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Abstract. In this paper, we generalize a classical theorem of del Pezzo [D]

and Fujita [F1] and a recent theorem of Casnati [Ca] about low degree sur-

faces containing a canonical curve Ccan. Every canonical curve of genus g is
contained in a surface of degree less than or equal to 2g− 3. We study canoni-

cal curves that are contained in a surface of degree smaller than 2g−3. Fix an

integer κ ≥ −1. Our main theorem is that if g > 3κ+12 and (g, κ) 6= (10,−1),
then the minimal degree surface S containing Ccan has degree d = g+κ if and

only if κ is odd and C is a double cover f : C → B of a curve B of genus κ+3
2

.

In this case, S is the image of X = P(f∗KC) under the linear system |OX(1)|.
Our methods also apply to curves embedded with complete linear systems of

high degree.

1. Introduction

Let C be a smooth, projective, non-hyperelliptic curve of genus g over
the complex numbers C. The canonical linear system |KC | embeds C in Pg−1

as a non-degenerate curve Ccan of degree 2g − 2. The extrinsic geometry of
Ccan closely reflects the intrinsic geometry of C. In this paper, we explore
the implications of the existence of a low degree surface containing Ccan for
the intrinsic geometry of C.

Let p be a point on Ccan. Let S be the surface obtained by taking the
cone over Ccan with vertex at p. Then S has degree 2g − 3. Therefore,
every canonical curve is contained in a surface of degree less than or equal
to 2g−3. Ciliberto and Harris [CH] prove that if g ≥ 23 and C is general in
moduli, then a minimal degree surface X containing Ccan has degree 2g− 3
and X is a cone over Ccan with vertex on Ccan. The purpose of this paper
is to study the geometry of canonical curves that are contained in surfaces
of degree less than 2g − 3.

Let X be an irreducible, non-degenerate variety of degree d and dimen-
sion r in Pn. Then the invariants d, r and n satisfy the inequality d+r−1 ≥ n.
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Varieties for which d + r − 1 − n is small have been classified by Bertini,
Castelnuovo, del Pezzo, Fujita, Ionescu, Livorni among many others (see
[Be], [D], [EH], [F1], [F2], [F3], [Io], [L1], [L2]). For example, a classical
theorem of Bertini and del Pezzo [EH] asserts that varieties that satisfy
d+ r− 1 = n are quadric hypersurfaces, the Veronese surface in P5, rational
normal scrolls and cones over these varieties.

Since Ccan is non-degenerate, any surface containing Ccan is also non-
degenerate and has degree at least g − 2. If Ccan is contained in a surface
S of degree g − 2, then, by the classification of varieties of minimal degree
[EH], S is either a rational normal scroll or the Veronese surface in P5.
Moreover, by the Babbage-Enriques-Petri Theorem ([ACGH, p.124, 131]),
C is either trigonal or isomorphic to a plane quintic curve. In particular, if
g > 6, then C is trigonal.

If the minimal degree surface S containing Ccan has degree g−1, then S is
either a del Pezzo surface (i.e., the anti-canonical image of a quadric surface
in P3 or a blow-up of P2 in less than or equal to 5 possibly infinitely near
points) or a cone over an elliptic normal curve of degree g − 1 in Pg−2 [F1].
If S is a del Pezzo surface, then C is birational to a complete intersection
(2, 4) in P3 or to a plane sextic curve with 10 − g possibly infinitely near
double points. Otherwise, C is bi-elliptic, that is, C admits a two-to-one
map to an elliptic curve. In particular, if g > 10, then C is bi-elliptic.

Casnati [Ca] proves that if the minimal degree surface S containing Ccan
has degree g, then 7 ≤ g ≤ 12. In these cases, S is a conic bundle over P1

whose fibers cut out the unique g1
4 on C. In particular, if g > 12, then Ccan

is not contained in a surface of degree g.
These examples suggest that if the genus is large enough, the existence

of a surface of low degree containing Ccan implies that C is a small degree
cover of a curve of low genus. Our first theorem makes this precise.

Theorem 1.1. Fix κ ≥ −1. Assume that the minimal degree surface S
containing a canonical curve Ccan of genus g has degree d = g + κ < 2g − 3
and that (g, κ) 6= (10,−1).

(1) If κ is even, then g ≤ 3κ+ 12.
(2) If κ is odd, then either g ≤ 3κ+ 12 or C admits a two-to-one map

f : C → B to a curve B of genus κ+3
2 . If g > 3κ+ 12, then S is the

image of the ruled surface X = P(f∗KC) over B under the linear
system |OX(1)|.

(3) Conversely, if C is a double cover of a curve of genus κ+3
2 , then

Ccan is contained in a surface of degree g + κ.

Remark 1.2. When κ = −1, we recover the theorem of del Pezzo [D]
and Fujita [F1] that a curve of g > 10 which lies on a surface of degree g−1
is bi-elliptic.

When κ = 0, we recover Casnati’s bound that if the minimal degree
surface containing Ccan has degree g, then 7 ≤ g ≤ 12. Here the lower



SURFACES OF LOW DEGREE CONTAINING A CANONICAL CURVE 3

bound is trivial since curves of degree g ≤ 6 always lie on a surface of degree
g − 1 or less (see Example 1.7).

Remark 1.3. After I wrote this paper, I became aware that Casnati in
[Ca2], independently and using different techniques, proved the case κ = 1
of Theorem 1.1.

Remark 1.4. Let C be a smooth, sextic plane curve. Then the genus of
C is 10 and Ccan is contained in the three-uple Veronese embedding of P2.
The curve C cannot be bi-elliptic since its gonality is five instead of four.
Therefore, we conclude that there are canonical curves of genus 10 that are
not bi-elliptic and lie on a surface of degree 9. This example explains the
need to exclude the case (g, κ) = (10,−1) in Theorem 1.1.

Remark 1.5. Let C be a curve of type (4, r+2), with r ≥ 2, on P1×P1.
Then C has genus 3r + 3. A general such curve has trivial automorphism
group, hence it cannot be a double cover of a curve of lower genus. Consider
the embedding φ : P1×P1 → P3r+2 given by the linear system |OP1×P1(2, r)|.
Then the image of φ is a surface of degree 4r. Furthermore, φ embeds C as
the canonical curve Ccan. In this case, we have that κ = 4r−(3r+3) = r−3.
Hence g = 3r+ 3 = 3κ+ 12. If C is general, then Ccan cannot be contained
in a surface of degree less than 4r. Otherwise, by Theorem 1.1, C would
be a double cover of a curve of genus less than r/2. We conclude that the
bounds in Theorem 1.1 are sharp.

We will say that a curve C ⊂ Pn is cut out by quadrics, if the homoge-
neous ideal of C is generated by quadratic equations. Our proof of Theorem
1.1 applies more generally to curves C that are embedded by non-special
complete linear systems and are cut out by quadrics. For example, these
assumptions are satisfied when C is embedded by a complete linear system
of degree s ≥ 2g + 2 [ACGH, p. 143]. For simplicity, we will restrict our-
selves to this case. By taking a cone over C with a vertex on C, it is clear
that every curve of degree s is contained in a surface of degree s − 1. Our
next theorem studies the curves that are contained in a surface of strictly
smaller degree.

Theorem 1.6. Fix κ ≥ −1. Let C be a curve of genus g and degree
s > 2g + 1 embedded in Ps−g by a complete linear system. Assume that the
minimal degree surface containing C has degree d = s − g + κ < s − 1 and
that (κ, s− g) 6= (0, 9).

(1) If κ is even, then s− g ≤ 3κ+ 9.
(2) If κ is odd, then either s − g ≤ 3κ + 9 or C admits a two-to-one

map to a curve of genus κ+1
2 .

It is interesting to classify curves C of genus g ≤ 3κ+12 whose canonical
models Ccan are contained in a surface of degree g + κ. The following ex-
amples demonstrate that as the genus increases this classification becomes
more intricate.
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Example 1.7. • Every canonical curve of genus 4 is contained in
a quadric surface. The quadric surface is smooth if C admits two
distinct g1

3’s. Otherwise, the surface is a quadric cone [ACGH].
• A canonical curve of genus 5 is contained in a three-dimensional

linear system of quadric hypersurfaces. If C is trigonal, then these
quadrics cut out a cubic scroll and Ccan is contained in a surface
of degree 3. Otherwise, the minimal degree surface containing Ccan
has degree 4 and can be obtained as a complete intersection of two
of the quadric hypersurfaces containing Ccan [ACGH].
• A general curve C of genus 6 can be realized in P2 as a curve of

degree 6 with four nodes. The blow-up of P2 at the nodes embeds in
P5 as a del Pezzo surface of degree 5 by the anti-canonical map and
contains Ccan [ACGH]. Therefore, every canonical curve of genus
6 is contained in a surface of degree 4 or 5. The curve is contained
in a surface of degree 4 if and only if it is trigonal or isomorphic
to a smooth plane quintic curve [ACGH]. Otherwise, the minimal
degree surface containing Ccan has degree 5.
• A general curve C of genus 7 can be realized in P2 as a curve of

degree 7 with eight nodes. The blow-up of P2 at the nodes of C
embeds into P6 by the linear system of quartic curves vanishing
at the nodes of C. The surface has degree 8 and contains Ccan
[ACGH]. We, therefore, conclude that the minimal degree surface
containing a canonical curve of genus 7 can have degree 5, 6, 7 or
8. The minimal degree surface containing Ccan has degree 5 if and
only if C is trigonal. The minimal degree surface containing Ccan
has degree 6 if and only if C can be realized as a plane sextic or C is
bi-elliptic [ACGH]. If the minimal degree surface containing Ccan
has degree 7, then S is a conic bundle over P1 and C has a unique
g1

4 [Ca]. For the general canonical curve of genus 7, the minimal
degree surface containing Ccan has degree 8.

In the last section, using the classification of surfaces of low degree, we
will make some remarks about curves C such that Ccan is contained in a
surface of degree g + κ for small values of κ.

The organization of this paper is as follows. In the next section, we will
recall some basic facts about ruled surfaces and the ∆-genus that are used
in the proof. In §3, we will prove Theorems 1.1 and 1.6. In the final section,
we will study the geometry of surfaces of degree g+κ containing a canonical
curve for small values of κ.
Acknowledgements: I would like to thank Gianfranco Casnati, Lawrence
Ein and Mihnea Popa for invaluable comments. This paper was inspired
by the papers of Ciliberto and Harris [CH] and Casnati [Ca]. I would also
like to thank the organizers of the AMS Special Session on Computational
Algebraic and Analytic Geometry, Mika Seppälä, Tanush Shaska and Emil
Volcheck, for giving me a chance to present my work at the Joint Meetings.
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2. The background on ruled surfaces and ∆-genus

In this section, we recall some basic facts concerning ruled surfaces and
the ∆-genus. We refer the reader to [B, §III] and [H, V.2] for more details
on ruled surfaces and to [F3], [F4] and [Ho] for more details on the ∆-genus.

Let X be a smooth projective variety of dimension r. Let L be a base-
point-free line bundle on X of degree d whose complete linear system gives
rise to a birational morphism ρL : X → Pn. Recall that the ∆-genus, first
introduced by Fujita (see [F4]), is defined by

∆ = ∆(X,L) = d+ r − h0(X,L).

To prove Theorems 1.1 and 1.6, we will use a rough classification of surfaces
by ∆-genus due to Tony Horowitz.

Recall that a surface S is birationally ruled if it is birational to B × P1

for some curve B. A surface S is geometrically ruled if S admits a morphism
π : S → B to a curve such that the fibers are all isomorphic to P1. A
geometrically ruled surface is isomorphic to the projectivization of a rank
2 vector bundle E over B [H, V.2.2]. A surface S is projectively ruled if S
is the birational image in projective space of a geometrically ruled surface
such that the fibers are mapped to lines.

We will reduce the proofs of Theorems 1.1 and 1.6 to the following
Theorem of Horowitz.

Theorem A of [Ho]. Let X be a surface and let L be a line bundle on X as
above. If (X,L) 6= (P2,OP2(3)) and 3∆(X,L) + 6 < h0(X,L), then ρL(X)
is projectively ruled.

If S is a geometrically ruled surface PE over a curve B, E can be nor-
malized so that H0(B,E) 6= 0, but for any line bundle of negative degree L
on B, H0(B,E ⊗ L) = 0. When E is so normalized, the degree e of E is
an invariant of S and there exists a section C0 of the projective bundle with
C2

0 = e [H, V.2.8]. From now on, we will always assume that E has been
so normalized and C0 is a section with C2

0 = e. We caution the reader that
Hartshorne uses −e instead of e.

Lemma 2.1. Let π : S = PE → B be a geometrically ruled surface over
a curve B of genus h. Let L be a line bundle of degree d on S. Let C be a
curve of genus g on S that defines a bi-section of π. Let V ⊂ H0(S,L) be
a base-point-free linear system that defines a birational map φV of S onto a
projectively ruled surface in Pn.

(1) If n = g − 1 and φV restricted to C is the canonical embedding of
C, then

h =
d− g + 3

2
.
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(2) If n = s− g and V restricted to C is a non-special, complete linear
system on C of degree s, then

h =
d+ g − s+ 1

2
.

Proof. Let C0 be the section on S with C2
0 = e. The Neron-Severi space

of S is generated by the numerical equivalence classes of C0 and a fiber F
of π. By adjunction, the canonical class of S is numerically equivalent to

KS ≡ −2C0 + (2h+ e− 2)F.

By assumption, the image of φV is a geometrically ruled surface of degree
d. Therefore, the degree of L on F is one. If we express the numerical
equivalence class of L ≡ C0 +mF , writing L2 = e+ 2m = d, we see that L
is numerically equivalent to

L ≡ C0 +
d− e

2
F.

On the other hand, since C is a bi-section of π, C is numerically equiv-
alent to C ≡ 2C0 + rF. We can compute r in two different ways. First, the
degree of the curve is s. Hence,

s = L · C = 2e+ (d− e) + r.

We conclude that the numerical equivalence class of C is

C ≡ 2C0 + (s− d− e)F.
In particular, when φV restricts to the canonical linear system on C, C ≡
2C0 + (2g − 2− d− e)F. On the other hand, by the adjunction formula,

deg(KC) = (KS + C) · C.
Hence,

2g − 2 = 2(2h− 2 + s− d).
We conclude that

h =
d+ g − s+ 1

2
.

In particular, when φV restricts to the canonical linear system on C, then

h =
d− g + 3

2
.

�

Let f : C → B be a two-to-one morphism from a smooth, projective
curve C of genus g to a smooth, projective curve B of genus h. Given a line
bundle L of degree d on C, f∗L is a vector bundle of rank two on B. By the
Riemann-Roch Theorem, the vector bundle f∗L has degree d+ 2h− g − 1.
The surface P(f∗L) is a geometrically ruled surface over B.

In this paper, we will be especially interested in the case when L is the
canonical line bundle KC . The vector bundle f∗KC is a rank two bundle on
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B of degree 2h+g−3. In this case, by duality, (f∗KC)∗⊗KB = f∗OC . The
natural inclusion of OB in f∗OC leads to an exact sequence

0→ OB → f∗OC → OB(−D)→ 0,

where D is half of the ramification divisor of f . For simplicity, set M =
OB(D). The norm map splits this sequence leading to the equality f∗OC =
OB ⊕M−1. By duality, we conclude that f∗KC = KB ⊕ (KB ⊗M).

Therefore, the ruled surface X = P(f∗KC) over B has invariant e =
2h− g− 1. The curve C naturally embeds in X. The linear system |OX(1)|
gives rise to the map φ : X → Pg−1. The image of φ is a surface of degree
2h+ g − 3. The map φ restricts to the canonical map on C.

The inclusion KB ↪→ f∗KC gives rise to a section B0 of X over B. The
effective cone of X is generated by the class of B0 and the class of a fiber
[H, V.2.20]. Therefore, when h > 1, OX(1) is ample since it has positive
degree on both generators of the effective cone. The map φ restricts to the
canonical map on B0. Hence, OX(1) is not very ample if B is hyperelliptic.
In fact, if B is hyperelliptic, the image of X under φ is not normal since φ
maps B0 two-to-one onto a rational normal curve of degree 2h− 2. On the
other hand, if g > 2h + 1 and B is not hyperelliptic, then OX(1) is very
ample and φ is an embedding. There are sections B1 of X that are disjoint
from B0 induced by the inclusion KB ⊗ M ↪→ f∗KC . If g > 2h + 1, φ
embeds both B0 and B1 into Pg−1 as curves with disjoint spans. The scroll
over these two curves is smooth. Hence, it follows that φ is an embedding.

3. Minimal degree surfaces containing a canonical curve

In this section, we prove Theorem 1.1 and Theorem 1.6.

Proof of Theorem 1.1. Let κ ≥ −1. In Example 1.7, we saw that
the canonical image of every non-hyperelliptic curve of genus g ≤ 6 is con-
tained in a surface of degree g − 1 or g − 2. We can, therefore, assume that
g > 6. Let S be a surface in Pg−1 of degree d = g + κ containing Ccan.
Then, by the Babbage-Enriques-Petri Theorem, Ccan is cut out by quadrics
unless C is trigonal [ACGH]. If C is trigonal, then Ccan lies on a rational
normal surface scroll of degree g− 2. Since by assumption the degree of the
minimal surface containing Ccan has degree g+ κ > g− 2, we conclude that
Ccan is cut out by quadrics.

Take a quadric Q containing Ccan but not S. By Bezout’s Theorem,
S ∩ Q has degree 2d. Since d < 2g − 3, S cannot be everywhere singular
along Ccan. Let X be the minimal desingularization of S. Let L be the
pull-back of OS(1) to X. Denote the proper transform of C in X again by
C.

We first bound the ∆-genus of the pair (X,L).

∆(X,L) = d+ 2− h0(X,L) ≤ d− g + 2 = κ+ 2.
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If g > 3κ+ 12, then

3∆ + 6 = 3(κ+ 2) + 6 = 3κ+ 12 < g ≤ h0(X,L).

By Horowitz’s Theorem [Ho, Theorem A], if g > 3κ + 12 and (X,L) 6=
(P2,OP2(3)), then S is projectively ruled. Hence π : X → B is a geo-
metrically ruled surface. From now on we assume that g > 3κ + 12 and
(g, κ) 6= (10,−1). We may, therefore, assume that S is projectively ruled.

Since Ccan is cut out by quadrics, Ccan is contained in the intersection
of S by a quadric. Consequently, C is either a bi-section or a section of
π : X → B. If C is a bi-section, then by Lemma 2.1, the genus h of the
curve B is related to g and d by the formula

h =
d− g + 3

2
=
κ+ 3

2
.

Since the genus is an integer, κ must be odd.
If C is in a section class, then B is isomorphic to C. Take a general

irreducible hyperplane section H of S. The curve H has degree d and spans
a projective linear space of dimension g − 2 and the normalization of H is
isomorphic to C. Let D be the hyperplane divisor on the normalization
of H. Clifford’s Theorem says that h0(D) − 1 ≤ deg(D)/2 for any special
divisor on a curve Y of genus g with equality when D = OY or D = KY

or when Y is a hyperelliptic curve and D is mg1
2 for 0 < m < g [ACGH].

Applying Clifford’s Theorem to the normalization of H, we obtain that if
d < 2g − 4, then g − 2 > d/2. Hence, the hyperplane divisor is non-special.
However, by the Riemann-Roch Theorem, h0(D) = d−g+1 < g−3. Hence,
the image H cannot span Pg−2. We thus obtain a contradiction. On the
other hand, if d = 2g − 4, then, using the fact that d = g + κ, we obtain
that κ = g − 4. The inequality g > 3κ+ 12, leads to the inequality −4 > κ,
which is a contradiction. We conclude that C cannot be in a section class
on X. Therefore, it must be in a bi-section class.

By Lemma 2.1, we conclude that C admits a two-to-one map to B, a
curve of genus (κ+ 3)/2. As observed above, since the genus is an integer,
κ must be odd. This concludes the proof of Part (1) and the first statement
in Part (2) of Theorem 1.1.

Conversely, suppose C admits a two-to-one map f : C → B to a curve
of genus h = (κ + 3)/2. Then, as observed in §2, E = f∗KC is a rank two
vector bundle on B of degree g + 2h − 3. The curve C embeds into the
geometrically ruled surface PE over B. The line bundle OPE(1) gives a map
from PE → Pg−1 onto a projectively ruled surface of degree g+2h−3 = g+κ.
Furthermore, the restriction of OPE(1) to C is the canonical linear series on
C. Therefore, if C is a double cover of a curve of genus κ+3

2 , then Ccan is
contained in a surface of degree g+ κ. As an aside, observe that whether B
is hyperelliptic is determined from the singularities of the surface.

The map f : C → B determines the surface S. The curve C is a
bi-section of the projectively ruled surface. If q1, q2 are the two points in
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f−1(p) for p ∈ B, then S contains the line q1q2 spanned by q1 and q2. As
the point p varies over B, the lines spanned by the points in f−1(p) sweep
out the surface S. Hence, S can be recovered from the map f . The image of
X = P(f∗KC) in Pg−1 under the map φ defined by the linear system |OX(1)|
is a projectively ruled surface swept out by the lines spanned by the pairs
of points on Ccan that are mapped to the same point on B by f . Hence, S
is the image of X under φ. This concludes the proof of Theorem 1.1. �

Proof of Theorem 1.6. The proof of Theorem 1.6 requires only mi-
nor modification. Let S be a surface of degree d = s−g+κ in Ps−g containing
C. Let X be the minimal desingularization of S and let L be the pull-back
of OPs−g(1) on X. The ∆-genus of (X,L) can be calculated as follows.

∆ = ∆(X,L) ≤ s− g + κ+ 2− (s− g + 1) = κ+ 1.

Hence, if s− g + 1 > 3κ+ 9, then 3∆ + 6 ≤ 3κ+ 9 < s− g + 1 ≤ h0(X,L).
Therefore, by Horowitz’s Theorem [Ho, Theorem A], S is projectively ruled.

Since, by assumption C is cut out by quadrics, then C is either a section
or a bi-section ofX → B. As in the proof of Theorem 1.1, Clifford’s Theorem
implies that C cannot be a section. If C were a section, then B and C
would be isomorphic. Let H be a general hyperplane section of S. The
normalization Hν of H would also be isomorphic to C. By assumption,
κ < g−1. The inequality s−g−1 ≤ 1

2(s−g+κ) implies that s−g−2 ≤ κ.
Since s ≥ 2g+1, we get the inconsistent set of inequalities g−1 ≤ κ < g−1.
By Clifford’s Theorem, we conclude that OHν (1) is non-special. By the
Riemann-Roch Theorem, h0(OHν (1)) = s − 2g + κ + 1 < s − g. Since H
spans Ps−g−1, this is a contradiction. We, therefore, conclude that C cannot
be a section of X.

Hence, by Lemma 2.1, we conclude that C admits a two-to-one map to
B, a curve of genus

d+ g − s+ 1
2

=
κ+ 1

2
.

Since the genus is an integer, we also conclude that κ must be odd. This
concludes the proof of Theorem 1.6. �

We next make a few remarks about the locus of curves C in the moduli
space of curves Mg such that Ccan lies on a surface of degree g + κ. Recall
the following well-known lemma.

Lemma 3.1. The locus of curves C of genus g ≥ 2 that admit a two-to-
one map to a curve of genus h has codimension g+h−2 in the moduli space
Mg of curves of genus g.

Proof. By the Riemann-Hurwitz Formula, a two-to-one map has 2g −
4h+ 2 branch points. By the Riemann Existence Theorem, if we fix a curve
B of genus h and 2g − 4h + 2 branch points, then there exists a positive
finite number of double covers Ci of genus g that are branched along the
chosen points. Furthermore, a curve of genus g ≥ 2 occurs only finitely



10 IZZET COSKUN

many times in this way. We conclude that the dimension of the locus of
curves of genus g that admit a two-to-one cover of a curve of genus h > 1 is
3h− 3 + 2g− 4h+ 2 = 2g− h− 1. Since the dimension ofMg is 3g− 3, the
codimension of this locus is g+h− 2. When h = 0 or 1, this calculation has
to be modified because curves of genus 0 and 1 have positive dimensional
automorphism groups. A simple calculation shows that the dimension of
the locus of hyperelliptic curves is 2g − 1. Hence, the codimension is g − 2.
Similarly, the dimension of the locus of bi-elliptic curves is 2g − 2. Hence,
the codimension is g − 1. �

Corollary 3.2. Let κ ≥ −1 be an odd integer. Let g > max(10, 3κ +
12). Then the codimension of the locus of curves C in Mg such that the
minimal degree surface in Pg−1 containing Ccan has degree g+κ is g+ κ−1

2 .

Proof. By Part (2) of Theorem 1.1, C has to be a double cover of a
curve of genus κ+3

2 . By Part (3) of Theorem 1.1, every double cover of a curve
of genus κ+3

2 is contained in a surface of degree g+κ. Hence, by Lemma 3.1,
the codimension of the locus of curves in Mg such that the minimal degree
surface containing Ccan has degree g + κ is g + κ+3

2 − 2 = g + κ−1
2 . �

4. Low degree examples

Smooth surfaces with small sectional genus have been classified by Ionescu
[Io], Livorni [L1], [L2] and in positive characteristic by Andreatta and Bal-
lico [AB]. In this section, using the classification of surfaces with small
sectional genus, we give some examples of canonical curves of genus g con-
tained in surfaces of degree g + κ when g ≤ 3κ+ 12.

We first specialize [CH, Lemma 1.3] to our case.

Lemma 4.1. Let −1 ≤ κ ≤ 5. Let S be the minimal degree surface with
degree g + κ < 2g − 3 containing a canonical curve Ccan of genus g. Then
S is birationally ruled.

Proof. First, suppose that g+κ < 2g−4. Then, by Clifford’s Theorem,
OH(1) is non-special on a general hyperplane section H of S. Let h be the
genus of H. Then, by the Riemann-Roch Theorem, g + κ − h ≥ g − 2.
Therefore, by the genus formula,

KS ·H ≤ 2h− 2−H2 = 2h− 2− g − κ ≤ κ− g − 2 ≤ −2.

Since H is ample, no multiple of KS can have a section. By Enriques’
Theorem [B], S is birationally ruled.

If g + κ = 2g − 4, then κ = g − 4. Hence, if −1 ≤ κ ≤ 5, then
3 ≤ g ≤ 9, respectively. In Example 1.7, we saw that every canonical curve
of genus 3, 4, 5, 6 or 7 is contained in a surface of degree less than or equal
to 1, 2, 4, 5, 8, respectively. A general curve of genus 8 can be realized as a
(5, 5) curve on P1 × P1 with eight nodes. The linear system of (3, 3) curves
vanishing on the nodes of C maps the surface to P7 as a surface of degree
10 containing Ccan [ACGH]. Hence, every canonical curve of genus 8 is
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contained in a surface of degree less than or equal to 10. Similarly, a general
curve C of genus 9 can be realized as a plane degree eight curve with 12
nodes. The linear system of quintic curves vanishing at the nodes embeds
the blow-up of P2 at the nodes as a surface of degree 13 in P8 containing
Ccan. Hence, every canonical curve of genus 9 is contained in a surface of
degree at most 13. Therefore, in all these cases the minimal degree surface
containing Ccan has degree strictly less than 2g−4. This concludes the proof
of the Lemma. �

Remark 4.2. When κ ≥ 6, in addition to birationally ruled surfaces,
we would need to allow K3 surfaces [CH].

For the rest of this section, let −1 ≤ κ ≤ 3 and g ≤ 3κ + 12. Suppose
that the minimal degree surface S containing Ccan has degree g+κ < 2g−3.
For simplicity, we will assume that S is smooth. The smoothness assumption
is for convenience and can be removed. If S is a singular surface of degree
d in Pn, then the projection of S from a singular point is either a curve, in
which case S is a cone, or is a surface of degree less than or equal to d− 2
in Pn−1. Successively projecting S from singular points leads to an analysis
of the singular case as well. We leave this analysis to the interested reader.

Let Fr, r ≥ 0, denote the ruled surface P(OP1 ⊕OP1(r)) over P1. Let E
denote the class of the curve with minimal self-intersection. Let F denote
the class of a fiber of the projective bundle.
• κ = 0. Suppose that the minimal degree surface S containing Ccan is
smooth and has degree g. By Clifford’s Theorem, the hyperplane section of
S can have genus at most 2. In fact, by del Pezzo’s classification [L1, The-
orem 0.2], the hyperplane section must have genus 2. By the classification
of surfaces whose hyperplane sections have genus 2 [L1, Table] and [AB,
Table], we conclude that if S is not a scroll, then S must be a blow-up of
Fr with 0 ≤ r ≤ 2 in m ≤ 7 points embedded in P11−m by the linear system
|2E + (r + 3)F −

∑m
i=1Ei|, where Ei denote the classes of the exceptional

divisors. If we take a curve C on S with class 4E + (2r + 5)F −
∑m

i=1 2Ei,
then C is a curve of genus 12 − m that embeds in P11−m as a canonical
curve. In particular, note that the projection from S to P1 defines a g4

1 on
C. This classification agrees with the one given in [Ca].

• κ = 1. Suppose that the minimal degree surface S containing Ccan is
smooth and has degree g + 1. Then, by Clifford’s Theorem, a hyperplane
section of S can have genus at most 3. Since in Example 1.7 we have analyzed
canonical curves of genus g ≤ 7, we may assume that 15 ≥ g ≥ 8. If the
hyperplane section of S has genus 2, then by the classification of surfaces
whose hyperplane sections have genus 2 [L1, Table] and [AB, Table], S
has to be a scroll. In the proof of Theorem 1.1, we have seen that C has
to be a double cover of a curve B of genus 2 and S is the image of the
surface X = P(f∗KC) under the linear system |OX(1)|. In fact, since B is
hyperelliptic, S is not smooth in this case.
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We may assume that hyperplane sections of S have genus 3 and that S
is not a scroll. By the classification of surfaces whose hyperplane sections
have genus 3 [L1, Table] and [AB, Table], there are two possibilities. First,
S may be the blow-up of P2 in 15−g points embedded in Pg−1 by the linear
system |4H −

∑15−g
i=1 Ei|, where H denotes the pull-back of the hyperplane

class of P2 and Ei denote the classes of the exceptional divisors of the blow-
up. In this case C has class 7H − 2

∑15−g
i=1 Ei and embeds in Pg−1 as a

canonical curve of genus g.
Second, S may be a blow-up of Fr with 0 ≤ r ≤ 3 in 15 − g points

embedded in Pg−1 by the linear system |2E+ (r+ 4)F −
∑15−g

i=1 Ei|. Curves
in the class 4E + (2r + 6)F − 2

∑15−g
i=1 Ei are mapped to canonical curves

of genus g under this linear system. Note that both types of curves are
very special in moduli. For example, curves of the first type admit a g2

7 and
curves of the second type admit a g1

4.

Remark 4.3. After I wrote this paper, I became aware that Casnati
in [Ca2], independently and using different techniques, classified canonical
curves of genus g that are contained in surfaces of degree g+1. Unlike here,
Casnati does a very careful analysis of the singular surfaces as well. The
classification remains essentially the same. Assuming that g ≤ 15 and the
surface is not a scroll, the curve is either birational to a plane septic with
15 − g possibly infinitely near double points as in our first case or it lies
in a conic bundle over P1 and hence admits a g1

4 as in our second case (see
Theorem D [Ca2]).

• κ = 2. Suppose that the minimal degree surface S containing Ccan is
smooth and has degree g + 2. A general curve of genus 8 can be realized
as a (5, 5) curve on P1 × P1 with eight nodes. The linear system of (3, 3)
curves vanishing on the nodes of C maps the surface to P7 as a surface of
degree 10 containing Ccan [ACGH]. Hence, every canonical curve of genus
8 is contained in a surface of degree at most 10. We may, therefore, assume
that 18 ≥ g > 8. By Clifford’s Theorem, a hyperplane section of S can
have genus at most 4. Since in this case the surface cannot be a scroll, by
the classification of surfaces whose hyperplane sections have genus at most
4 [L1, Table] and [AB, Table], we conclude that the hyperplane section of
S must have genus 4. The following can be deduced from [L1, Table] and
[AB, Table].

First, S can be the blow-up of Fr, with 0 ≤ r ≤ 4, in 18 − g points
embedded in Pg−1 by the linear system |2E+ (r+ 5)F −

∑18−g
i=1 Ei|. Curves

in the class 4E + (2r + 7)F − 2
∑18−g

i=1 Ei are mapped to canonical curves
of genus g under this linear system. If g > 16, then this is the only other
possibility.

Second, S can be the blow-up of P1 × P1 in 16 − g points embedded in
Pg−1 by the linear system |OP1×P1(3, 3) −

∑16−g
i=1 Ei|. Curves in the class
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OP1×P1(5, 5) − 2
∑16−g

i=1 Ei map to canonical curves of genus g. This is the
only other possibility if g > 10.

Third, if g = 10 (respectively, 9), S may be the two-uple Veronese
embedding of a cubic surface (respectively, of the blow-up of a cubic surface
in a point p) in P3. Under this embedding complete intersections of two cubic
surfaces (respectively, those that are double at p) in P3 map to canonical
curves of genus 10 (respectively, 9).

Note that each of these curves are very special in moduli. The curves of
the first type admit a g1

4. The curves of the second type admit a g1
5. Finally,

curves of the third type are complete intersections of two cubic surfaces in
P3.

• κ = 3. Suppose the minimal degree surface S containing Ccan is smooth
and has degree g + 3. For simplicity, we will assume that 21 ≥ g > 9. By
Clifford’s Theorem a hyperplane section of S has genus at most 5. If the
genus is 3, then S is a scroll over a curve B of genus 3 and C has to be a
double cover of B. This case has been studied in the proof of Theorem 1.1,
so we may assume that S is not a scroll. Then, by the classification in [L1]
and [AB], we conclude that a hyperplane section of S has genus 5. The
possibilities can be read off from these tables.

First, S may be the blow-up of Fr with 0 ≤ r ≤ 5 in 21 − g points,
embedded in Pg−1 by the linear system |2E+ (r+ 6)F −

∑21−g
i=1 Ei|. Curves

in the class 4E + (2r+ 8)F − 2
∑21−g

i=1 Ei are mapped to canonical curves of
genus g under this linear system. If g > 18, then this is the only possibility.

Second, S may be the blow-up of F1 in 18− g points, embedded in Pg−1

under the linear system |3E + 5F −
∑18−g

i=1 Ei|. Curves in the class |5E +
8F − 2

∑18−g
i=1 Ei| map to canonical curves of genus g under this embedding.

This is the only other possibility if g > 13.
Let D be the del Pezzo surface obtained by blowing up P2 in 5 points.

Denote the classes of the exceptional divisors by Ai. Third, S may be
the blow-up of D5 in 13 − g points embedded in Pg−1 by the linear system
|6H−2

∑5
i=1Ai−

∑13−g
i=1 Ei|. Curves in the class 9H−3

∑5
i=1Ai−2

∑13−g
i=1 Ei

map to canonical curves of genus g. These are the only possibilities for g > 9.
Observe that these curves are very special. In the first case, the curves

admit a g1
4. In the second case, the curves admit a g1

5. In the final case, the
curve admits a g2

9 with 5 triple points.

Remark 4.4. In these examples, the assumption that S is smooth rules
out certain singular conic bundles over P1 or an elliptic curve that contain
canonical curves. Most importantly, when κ = 2 and g ≤ 10 or κ = 3 and
g ≤ 13, there are canonical curves that are triple covers of elliptic curves
that lie on singular conic bundles over the elliptic curve. See Remark 4.7 for
more details on these surfaces.

This concludes the classification of canonical curves of genus g that are
contained in a smooth surface of degree g + κ for −2 ≤ κ ≤ 3. This
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classification can be carried out for several more values of κ. However, the
list of possibilities grows rapidly and quickly becomes unwieldy. Since these
examples already illustrate the technique, we conclude the discussion here.
The reader should observe that, just like in Theorem 1.1, if we assume that
the genus is relatively large compared to κ, then the number of possibilities
is small. The following proposition makes the next case after Theorem 1.1
more precise.

Proposition 4.5. Let 0 < κ < g − 3 be an integer. Assume that

3κ+ 12 ≥ g > max(2κ+ 12, 3κ+ 4) and (g, κ) 6= (15, 2), (21, 4).

If the minimal degree surface S containing a canonical curve Ccan of genus
g has degree g + κ and S is not projectively ruled, then S is a conic bundle
over P1 and C admits a g1

4.

Proof. Let X be the minimal desingularization of S and let L be the
pull-back of OPg−1(1) on X. We compute the ∆-invariant of X as follows

∆ = ∆(X,L) = g + κ+ 2− g = κ+ 2.

Hence, by assumption
1
2

(h0(X,L)− 8) ≥ 1
2

(g − 8) > κ+ 2 = ∆.

By [Ho, Theorem B], S is either projectively ruled or ruled by conics.
The statement of Theorem B in [Ho] forgets to omit the two exceptions
(X,L) = (P2,OP2(4)) and (P2,OP2(5)). Plane curves of degree 7 (respec-
tively, 8) are mapped to canonical curves under the linear system |OP2(4)|
(respectively, |OP2(5)|). These canonical curves are contained in the four-
uple, respectively, five-uple Veronese embedding of P2. This explains the
need to exclude the cases (g, κ) = (15, 2) and (21, 4) in the statement of the
proposition.

Since by assumption, S is not projectively ruled, we conclude that S is
a conic bundle over a curve. In order to reach this conclusion, we did not
need to assume that g > 3κ+ 4. By [Ho, Corollary 1.8 (2)], we have that

g ≤ h0(X,L) ≤ 3∆ + 6− 8h1(X,OX) = 3κ+ 12− 8h1(X,OX).

If g > 3κ + 4, then h1(X,OX) = 0 and X and S are rational surfaces. In
particular, S is a conic bundle over P1 and the projection of Ccan to P1 gives
a g1

4 on C. Observe that since the degree of the minimal surface containing
Ccan is greater than g − 2, C cannot be trigonal. This concludes the proof
of the proposition. �

Remark 4.6. More generally, by the same argument, if 3κ + 12 ≥ g >
max(2κ+ 12, 3κ+ 4− 8i) and the minimal degree surface S containing Ccan
has degree g+ κ and is not projectively ruled, then S is a conic bundle over
a curve B of genus at most i. The projection of S to B defines a map of
degree at most 4 from C to B.
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Remark 4.7. The bounds in Proposition 4.5 are sharp. Assume that
κ ≥ 2 is even. Let C be a curve in the linear system |OP1×P1(5, κ2 + 4)|.
Then C is a curve of genus 2κ + 12. The linear system |OP1×P1(3, κ2 + 2)|
embeds P1×P1 as a surface S of degree 3κ+12 and restricts to the canonical
embedding on C. In particular, S does not contain any conics and a general
curve C in the linear system does not admit a g1

4. To get examples when κ is
odd, one can repeat the construction with the surface F1 instead of P1×P1.

Let S′ be a cone over an elliptic normal curve of degree r in Pr. Let
C be the intersection of S′ with a general cubic hypersurface. Then C has
genus 3r + 1. The two-uple Veronese embedding of S′ is a surface S in P3r

of degree 4r. This embedding restricts to the canonical embedding on C.
Therefore, κ = r − 1. In particular, g = 3r + 1 = 3κ+ 4. We conclude that
S is a conic bundle over an elliptic curve B and C is a triple cover of B.
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