
BASIC INTERSECTION THEORY ON THE MODULI SPACE OF
CURVES

Let E be a vector bundle of rank r. To E, we associate the Chern
polynomial

c(E) = 1 + c1(E) + c2(E) + · · ·+ cr(E).

The Chern roots of E are the formal roots of c(E), that is

c(E) =
r∏
i=1

(1 + αi).

The Chern character of E is defined by

ch(E) =
r∑
i=1

eαi .

Since the Chern character is symmetric in the Chern roots, it can be
expressed in terms of the Chern classes. Simple manipulations with
power series show that

ch(E) = r + c1(E) +
c2

1(E)− 2c2(E)

2
+
c3

1(E)− 3c1(E)c2(E) + 3c3(E)

6

+
c4

1(E) + 4c1(E)c3(E)− 4c2
1(E)c2(E) + 2c2

2(E)− 4c4(E)

24
+ · · ·

The Chern character is a homomorphism from the Grothendieck K-
group to cohomology. It is easy to see that it satisfies

ch(E ⊗ F ) = ch(E)ch(F ).

The Todd class is similarly defined as a formal power series in the
Chern roots

Td(E) =
r∏
i=1

αi
1− e−αi

.

Since the Todd class is also symmetric in the Chern roots, it has an
expression in terms of the Chern classes.

Td(E) = 1 +
c1(E)

2
+
c2

1(E) + c2(E)

12
+
c1(E)c2(E)

24

+
−c4

1(E) + 4c2
1(E)c2(E) + c1(E)c3(E) + 3c2

2(E)− c4(E)

720
+ · · ·
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The Todd class of a variety is the Todd class of its tangent bundle
Td(X) = Td(TX). The Todd class is multiplicative for short each
sequences. If

0→ E → F → G→ 0,

then Td(F ) = Td(E)Td(G).

Exercise 0.1. Verify the formula for the Todd class. Using the Euler
sequence, calculate the Todd class of Pn.

Let π : X → Y be a proper morphism. Let E be a vector bundle on
X. Recall that

π!(E) =
∑
i

(−1)iRiπ∗(E).

Theorem 0.2 (Grothendieck-Riemann-Roch). Let π : X → Y be a
proper morphism. Let E be a vector bundle and assume that Y is
smooth. Then

ch(π!(E)) · Td(Y ) = π∗(ch(E) · Td(X)).

As a warm up, we calculate the number of lines on a general cubic
surface in P3. Consider the incidence correspondence

I = {(p, l) | p ∈ l} ⊂ P3 ×G(1, 3).

The incidence correspondence admits two natural projections π1 and
π2 to P3 and G(1, 3), respectively. We would like to calculate the Chern
classes of the bundle π2∗π

∗
1OP3(3). More generally, for n ≥ 0, let

Fn = π2∗π
∗
1OP3(n).

Let us calculate the Chern classes of the bundles Fn.
Let S be the tautological bundle on G(1, 3). The incidence corre-

spondence I = PS is the two-step flag variety. Let U be the tautological
line bundle on I. Then we have the universal sequence

0→ U → π∗2S → Q→ 0.

The relative tangent bundle of I over G(1, 3) is given by TI/G(1,3) =
U∗ ⊗Q. Let c1(U) = −h. Then

c(TI/G(1,3)) = 1 + 2h− σ1.

We conclude that

Td(TI/G(1,3)) = 1 +
2h− σ1

2
+

(2h− σ1)2

12
− (2h− σ1)4

720
.

In the cohomology of the flag variety I, we have the relations

h2 = hσ1 − σ1,1
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. Therefore,

h3 = hσ2 − σ2,1

and h4 = 0. Simplifying the expression for the Todd class, we get

Td(TI/G(1,3)) = 1− σ1

2
− σ1,1

4
+
σ2

12
− σ2,2

72
+ h.

We have that

ch(π∗1(OP3(n)) = 1 + nh+
n2h2

2
+
n3h3

6
.

Simplifying this expression, we get

ch(π∗1(OP3(n)) = 1− n2σ1,1

2
− n3σ2,1

6
+ (n+

n2σ1

2
+
n3σ2

6
)h.

When n ≥ 0, π∗1OP3(n) has no higher cohomology on the fibers of π2.
Therefore,

π2!π
∗
1OP3(n) = π2∗π

∗
1OP3(n).

Hence, by the Grothendieck-Riemann-Roch Theorem, we conclude that

ch(Fn) = π2∗(ch(π∗1(OP3(n)) · Td(TI/G(1,3))).

Multiplying out(
1− n2σ1,1

2
− n3σ2,1

6
+ (n+

n2σ1

2
+
n3σ2

6
)h

)(
1− σ1

2
− σ1,1

4
+
σ2

12
− σ2,2

72
+ h
)

and simplifying and taking the Gysin image, we obtain that the Chern
character of Fn is given by

ch(Fn) = n+1+
n2 + n

2
σ1−

n2 + n

4
σ1,1+

2n3 + 3n2 + n

12
σ2−

n3 + n2

12
σ2,1−

n3 − n
72

σ2,2.

We can now solve for the Chern classes of Fn successively. As ex-
pected, the rank of Fn is n+ 1.

c1(Fn) =
n2 + n

2
σ1.

Exercise 0.3. Calculate the higher Chern classes of Fn. Show that
F1 = S∗ and in that case we recover that c1(S∗) = σ1 and c2(S∗) = σ1,1.
Show that more generally Fn = Symn(S∗). Show that c1(F3) = 6σ1,
c2(F3) = 21σ1,1 + 11σ2, c3(F3) = 43σ2,1 and c4(F3) = 27σ2,2.

We now apply the Grothendieck-Riemann-Roch formula to obtain
relations among classes on the moduli space of curves. First, suppose
that π : X → B is a smooth one parameter family of stable curves of
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genus g. Let γ = c1(ωX/B). The relative tangent bundle is the dual of
the dualizing sheaf. Hence,

Td(ω∗X/B) = 1− γ

2
+
γ2

12
+ · · ·

By the Grothendieck-Riemann-Roch formula,

ch(π!ωX/B) = π∗(1−
γ

2
+
γ2

12
+ · · · )(1 + γ +

γ2

2
+ · · · )

= π∗(1 +
γ

2
+
γ2

12
+ · · · ).

R1π∗(ωX/B) is the trivial bundle. Hence,

ch(π!ωX/B) = ch(Λ)− 1.

Equating the two sides, we see that

c1(Λ) =
κ

12
, c2(Λ) =

κ2

288
.

If the family is not smooth, the calculation has to be slightly altered.
Suppose that π : X → B is a one-parameter family of stable curves.
Resolve any Ak singularity by blowing up ν : Y → X, to obtain a
semi-stable family with smooth total space φ : Y → B. Since the
singularities of X are canonical, ν∗(ωX/B) = ωY/B. Let

δ = δ0 + δ1 + · · ·+ δb g
2
c.

Let Z in Y be the locus of nodes in the fibers of φ. Then φ∗([Z) = δ ·B.
We have to calculate the contribution of the nodes in Y to the relative
dualizing sheaf. The local equations at the node are t = xy. The map
φ∗T ∗B → T ∗Y is very explicitly given by OY (dt)→ OY (dx, dy) sending

dt 7→ xdy + ydx.

The cokernel is the relative cotangent sheaf

ΩY/B =
OY (dx, dy)

< xdy + ydx >
.

The relative dualizing sheaf is the locally free rank one sheaf whose
restriction to Y \Z is isomorphic to the relative cotangent bundle.

Hence, ΩY/B = IZ ⊗ ωY/B. Let η be the class of Z. Applying
Grothendieck-Riemann-Roch to the inclusion i : Z → Y , we get that

ch(i∗OZ) = i∗(ch(OZ) · Td(TZ − i ∗ TY )) = i∗(η).

Using the standard exact sequence

0→ IZ → OY → OZ → 0,
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we get that
ch(IZ) = 1− η.

Combining these results, we have that

ch(Ω) = ch(ω)ch(IZ) = 1 + γ + (
γ2

2
− η) + · · ·

Td(Y/B) = 1− γ

2
+
γ2 + η

12
+ · · ·

Finally, we get that κ = 12λ− δ.
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