Week 2.

Homework: Due Wednesday September 21.
Read p.24-36 of Rudin.
Problems to turn in
Problem 1: Show that every real number between zero and one, inclusive, may be represented by a sequence $s_{1}, s_{2}, s_{3}, \ldots$, where every s_{i} is either zero or one. Hint: You can take the real number represented by $s_{1}, s_{2}, s_{3}, \ldots$ to be the supremum of the set of sums

$$
\left\{\sum_{i=1}^{k} s_{i} 2^{-i}, \quad k=1,2, \ldots\right\}
$$

Is this representation unique?
Problem 2: Use problem 1 to conclude that the real numbers are uncountable.
Do problems $2,3,4$ on page 43 of Rudin.
Additional suggested problem Problem 3 in Rudin shows that there are real numbers that are not algebraic. This proof is not constructive in the sense that it shows that there non-algebraic numbers, but it does not give an example of one. Challenge: Construct a number which is not algebraic.

