Homework due Wednesday December 1.
Read Chapters 5 and 6 of An Introduction to the Theory of Numbers.
Problems to turn in:
Problem 1. Let C be a non-singular cubic equation given by

$$
y^{2}=f(x)=x^{3}+a x+b
$$

Prove that

$$
\frac{d^{2} y}{d x^{2}}=\frac{2 f^{\prime \prime}(x) f(x)-f^{\prime}(x)^{2}}{4 y f(x)}
$$

Using this expression deduce that a point has order dividing three if and only if the point is an inflection point of C. Assuming a and b are real show that the numerator of the above expression has exactly two real roots $c<d$. Show $f(c)<0$ and $f(d)>0$. Deduce that the real points of order dividing three on C form a cyclic group of order 3 .

Problem 2. Let p be a prime number. Let C be the elliptic curve

$$
y^{2}=x^{3}+p x
$$

Determine all the rational points of finite order on C.
Problem 3. For the following elliptic curves determine all the rational points of finite order.
a) $y^{2}=x^{3}-2$,
b) $y^{2}=x^{3}+8$,
c) $y^{2}=x^{3}+4 x$,
d) $y^{2}=x^{3}-4 x$
page 248 section 5.5 problems: 1, 4, 6
page 260 section 5.6 problems: 2, 4, 5, 9, 14
page 278 section 5.7 problems: $3,4,10,11$

