induces a Quillen equivalence between the categories of
commutative A-algebras and commutative B-algebras.

We use the following lemma to prove left properness. It is also useful in com-
paring R-alg-cofibrations for various R. The statement follows by the definition of
the R-model category on commutative R-algebras as the subcategory under R in
commutative S-algebras.

Lemma 4.8. Any R-algebra map which is an S-alg-cofibration on the underlying
S-algebras is an R-alg-cofibration.

Proof of Proposition 4.7. Since a fibration of R-algebras is an underlying positive
R-fibration, right properness follows from a generalization of [HSS, 5.5.3] to positive
level fibrations. For left properness consider an R-alg-cofibration i : A→ B and a
stable equivalence j : A→ C. Note that since i is an R-alg-cofibration and a map
of A-algebras it is an A-alg cofibration by Lemma 4.8. Thus B is an A-cofibrant
algebra and hence an A-cofibrant A-module by Corollary 4.3. We want to show
that the pushout of j over i, B = B ∧A A → B ∧A C, is a stable equivalence.
This follows from the A-module analogue of [HSS, 5.3.10] which shows that B∧A−
preserves stable equivalences for B an A-cofibrant A-module.

Restriction of scalars from commutative B-algebras to commutative A-algebras
preserves weak equivalences and fibrations since these are all defined on the under-
lying S-algebras. For C any cofibrant A-algebra, C → B∧AC is a weak equivalence
by left properness. Thus if D is any B-algebra then an A-algebra map C → D is a
weak equivalence if and only if the adjoint B-algebra map B ∧A C → D is a weak
equivalence. The Quillen equivalence follows by definition [Qui67, I.4 Theorem 3];
see also [DS95, 9.7]. �

Since the category of commutative A-algebras is a symmetric monoidal category,
one can consider the compatibility of the monoidal structure with the cofibrations.
Since the monoidal product is the coproduct here though, this is trivial. In partic-
ular, the pushout product of any two maps is the identity on the monoidal product
of the targets. So any model structure on commutative A-algebras is a monoidal
model category since the pushout product of any two maps is an isomorphism. One
useful piece of this structure is the usual property that the coproduct of cofibrant
objects is cofibrant.
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Proposition 4.9. If B and C are cofibrant commutative A-algebras then B ∧A C
is a cofibrant A-algebra as well.
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