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Abstract. A moduli space of sheaves satisfies weak Brill-Noether if the general sheaf in the moduli
space has no cohomology. Göttsche and Hirschowitz prove that on P2 every moduli space of Gieseker
semistable sheaves of rank at least two and Euler characteristic zero satisfies weak Brill-Noether.
In this paper, we give sufficient conditions for weak Brill-Noether to hold on rational surfaces. We
completely characterize Chern characters on Hirzebruch surfaces for which weak Brill-Noether holds.
We also prove that on a del Pezzo surface of degree at least 4 weak Brill-Noether holds if the first
Chern class is nef.
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1. Introduction

Let X be a smooth, complex projective surface and let H be an ample divisor on X. Let
v ∈ Knum(X) be the (numerical) Chern character of a Gieseker semistable sheaf on X such that the
Euler characteristic satisfies χ(v) = 0. Let MX,H(v) denote the moduli space of Gieseker semistable
sheaves on X with Chern character v. We will call v stable if there is a semistable sheaf of character
v.

Definition 1.1. The moduli space MX,H(v) satisfies weak Brill-Noether if there exists a sheaf
E ∈ MX,H(v) such that H i(X,E) = 0 for all i.

By semicontinuity, if E is any sheaf with no cohomology, then the cohomology also vanishes for
the general sheaf in any component of MX,H(v) that contains E. Since the cohomology vanishes
identically, for weak Brill-Noether to hold, we must have χ(v) = 0.
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The weak Brill-Noether property is the key ingredient in constructing effective theta divisors on
the moduli spaces MX,H(v) and plays a central role in describing effective cones of moduli spaces
and strange duality. Assume that MX,H(v) is irreducible. The locus

Θ = {E ∈ MX,H(v)|h1(X,E) 6= 0}

is called the theta locus and is an effective divisor when weak Brill-Noether holds for MX,H(v). In
this paper, we study when Chern characters v satisfy weak Brill-Noether on rational surfaces X.
We completely classify Chern characters v satisfying weak Brill-Noether on Hirzebruch surfaces.
For general rational surfaces, we give sufficient conditions on Chern characters that guarantee that
weak Brill-Noether holds. In particular, we show that if X is a del Pezzo surface of degree at least
4 and ch1(v) is nef, then weak Brill-Noether holds. We now summarize our results in greater detail
and give some examples.

Weak Brill-Noether for rank one sheaves. When the sheaves have rank one, the story is
particularly simple.

Proposition 1.2. Let L be a line bundle on a smooth projective surface X such that n = χ(L) ≥ 0.
Let Z ⊂ X be a general zero-dimensional scheme of length n, and set v = ch(L ⊗ IZ), so that
χ(v) = 0. Then H i(X,L ⊗ IZ) = 0 for all i if and only if H1(X,L) = H2(X,L) = 0. In
particular, weak Brill-Noether holds for MX,H(v) if and only if there exists a line bundle M with
ch1(M) = ch1(v) and H1(X,M) = H2(X,M) = 0.

Proof. Any torsion-free rank one sheaf on a surface is isomorphic to L ⊗ IZ for a line bundle L
and an ideal sheaf IZ of a zero-dimensional scheme. First, suppose H1(X,L) = H2(X,L) = 0 and
h0(X,L) = n. Let X [n] denote the Hilbert scheme of n points on X and let Z ∈ X [n] be a general
subscheme of length n. Consider the restriction sequence

0 → L ⊗ IZ → L → L|Z → 0.

Since Z is general, the map H0(X,L) → H0(X,L|Z) is an isomorphism, and we find L⊗ IZ has no
cohomology.

Conversely, suppose H1(X,L) or H2(X,L) is nonzero. If h0(X,L) > n, then h0(X,L ⊗ IZ) > 0
for every Z ∈ X [n]. Thus we may assume h0(X,L) ≤ n. Then since at least one of H1(X,L) or
H2(X,L) is nonzero and χ(L) = n, we find H2(X,L) 6= 0. But H2(X,L ⊗ IZ) ∼= H2(X,L) for
any Z ∈ X [n]. In particular, weak Brill-Noether holds for MX,H(v) if and only if there exists a line
bundle M with ch1(M) = ch1(v) and H1(X,M) = H2(X,M) = 0. �

Example 1.3. On P2, weak Brill-Noether fails for moduli spaces of rank one sheaves when the
slope is −3 or less. This failure is intimately tied to the fact that the general rank one sheaf is not
locally free. In contrast, Göttsche and Hirschowitz [GHi94] prove that if v has rk(v) ≥ 2 and χ(v)
is arbitrary, then the general sheaf E ∈ MP2,O(1)(v) has at most one nonzero cohomology group.
The signs of the Euler characteristic and the slope determine which cohomology group is nonzero.
In particular, if χ(v) = 0, then for the general stable sheaf, all cohomology groups vanish and
weak Brill-Noether holds. The purpose of this paper is to generalize this theorem to other rational
surfaces.

Our first main result classifies Chern characters on Hirzebruch surfaces that satisfy weak Brill-
Noether. Let H be any ample class on the Hirzebruch surface Fe = P(OP1 ⊕OP1(e)), e ≥ 0. Let v
be a stable Chern character of rank at least 2 on Fe such that χ(v) = 0. Let

ν(v) =
c1(v)
r(v)

=
k

r
E +

l

r
F
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denote the total slope of v, where E is the section of self-intersection −e and F is a fiber. By
Walter’s Theorem [Wal98, Theorem 1], the moduli spaces MFe,H(v) are irreducible and the general
sheaf is locally free. By Serre duality, we may assume that

k

r
≥ −1 and if

k

r
= −1, then

l

r
≥ −1 −

e

2
.

Theorem 1.4. Let v be a stable Chern character that satisfies these inequalities. Then MFe,H(v)
satisfies weak Brill-Noether if and only if

l − ke

r
= ν(v) ∙ E ≥ −1.

As Theorem 1.4 demonstrates, the existence of an effective curve C on X such that

w = ch(OX(C)), χ(w,v) > 0, and ν(v) ∙ H > (KX + C) ∙ H

provides an obstruction to weak Brill-Noether for MX,H(v). By Serre duality and stability,

Ext2(OX(C), E) ∼= Hom(E ,OX(KX + C))∗ = 0.

Since χ(O(C), E) > 0, we have Hom(OX(C), E) 6= 0. Composing with the natural map

OX −→ OX(C),

we see that Hom(OX , E) = H0(X, E) 6= 0 for every E ∈ MX,H(v). We remark that if MX,H(v) is
nonempty, C must also satisfy ν(v) ∙ H ≥ C ∙ H.

In order to prove weak Brill-Noether theorems, we need to ensure that these obstructions vanish.
Let PX,F (v) denote the stack of F -prioritary sheaves on X. For blowups of P2, our sharpest result
is the following.

Theorem 1.5. Let X be a blowup of P2 at k distinct points p1, . . . , pk. Let L be the pullback of the
hyperplane class of P2 and let Ei be the exceptional divisor over pi. Let v ∈ K(X) with r = r(v) > 0,
and write

ν(v) :=
c1(v)
r(v)

= δL − α1E1 − ∙ ∙ ∙ − αkEk,

so that the coefficients δ, αi ∈ Q. Assume that δ ≥ 0 and αi ≥ 0 for all i. Suppose that the line
bundle

bδcL − dα1eE1 − ∙ ∙ ∙ − dαkeEk

has no higher cohomology. If χ(v) = 0, then the stack PX,L−E1(v) is nonempty and the general
E ∈ PX,L−E1(v) has no cohomology.

In particular, when H is an ample divisor on X that satisfies H ∙ (KX + L−E1) < 0 and v is an
H-stable Chern character satisfying the assumptions of Theorem 1.5, then MX,H(v) satisfies weak
Brill-Noether. On del Pezzo surfaces of large degree we obtain sharper results.

Theorem 1.6. Let X be a del Pezzo surface of degree at least 4. Let v ∈ K(X) with χ(v) = 0,
and suppose c1(v) is nef. Then the stack PX,L−E1(v) is nonempty and a general E ∈ PX,L−E1(v)
has no cohomology.

The following conjecture may be thought of as a higher rank analogue of the celebrated Segre-
Harbourne-Gimigliano-Hirschowitz conjecture [Seg60, Harb84, Gim87, Hir89].

Conjecture 1.7. Assume X is a general blowup of P2 and c1(v) is nef. Let F = L − E1. If H is
an ample class such that H ∙ (KX + F ) < 0, then MX,H(v) satisfies weak Brill-Noether.
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We use two techniques to prove weak Brill-Noether Theorems. First, we give a resolution of the
general sheaf on MX,H(v) in terms of a strong exceptional collection satisfying certain cohomology
vanishing properties. This method allows us to prove Theorem 1.4 and show weak Brill-Noether on
arbitrary rational surfaces provided v satisfies certain inequalities. The advantage of this method
is that it gives a convenient resolution of the general sheaf in MX,H(v). As a consequence, it shows
that the moduli space is unirational. The disadvantage is that this method is only applicable when
the surface X admits a strong exceptional collection of the desired form.

Second, we construct an explicit prioritary sheaf with vanishing cohomology as a sum of line
bundles. Walter [Wal98, Proposition 2] proves that on a birationally ruled surface the stack pa-
rameterizing sheaves prioritary with respect to the fiber class is smooth and irreducible. Assuming
that the stable sheaves in MX,H(v) are prioritary, to prove weak Brill-Noether, it suffices to exhibit
one prioritary sheaf with vanishing cohomology. Constructing prioritary sheaves is much easier than
constructing stable sheaves. In particular, under suitable assumptions, one may construct prioritary
sheaves as sums of line bundles. The problem then reduces to the combinatorial problem of finding
a prioritary combination of line bundles with no higher cohomology that has the same rank and first
Chern class as v. We solve this problem explicitly for del Pezzo surfaces of degree at least 4. Both
of these techniques are applicable much more generally. However, to minimize the combinatorial
complexity, we make additional assumptions on the Chern character v when convenient.

The organization of the paper. In §2, we collect basic facts about moduli spaces of sheaves
and the cohomology of line bundles on rational surfaces. In §3, we introduce our first method for
proving weak Brill-Noether and characterize Chern characters on Hirzebruch surfaces that satisfy
weak Brill-Noether. In §4 and §5, we introduce our second method and show that Chern characters
with nef ch1 satisfy weak Brill-Noether on del Pezzo surfaces of degree at least 4.

Acknowledgements. We would like to express our gratitude to Lawrence Ein whose unfailing
support has been invaluable in our careers. We would also like to thank Daniel Levine for making
comments and corrections on an earlier version of this work.

2. Preliminaries

In this section, we recall standard facts concerning Hirzebruch and del Pezzo surfaces and coho-
mology of line bundles on rational surfaces. We refer the reader to [Bea83], [Cos06a], [Cos06b] or
[Hart77] for more detailed expositions.

Hirzebruch surfaces. Let e ≥ 0 be a nonnegative integer. Let Fe denote the Hirzebruch surface
P(OP1 ⊕OP1(e)). When e ≥ 1, let E be the class of the unique section of self intersection E2 = −e
and let F denote the class of a fiber of the projection to P1. The surface F0 is isomorphic to P1×P1.
In that case, let E and F denote the classes of the two rulings. Then

Pic(Fe) ∼= ZE ⊕ ZF with E2 = −e, E ∙ F = 1, F 2 = 0.

By adjunction,
KFe = −2E − (e + 2)F.

Consequently, the Riemann-Roch Theorem implies that

χ(OFe(aE + bF )) = (a + 1)(b + 1) − e
a(a + 1)

2
.

The effective cone of Fe is generated by E and F , consequently

H0(Fe,OFe(aE + bF )) 6= 0 if and only if a, b ≥ 0.

By Serre duality,

H2(Fe,OFe(aE + bF )) 6= 0 if and only if a ≤ −2 and b ≤ −2 − e.
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Hence, to compute the cohomology of all line bundles, it suffices to assume that a ≥ −1. In this
case, since H2 vanishes and we have computed the Euler characteristic, specifying h0 determines
the dimension of all cohomology groups. The following theorem (see [Cos06a], [Hart77, §V.2])
summarizes the answer.

Theorem 2.1. Let OFe(aE +bF ) be a line bundle on the Hirzebruch surface Fe with a ≥ −1. Then:

(1) hi(Fe,OFe(−E + bF )) = 0 for 0 ≤ i ≤ 2 and all b.
(2) h0(Fe,OFe(bF )) = b + 1 if b ≥ −1 and 0 otherwise. In particular, hi(Fe,OFe(−F )) = 0 for

0 ≤ i ≤ 2.
(3) We may assume that a ≥ 1 and b ≥ 0. If b < ae, then

h0(Fe,OFe(aE + bF )) = h0(Fe,OFe((a − 1)E + bF )).

If b ≥ ae, then

h0(Fe,OFe(aE + bF )) = χ(OFe(aE + bF )) = (a + 1)(b + 1) − e
a(a + 1)

2
.

Proof. We have already observed that H i(OFe(−E + bF )) = 0 for i = 0, 2. The case i = 1 follows
from the fact that the Euler characteristic vanishes. This proves (1).

Next, since F is a pullback from the base, we have H i(Fe,OFe(bF )) ∼= H i(P1,OP1(b)). Part (2)
of the theorem follows.

We can therefore assume that a ≥ 1. If b < 0, then hi(Fe,OFe(aE + bF )) = 0 for i = 0, 2 and
h1 is determined by the Euler characteristic. Hence, we may assume that a ≥ 1 and b ≥ 0. If
E ∙ (aE + bF ) = b − ae < 0, then E is in the base locus of the linear system and the map given by
multiplication by a section sE of OFe(E)

H0(Fe,OFe((a − 1)E + bF ))
sE−→ H0(Fe,OFe(aE + bF ))

induces an isomorphism. Repeating this process inductively, we reduce to the case when ae ≤ b.
Consider the exact sequence

0 −→ OFe((a − 1)E + bF ) −→ OFe(aE + bF ) −→ OP1(b − ae) −→ 0.

If b − ae ≥ −1, we have a surjection

H1(Fe,OFe((a − 1)E + bF )) → H1(Fe,OFe(aE + bF )) → 0.

By inductively reducing a to 0, we conclude that h1(Fe,OFe(aE + bF )) = 0. Consequently,
h0(Fe,OFe(aE + bF )) = χ(OFe(aE + bF )). �

Blowups of P2. We next record several basic facts concerning the cohomology of line bundles on
blowups of P2. Let X be the blowup of P2 at k distinct points p1, . . . , pk. Let L denote the pullback
of the hyperplane class on P2 and let Ei denote the exceptional divisor lying over pi. Then

Pic(X) ∼= ZL ⊕
k⊕

i=1

ZEi with L2 = 1, L ∙ Ei = 0, Ei ∙ Ej = −δi,j ,

where δi,j is the Krönecker delta function. Let D = δL−
∑k

i=1 αiEi be an integral class on X. Since
KX = −3L +

∑k
i=1 Ei, by Riemann-Roch

χ(OX(D)) =
(δ + 2)(δ + 1)

2
−

k∑

i=1

αi(αi + 1)
2

.

If D is effective, then δ ≥ 0. Otherwise, a general line with class L would be a moving curve with
L ∙ D < 0. In particular, by Serre duality, H2(X,OX(D)) = 0 if δ ≥ −2.
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Example 2.2 (Del Pezzo surfaces). Del Pezzo surfaces are smooth complex surfaces X with ample
anti-canonical bundle −KX . They consist of P1 × P1 and the blowup of P2 in fewer than 9 points
in general position. Since P1 × P1 is also a Hirzebruch surface, we will concentrate on the surfaces
Dn, the blowup of P2 at 9 − n general points. The effective cone of curves on Dn is spanned by
the (−1)-curves and the nef cone is the dual cone consisting of classes that intersect (−1)-curves
nonnegatively. The classes of (−1)-curves C = aL −

∑9−n
i=1 biEi on Dn can be obtained by solving

the equations

C2 = a2 −
9−n∑

i=1

b2
i , −KDn ∙ C = 3a −

9−n∑

i=1

bi = 1.

For our purposes, it suffices to know that on Dn for n ≥ 3, the (−1)-curves are Ei for 1 ≤ i ≤ 9−n,
L − Ei − Ej for i 6= j and 2L − Ea − Eb − Ec − Ed − Ee, where a, b, c, d, e are 5 distinct indices
(whenever the number of points is large enough for these classes to exist) (see [Cos06b], [Hart77,
§V.4]).

We will need the following cohomology computations.

Lemma 2.3. Let I ⊂ {1, . . . , k} be a possibly empty index set. Then:

(1) We have H i(X,OX(D)) = 0 for all i if D is one the following

−2H +
∑

i∈I

Ei, −H +
∑

i∈I

Ei, −Ej +
∑

i∈I,i 6=j

Ei.

(2) Assume H i(X,OX(D)) = 0 for i > 0. If D ∙ Ej ≥ 0 (respectively, D ∙ L ≥ −2), then
H i(X,OX(D + Ej)) = 0 (respectively, H i(X,OX(D + L)) = 0) for i > 0.

Proof. If an effective class is represented by a smooth rational curve C on a smooth rational surface
X, then we claim that OX(−C) has no cohomology. Since H i(X,OX) = H i(C,OC) = 0 for i ≥ 1,
the natural sequence

0 → OX(−C) → OX → OC → 0
implies that H i(X,OX(−C)) = 0 for all i. Since Ei, H and 2H can be represented by the exceptional
curve, a line and a conic, respectively, the proposition is true when I = ∅. If D is a class such that
H i(X,OX(D)) = 0 for all i and Ej ∙ D = 0, then H i(X,OX(D + Ej)) = 0 for all i. To see this,
consider the exact sequence

0 → OX(D) → OX(D + Ej) → OP1(−1) → 0.

Since OX(D) and OP1(−1) have no cohomology, OX(D+Ej) has no cohomology. Similar sequences
imply the last statement. �

Blowups of Hirzebruch surfaces. Since the blowup of F0 at one point is isomorphic to the
blowup of P2 at 2 points and F1 is isomorphic to the blowup of P2 at one point, we may assume
that e ≥ 2. Let X be the blowup of Fe along k distinct points p1, . . . , pk which are not contained
in the exceptional curve E. Then the Picard group of X is the free abelian group generated by
E,F,E1, . . . , Ek, where E and F are the pullbacks of the two generators from Fe and E1, . . . , Ek

are the exceptional divisors lying over p1, . . . , pk. The same argument as in Lemma 2.3 proves the
following.

Lemma 2.4. Let I ⊂ {1, . . . , k} be a possibly empty index set. Then H i(X,OX(D)) = 0 for all i if
D is one the following

−E + mF +
∑

i∈I

Ei (m ∈ Z), −F +
∑

i∈I

Ei, −Ej +
∑

i∈I,i 6=j

Ei.

Moreover, assume H i(X,OX(D)) = 0 for i > 0 and C is a rational curve with C ∙ D ≥ −C2 − 1.
Then H i(X,OX(D + C)) = 0 for i > 0.
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Moduli spaces of vector bundles. Next, we recall some basic facts concerning moduli spaces
of Gieseker semistable sheaves and prioritary sheaves. We refer the reader to [CH15], [Hui16b],
[HuL10] and [LeP97] for details.

Let (X,H) be a polarized, smooth projective surface. All the sheaves we consider will be pure-
dimensional and coherent. If E is a pure d-dimensional, coherent sheaf, then the Hilbert polynomial
has the form

PE(m) = χ(E(mH)) = ad
md

d!
+ l.o.t.

The reduced Hilbert polynomial of E is defined by pE = PE/ad. A sheaf E is Gieseker semistable if
for every proper subsheaf F ( E , we have pF ≤ pE , where polynomials are compared for sufficiently
large m. The sheaf is called Gieseker stable if for every proper subsheaf the inequality is strict.
By theorems of Gieseker, Maruyama and Simpson, there exist projective moduli spaces MX,H(v)
parameterizing S-equivalence classes of Gieseker semistable sheaves on X with Chern character v
(see [HuL10] or [LeP97]).

It is often hard to verify the stability of a sheaf. The following notion provides a more flexible
alternative.

Definition 2.5. Let F be a line bundle on X. A torsion-free coherent sheaf E is F -prioritary if
Ext2(E , E ⊗ F−1) = 0.

We denote the stack of F -prioritary sheaves on X with Chern character v by PX,F (v). The
stack PX,F (v) is an open substack of the stack of coherent sheaves. In this paper, we will consider
F -prioritary sheaves on (blowups of) Fe and blowups of P2, where F is the fiber class on Fe and
the class L − E1 on a blowup of P2. The class F endows these surfaces with the structure of a
birationally ruled surface. The following theorem of Walter will be crucial to our arguments.

Theorem 2.6 ([Wal98, Proposition 2]). Let X be a birationally ruled surface, let F be the fiber class
on X and let v be a fixed Chern character of rank at least 2. Then the stack PX,F (v) of F -prioritary
sheaves is smooth and irreducible.

In particular, if H is an ample divisor on a birationally ruled surface X such that H ∙(KX +F ) < 0
and v is a stable Chern character of rank at least 2, then the moduli space MX,H(v) is irreducible and
normal [Wal98, Theorem 1]. The inequality H ∙ (KX + F ) < 0 guarantees that Gieseker semistable
sheaves are F -prioritary. When Walter’s Theorem applies, we can construct a prioritary sheaf with
no cohomology to deduce that general Gieseker semistable sheaves with the same invariants have no
cohomology. The advantage is that prioritary sheaves are much easier to construct than semistable
sheaves.

In our computations, we will use the following consequence of Riemann-Roch repeatedly.

Lemma 2.7. Let E be a sheaf of rank r on a surface X such that χ(E) = 0 and let M be a line
bundle. Then

χ(E ⊗ M) = ch1(E) ∙ ch1(M) + r(χ(M) − χ(OX)).

Proof. By the Hirzebruch-Riemann-Roch Theorem

χ(E ⊗ M) =
∫

X
ch(E ⊗ M) td(X) =

∫

X
ch(E) ch(M) td(X).

The formula follows immediately by expanding this expression. �

3. Strong exceptional collections and resolutions

In this section, we introduce our first method for proving weak Brill-Noether theorems. This
method provides a resolution of the general sheaf of the moduli space in terms of a strong excep-
tional collection that satisfies certain cohomological properties. The method gives a unirational
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parameterization of (a component of) the moduli space. The disadvantage is that it is only ap-
plicable when a suitable strong exceptional collection exists. We begin by recalling some standard
terminology.

Definition 3.1. A sheaf A is exceptional if Hom(A,A) = C and Exti(A,A) = 0 for i 6= 0. An
ordered collection (A1, . . . , Am) of exceptional sheaves on a projective variety X is an exceptional
collection if

Exti(At, As) = 0 for 1 ≤ s < t ≤ m and all i.

The exceptional collection is strong if in addition

Exti(As, At) = 0 for 1 ≤ s < t ≤ m and all i > 0.

Example 3.2. On the Hirzebruch surface Fe, the collection of line bundles

OFe(−E − (e + 1)F ), OFe(−E − eF ), OFe(−F ), OFe

is a strong exceptional collection. If 1 ≤ s < t ≤ 4,

Exti(At, As) ∼= H i(Fe,−F ) or H i(Fe,−E + bF ) for some b.

Since these cohomology groups vanish by Theorem 2.1, we conclude that the collection is exceptional.
Similarly,

Exti(As, At) ∼= H i(Fe, F ) or H i(Fe, E + bF ) for some b ≥ e − 1.

Since these cohomology groups vanish for i > 0 by Theorem 2.1, we conclude that the collection is
a strong exceptional collection.

Example 3.3. Let Γ = {p1, . . . , pk} be a set of k distinct points on P2 and let X be the blowup
of P2 along Γ. Let Ei denote the exceptional divisor lying over pi and let L be the pullback of the
hyperplane class from P2. Then

OX(−2L), OX(−L), OX(−E1), OX(−E2), . . . OX(−Ek), OX

is a strong exceptional collection on X. This can be checked as follows (see also Bondal’s Theorem
[Bon89], [KO95]). Let I ⊂ {1, . . . , k} be an index set. By Lemma 2.3, Hj(X,OX(D)) = 0 for all j
and D of the form

−2L +
∑

i∈I

Ei, −L +
∑

i∈I

Ei, −Ei, or El − Ei, l 6= i.

Since for 1 ≤ s < t ≤ m, each Exti(At, As) is isomorphic to one of these cohomology groups, we
conclude that the collection is exceptional. Similarly, Hj(X,OX(D)) = 0 for j > 0 and D of the
form

2L, 2L − Ei, L, L − Ei, El − Ei or El.

Since the groups Exti(As, At) for 1 ≤ s < t ≤ m are isomorphic to one of these groups, we conclude
that the collection is a strong exceptional collection.

Notation 1. Throughout this section, let X be a smooth projective surface and let
(A1, . . . , Am,OX) be a strong exceptional collection on X. Suppose that a sheaf E has a resolution
of the form

(1) 0 −→
j⊕

i=1

A⊕ai
i

φ
−→

m⊕

i=j+1

A⊕ai
i −→ E −→ 0.

Notice that OX is the last member of the strong exceptional collection and does not occur in the
resolution of E .
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Lemma 3.4. Let E be a sheaf with a resolution given by Sequence (1). Then H i(X, E) = 0 for all
i. The exponents ai are determined by the following relations:

as = −χ(E , As) −
s−1∑

i=1

ai hom(Ai, As) for 1 ≤ s ≤ j and

at = χ(At, E) −
m∑

i=t+1

ai hom(At, Ai) for j + 1 ≤ t ≤ m.

Proof. Since (A1, . . . , Am,OX) is a strong exceptional collection, Exti(OX , As) = 0 for all 1 ≤ s ≤ m
and all i. Applying Ext(OX ,−) to the Sequence (1), we conclude that

Exti(OX , E) = H i(X, E) = 0.

To compute the exponents as with 1 ≤ s ≤ j, we apply Ext(−, As) to the same sequence. Since
Extk(Ai, As) = 0 for all k if i > s and Extk(Ai, As) = 0 for k > 0, we obtain the relation

χ(E , As) +
s∑

i=1

ai hom(Ai, As) = 0.

The desired formula follows from the fact that hom(As, As) = 1. Similarly, to compute the exponents
at with j < t < m, we apply Ext(At,−) to the sequence. We deduce that

χ(At, E) = at +
m∑

i=t+1

ai hom(At, Ai).

This concludes the proof of the lemma. �

Lemma 3.5. Let E be a locally free sheaf with a resolution given by Sequence (1) and let F be a
line bundle on X. Assume that

(1) Ext1(Ai, As ⊗ F−1) = 0 for 1 ≤ i ≤ j and j < s ≤ m, and
(2) Ext2(Ai, As ⊗ F−1) = 0 for j < i, s ≤ m.

Then E is F -prioritary.

Proof. We need to check that Ext2(E , E ⊗ F−1) = 0. By applying Ext(E ,−) to the sequence

0 −→
j⊕

i=1

A⊕ai
i ⊗ F−1 −→

m⊕

i=j+1

A⊕ai
i ⊗ F−1 −→ E ⊗ F−1 −→ 0,

it suffices to check Ext2(E , As ⊗ F−1) = 0 for s > j. We now apply Ext(−, As ⊗ F−1) to Sequence
(1) to obtain

⊕

1≤i≤j

Ext1(Ai, As ⊗ F−1)⊕ai −→ Ext2(E , As ⊗ F−1) −→
⊕

j<i≤m

Ext2(Ai, As ⊗ F−1)⊕ai .

Since the terms on the right and left are zero by assumption, we conclude that E is prioritary with
respect to F . �

Proposition 3.6. Let E be a locally free sheaf with a resolution given by Sequence (1). Assume that
E is F -prioritary and has Chern character v. Set

U =
j⊕

i=1

A⊕ai
i and V =

m⊕

i=j+1

A⊕ai
i .
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Then the open set S ⊂ Hom(U, V ) parameterizing locally free F -prioritary sheaves is a complete
family of F -prioritary sheaves. If the stack PX,F (v) is irreducible, then the general sheaf in PX,F (v)
has no cohomology.

Proof. To show that the family is complete, we need to show that the Kodaira-Spencer map is
surjective. The Kodaira-Spencer map

κ : TφS = Hom(U, V ) → Ext1(E , E)

factors as the composition of the two maps [HuL10], [LeP97]

Hom(U, V )
μ

−→ Hom(U, E)
ν

−→ Ext1(E , E),

where μ and ν are the morphisms that appear in the natural exact sequences obtained by applying
Ext(U,−) and Ext(−, E), respectively:

Hom(U, V )
μ

−→ Hom(U,E) −→ Ext1(U,U), and Hom(U, E)
ν

−→ Ext1(E , E) −→ Ext1(V, E).

Since (A1, . . . , Am,OX) is a strong exceptional collection, we have that

Ext1(U,U) = 0, Ext1(V, V ) = 0 and Ext2(V,U) = 0

We conclude that μ is surjective. Applying Ext(V,−) to Sequence (1), we also conclude that

Ext1(V, E) = 0

and the map ν is surjective. Therefore, the Kodaira-Spenser map is surjective. Since being F -
prioritary is an open condition, we conclude that we have a complete family of F -prioritary sheaves.
If PX,F (v) is irreducible, then prioritary sheaves having a resolution of the form (1) give a Zariski-
dense open subset of PX,F (v). By Lemma 3.4, these sheaves have no cohomology. This concludes
the proof of the lemma. �

In view of Proposition 3.6, it is useful to know when E given by a resolution of the form (1) is
locally free. We recall a standard Bertini-type theorem for the reader’s convenience (see [Hui16b,
Proposition 2.6]).

Lemma 3.7. Assume that Hom(As, At) is globally generated for 1 ≤ s ≤ j and j < t ≤ m and that
rk(E) ≥ 2. Then a general sheaf E given by a resolution of the form (1) is locally free.

3.1. Weak Brill-Noether for Hirzebruch surfaces. As an application of our discussion, we
determine when weak Brill-Noether holds for Hirzebruch surfaces. Let v be a Chern character of
rank r(v) ≥ 2 and Euler characteristic χ(v) = 0 on a Hirzebruch surface Fe. Let H be an ample
divisor on Fe. Since Fe and H will be fixed in this subsection, we denote MFe,H(v) by M(v).
By Walter’s Theorem 2.6, if the moduli space M(v) is nonempty, then it is irreducible and the
general sheaf is locally free. In particular, Serre duality gives a birational map between M(v) and
M(vD), where vD is the Serre dual Chern character. Weak Brill-Noether for M(v) and M(vD) are
equivalent problems.

We write

ν(v) =
c1(v)
r(v)

=
k

r
E +

l

r
F

for the “total slope” of v, so μH(v) = ν(v) ∙ H. Since

KFe = −2E − (2 + e)F,

we may replace v by vD if necessary to assume
k

r
≥ −1.

Furthermore, if k
r = −1 we may additionally assume l

r ≥ −1 − e
2 . The Bogomolov inequality gives

a further restriction on ν(v).
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Lemma 3.8. With v as above, if M(v) is nonempty, then l
r ≥ −1 + ke

2r .

Proof. There is nothing to prove in the case k
r = −1, since then we are already assuming l

r ≥ −1− e
2 .

Assume k
r > −1 and l

r < −1 + ke
2r . We show M(v) is empty. Let

P (ν) = χ(OFe) +
1
2
(ν2 − ν ∙ KFe),

so that the Riemann-Roch formula takes the form

χ(v) = r(P (ν(v)) − Δ(v)).

Then since χ(v) = 0, we have

Δ(v) = P (ν(v)) =

(
k

r
+ 1

)(
l

r
+ 1

)

−
1
2
e

(
k

r
+ 1

)(
k

r

)

=

(
k

r
+ 1

)(
l

r
+ 1 −

ek

2r

)

< 0.

Thus, by the Bogomolov inequality, M(v) is empty. �

Our assumptions on v now give some simple H2-vanishing results for semistable sheaves.

Lemma 3.9. With v as above, if E is an H-semistable sheaf of character v, then

H2(Fe, E) = H2(Fe, E(−E)) = 0.

Proof. Since k
r ≥ −1, Lemma 3.8 in particular implies l

r ≥ −1 − e
2 . In fact, we prove the stronger

result that if v ∈ K(Fe) is any character such that k
r ≥ −2, l

r ≥ −2 − e, and at least one of the
inequalities is strict, then any H-semistable sheaf E of character v has H2(Fe, E) = 0.

We use Serre duality to write

H2(Fe, E) = Ext2(OFe , E) = Hom(E ,KFe)
∗.

Since E and KFe are both H-semistable, the vanishing will follow if μH(E) > μH(KFe), which is
equivalent to H ∙ (ν(v) − KFe) > 0. The nef cone of Fe is spanned by F and E + eF . We compute

F ∙ (ν(v) − KFe) =
k

r
+ 2

(E + eF ) ∙ (ν(v) − KFe) =
l

r
+ 2 + e.

By our assumption on v, both of these intersection numbers are nonnegative, and at least one of
them is positive. Since H is ample, it is a positive combination of the extremal nef classes, and it
follows that H ∙ (ν(v) − KFe) > 0. �

Next we describe characters v such that weak Brill-Noether fails for M(v) if the moduli space is
nonempty. It will turn out that these are the only characters where weak Brill-Noether fails.

Proposition 3.10. Let v be a character as above, and suppose E is an H-semistable sheaf of
character v. If χ(E(−E)) > 0, then H0(Fe, E) 6= 0. More explicitly, if

l − ke

r
= ν(v) ∙ E < −1,

then H0(Fe, E) 6= 0.

Proof. The restriction sequence

0 → E(−E) → E → E|E → 0

shows that if H0(Fe, E(−E)) 6= 0, then H0(Fe, E) 6= 0. By Lemma 3.9, we have H2(Fe, E(−E)) = 0.
Therefore, H0(Fe, E(−E)) 6= 0 since χ(E(−E)) > 0. The second statement follows immediately
from Riemann-Roch. �
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Conversely, we have the main result of this section.

Theorem 3.11. Let v be a character as above, and suppose E is a general H-semistable sheaf of
character v. If χ(E(−E)) ≤ 0, then E has no cohomology.

Moreover, unless E is a direct sum of copies of OP1×P1(−1,−1), E admits a resolution of the form

0 → OFe(−E − (e + 1)F )a → OFe(−E − eF )b ⊕OFe(−F )c → E → 0

for some nonnegative numbers a, b, c.

Proof. We may assume E is not a direct sum of copies of OP1×P1(−1,−1), since there is nothing to
prove in that case. By Rudakov’s classification, E is a direct sum of copies of OP1×P1 if and only if
e = 0 and k = l = −r, so we will assume these equalities do not all hold.

By Example 3.2, the collection

A1 = OFe(−E − (e + 1)F ), A2 = OFe(−E − eF ), A3 = OFe(−F ), OFe

is a strong exceptional collection. Let E be the cokernel of a general map

0 → OFe(−E − (e + 1)F )a φ
−→ OFe(−E − eF )b ⊕OX(−F )c → E → 0.

Step 1: Nonnegativity of the exponents. First, we determine the exponents a, b, c that give the
correct Chern class for E and we verify that they are nonnegative.

By Lemma 3.4, c = χ(E(F )). By Lemma 2.7, we get

c = χ(E(F )) = c1(E) ∙ F + r = k + r ≥ 0

since k
r ≥ −1. Hence, c ≥ 0.

Next, applying χ(OX(E),−), we get

b = −χ(OX(E), E) = −χ(E(−E)).

Our assumption χ(E(−E)) ≤ 0 yields b ≥ 0.
The nonnegativity of the exponent a is the most challenging. By Lemmas 2.7 and 3.4,

a = −χ(E(−E − F )) = l − ke + k + r.

By assumption,

l − ke + r ≥ 0 and l −
ke

2
+ r ≥ 0.

Hence, if either k ≥ 0, or k < 0 and e ≥ 2, then a ≥ 0.
It remains to consider the cases when k < 0 and e = 0 or 1. Suppose a < 0 to get a contradiction.

Since we are assuming k ≥ −r, we must have l < 0. We claim that

Ext2(O(E + F ), E) = Hom(E ,O(−E − (e + 1)F ))∗ = 0

by stability. To see this compare the H = E + αF slopes (with α > e)

μH(E) =
k

r
α +

l

r
−

ke

r
≥

k

r
α +

l

r
−

ke

2r
≥ −α − 1 = μH(O(−E − (e + 1)F )).

The first inequality is strict unless e = 0. If e = 0, then the second inequality is strict unless
k = l = −r. Since we are assuming E is not a direct sum of copies of OP1×P1(−1,−1), we conclude
that the inequality is always strict, and the vanishing Ext2(O(E + F ), E) = 0 holds. Then since
a is negative, we deduce Hom(O(E + F ), E) 6= 0. This contradicts the H-semistability of E , since
μH(O(E + F )) > 0 > μH(E). Therefore a ≥ 0 in every case.
Step 2: A general sheaf with the specified resolution is locally free of class v. Since

Hom(OFe(−E − (e + 1)F ),OFe(−E − eF )) ∼= OFe(F ) and

Hom(OFe(−E − (e + 1)F ),OFe(−F )) ∼= OFe(E + eF )
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are globally generated, by Lemma 3.7, the cokernel of a general map φ is locally free.
Step 3: Any locally free sheaf E with the specified resolution is prioritary. By Theorem 2.1,

Ext1(A1, A2 ⊗OFe(−F )) = H1(Fe,OFe) = 0,

Ext1(A1, A3 ⊗OFe(−F )) = H1(Fe,OFe(E + (e − 1)F )) = 0

and
Ext2(A2, A2 ⊗OFe(−F )) = Ext2(A3, A3 ⊗OFe(−F )) = H2(Fe,OFe(−F )) = 0,

Ext2(A2, A3 ⊗OFe(−F )) = H2(Fe,OFe(E + (e − 2)F )) = 0.

By Lemma 3.5, we conclude that E is F -prioritary.
Step 4: Conclusion of the proof. By Proposition 3.6, the open subset S ⊂ Hom(Aa

1, A
b
2 ⊕ Ac

3)
parameterizing locally free quotients parameterizes a complete family of prioritary sheaves. Any
sheaf parameterized by S has no cohomology by Lemma 3.4. Since the stack PFe,F (v) of prioritary
sheaves of character v is irreducible and M(v) is a dense open substack of PFe,F (v), we conclude
that weak Brill-Noether holds for M(v). Furthermore, the general sheaf in M(v) has the required
resolution. In particular, note that the moduli space is unirational since it is dominated by an open
set in Hom(Aa

1, A
b
2 ⊕ Ac

3). �

3.2. Applications to blowups of P2. In this subsection, let Γ be a set of k distinct points p1, . . . , pk

on P2 and let X denote the blowup of P2 along Γ. Let L denote the pullback of the hyperplane class
and let Ei denote the exceptional divisor lying over pi. Our methods have the following consequence.

Theorem 3.12. Let v be a Chern character on X such that

r(v) ≥ 2, χ(v) = 0, ν(v) = δL −
k∑

i=1

αiEi, where δ, αi ≥ 0 and δ −
k∑

i=1

αi ≥ −1.

Then the stack PX,L−E1(v) is nonempty, and a general sheaf parameterized by PX,L−E1(v) has no
cohomology.

If δ − 2
∑k

i=1 αi + 2 ≥ 0, then the general sheaf E in PX,L−E1(v) has a resolution of the form

(2) 0 −→ OX(−2L)a φ
−→ OX(−L)b ⊕

k⊕

i=1

O(−Ei)
ci −→ E −→ 0,

Otherwise, E has a resolution of the form

(3) 0 −→ OX(−2L)a ⊕OX(−L)b φ
−→

k⊕

i=1

O(−Ei)
ci −→ E −→ 0.

The exponents are given by

a = r(v)(δ −
k∑

i=1

αi + 1), ci = r(v)αi, b =

∣
∣
∣
∣
∣
r(v) + a −

k∑

i=1

ci

∣
∣
∣
∣
∣
.

Proof. The linear system |L−E1| defines a map from X to P1 giving X the structure of a birationally
ruled surface. By [Wal98, Proposition 2], the stack of prioritary sheaves PX,L−E1(v) is smooth and
irreducible. By Example 3.3,

A1 = O(−2L), A2 = O(−L), A3 = O(−E1), . . . , Ak+2 = O(−Ek), O

is a strong exceptional collection on X. Lemma 3.4 computes the exponents of a sheaf with Chern
character v with the given resolutions (2) or (3). Our assumptions on v imply that these exponents
are positive; the requirement on the sign of δ − 2

∑k
i=1 αi + 2 which is used to determine the form

of the resolution ensures that the exponent b is positive. Lemma 3.4 also implies that sheaves with
these resolutions have no cohomology.
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Since

Hom(OX(−2L),OX(−L)) ∼= OX(L), Hom(OX(−2L),OX(−El)) ∼= OX(2L − Ei)

and
Hom(OX(−L),OX(−Ei)) = OX(L − Ei)

are globally generated and the rank of v is at least 2, by Lemma 3.7, the cokernel E of a general
map φ is locally free in both cases.

By Lemma 2.3, H1(X,OX(D)) = 0 for D a divisor of the form

E1, L, L + E1 − Ei, ∅, E1 − Ei.

Hence,
Ext1(A1, Al ⊗OX(−L + E1)) = 0 for 2 ≤ l ≤ k + 2

and
Ext1(A2, Al ⊗OX(−L + E1)) = 0 for 3 ≤ l ≤ k + 2.

Similarly, H2(X,OX(D)) = 0 when D is an integral of the form dL −
∑

aiEi with d ≥ −2. Hence,

Ext2(Ai, Al ⊗OX(−L + Ei)) = 0 for 2 ≤ i, l ≤ k + 2.

By Lemma 3.5, all locally-free sheaves with resolutions given by (2) or (3) are prioritary with respect
to O(L−E1). We conclude that the stack of prioritary sheaves PX,L−E1(v) is nonempty. Finally, by
Lemma 3.6, this is a complete family of prioritary sheaves. Since the stack PX,L−E1(v) is irreducible,
the general prioritary sheaf with Chern character v has no cohomology and has a resolution of the
form (2) or (3) depending on the sign of the exponent of OX(−L). �

Corollary 3.13. Let H be an ample divisor on X such that H ∙ (−2L +
∑k

i=2 Ei) < 0. Let v be
a stable Chern character on X satisfying the hypotheses of Theorem 3.12. Then the moduli space
MX,H(v) is unirational and satisfies weak Brill-Noether.

Proof. By Walter [Wal98], an H-semistable sheaf is prioritary with respect to L−E1. Consequently,
MX,H(v) is an open substack of PX,L−E1(v). The corollary follows from Theorem 3.12. �

Remark 3.14. Let X be the blowup of P2 along k collinear points. Let E be a coherent sheaf with
Chern character v with

μ(v) = δL −
k∑

i=1

αiEi, δ −
k∑

i=1

αi < −1.

Assume E is semistable with respect to an ample divisor H such that

μ(E) ∙ H > −2L ∙ H.

Then we claim that the cohomology of E does not vanish and MX,H(v) does not satisfy weak
Brill-Noether. By stability,

Ext2(O(L −
k∑

i=1

Ei), E)) = Hom(E ,O(−2L))∗ = 0.

By Lemma 2.7,

χ(O(L −
k∑

i=1

Ei), E) = rk(E)(−δ +
k∑

i=1

αi − 1) > 0.

We conclude that

Hom(O(L −
k∑

i=1

Ei), E) 6= 0.
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However, since the k points are collinear, composing the natural map Hom(O,O(L−
∑k

i=1 Ei)) with
a nonzero morphism to E , we see that H0(X, E) 6= 0. Hence, without further assumptions on the
positions of the points, Theorem 3.12 is sharp. However, if we assume that the points are general,
we can use different strong exceptional collections to extend the range where weak Brill-Noether
holds.

3.3. Applications to blowups of Hirzebruch surfaces. A very similar theorem holds for
blowups of Hirzebruch surfaces. Let X be the blowup of a Hirzebruch surface Fe, e ≥ 1, along
k distinct points not lying on the exceptional curve E. Denote by E and F the pullbacks of the
corresponding classes on Fe and let E1, . . . , Ek denote the exceptional divisors lying over the points
p1, . . . , pk. Let E be a locally sheaf of rank at least 2 with total slope

ν(E) :=
ch1(E)
rk(E)

= αE + βF −
k∑

i=1

αiEi.

Theorem 3.15. Let v be a Chern character on X such that ν(v) satisfies

αi ≥ 0, α −
k∑

i=1

αi ≥ −1, and β −
k∑

i=1

αi + 1 ≥ max((e − 1)α, eα).

Then the stack PX,F (v) is nonempty and the general sheaf in PX,F (v) has no cohomology. Further-
more, the general sheaf in PX,F (v) admits a resolution of the form

0 → OX(−E − (e + 1)F )a φ
→ OX(−E − eF )b ⊕OX(−F )c ⊕

k⊕

i=1

OX(−Ei)
di → E → 0,

where

a = r(v)(β − (e − 1)α −
k∑

i=1

αi + 1), b = r(v)(β − eα −
k∑

i=1

αi + 1),

c = r(v)(α −
k∑

i=1

αi + 1) di = r(v)αi.

Proof. Since the proof of this theorem is similar to the proof of Theorems 3.11 and 3.12, we leave
the routine verifications to the reader. By Lemma 2.4, the sequence

OX(−E − (e + 1)F ), OX(−E − eF ) OX(−F ), OX(−E1), . . . ,OX(−Ek), OX

is a strong exceptional collection. By Lemma 3.4, the exponents are as claimed and are positive
by assumption. Lemma 3.7 applies to show that the cokernel of a general map φ is locally free.
By Lemma 2.4, Lemma 3.5 applies. By Lemmas 3.5 and 3.6, one obtains a complete family of
F -prioritary sheaves. Since the stack of F -prioritary sheaves is irreducible, the theorem follows. �

As usual, we obtain the following corollary.

Corollary 3.16. Let H be an ample divisor on X such that H ∙ (−2E − (e + 1)F +
∑k

i=1 Ei) < 0.
Let v be a stable Chern character satisfying the assumptions of Theorem 3.15. Then MX,H(v) is
unirational and satisfies weak Brill-Noether.
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4. Blowups of P2 revisited

Let X = Blp1,...,pk
P2 be the blowup of P2 at k distinct points p1, . . . , pk ∈ P2. In this section we

study the weak Brill-Noether problem for X. In particular, we give some sufficient conditions on
a character v of Euler characteristic 0 for weak Brill-Noether to hold for certain moduli spaces of
sheaves of character v. We will prove sharper results when X is a del Pezzo surface of degree at
least 4 in the next section, using the basic tools developed in this section as a starting point. Fix
F = L − E1, so that the complete series |F | induces a map X → P1 with fiber class F , exhibiting
X as a birationally ruled surface.

If H is an ample divisor such that H ∙(KX +F ) < 0, then any H-semistable sheaf is automatically
F -prioritary, so that PX,F (v) contains the stack MX,H(v) of H-semistable sheaves as a dense open
substack whenever H-semistable sheaves of character v exist. Note that such polarizations H always
exist; since F ∙ (KX + F ) = −2, any ample divisor H spanning a ray sufficiently close to the ray
spanned by the nef divisor F will do the trick. In what follows we work primarily with prioritary
sheaves instead of semistable sheaves. Prioritary sheaves have the advantage that they are much
easier to construct than semistable sheaves.

4.1. Prioritary direct sums of line bundles. By Walter’s irreducibility theorem, in order to
prove a general prioritary sheaf of some character v has no cohomology, it suffices to construct a
particular such sheaf. It is often possible to do this by considering elementary modifications of direct
sums of line bundles. First we give a criterion for determining when a direct sum of line bundles is
prioritary.

Lemma 4.1. Let E = L1 ⊕ ∙ ∙ ∙⊕Lr be a direct sum of line bundles. Suppose that N is a nef divisor
such that

N ∙ (Li − Lj) < −N ∙ (F + KX)

for all i, j. Then E is F -prioritary.

Proof. The vanishing Ext2(E , E(−F )) = 0 will follow if Ext2(Li, Lj(−F )) = 0 for all i, j. We have

Ext2(Li, Lj(−F )) ∼= H2(−Li + Lj − F ) ∼= H0(Li − Lj + F + KX)∗.

Then
N ∙ (Li − Lj + F + KX) < 0,

and since N is nef we conclude Li−Lj+F +KX is not effective. Therefore Ext2(Li, Lj(−F )) = 0. �

Further prioritary sheaves of lower Euler characteristic can be constructed by elementary modi-
fications.

Lemma 4.2. Let E be an F -prioritary sheaf on X, and let p ∈ X be a point where E is locally free.
Pick a surjection E → Op, and consider the elementary modification E ′ defined by the sequence

0 → E ′ → E → Op → 0.

Then E ′ is F -prioritary with χ(E ′) = χ(E)−1. If furthermore h0(E) > 0 and p and the map E → Op

are general, then additionally h0(E ′) = h0(E) − 1.

Proof. Clearly E ′ is torsion-free since E is. Then Ext2(E ′, E ′(−F )) is a quotient of Ext2(E , E ′(−F )),
so it suffices to prove the latter group vanishes. Tensoring the exact sequence by OX(−F ) and
applying Hom(E ,−), we get an exact sequence

Ext1(E ,Op) → Ext2(E , E ′(−F )) → Ext2(E , E(−F )).

Then Ext2(E , E(−F )) = 0 since E is prioritary and Ext1(E ,Op) = 0 since E is locally free at p.
If h0(E) > 0 and p is general, then E has a section which does not vanish at p. Therefore a
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general surjection E → Op induces a surjective map H0(E) → H0(Op), and we conclude h0(E ′) =
h0(E) − 1. �

These two lemmas motivate the next definition.

Definition 4.3. Fix a nef divisor N such that −N ∙ (F + KX) ≥ 2. We call a direct sum E =
L1 ⊕ ∙ ∙ ∙ ⊕ Lr of line bundles (N -)good if the following properties are satisfied.

(1) E has no higher cohomology: hi(E) = 0 for i > 0.
(2) For all i, j we have N ∙ (Li − Lj) ≤ 1. In particular, E is F -prioritary by Lemma 4.1.

Fix an integer r ≥ 1. We let

Λr,N = {c1(E) : E is a rank r good direct sum of line bundles} ⊂ N1(X)Z.

The next result follows immediately from Lemma 4.2 and the definitions.

Corollary 4.4. Suppose v ∈ K(X) has χ(v) = 0 and r = r(v) > 0, and fix a nef divisor N as in
Definition 4.3. If c1(v) ∈ Λr,N , then PX,F (v) is nonempty and a general sheaf E ∈ PX,F (v) has no
cohomology.

Our next result is our strongest result on the weak Brill-Noether problem for an arbitrary blowup
of P2.

Theorem 4.5. Let X = Blp1,...,pk
P2 be a blowup of P2 at k distinct points. Let v ∈ K(X) with

r = r(v) > 0, and write

ν(v) :=
c1(v)
r(v)

= δL − α1E1 − ∙ ∙ ∙ − αkEk,

so that the coefficients δ, αi ∈ Q. Assume that δ ≥ 0 and αi ≥ 0 for all i. Suppose that the line
bundle

bδcL − dα1eE1 − ∙ ∙ ∙ − dαkeEk

has no higher cohomology. Then choosing N = L, we have c1(v) ∈ Λr,L. In particular, if χ(v) = 0,
then PX,F (v) is nonempty and the general E ∈ PX,F (v) has no cohomology.

Proof. In more detail, write

ν(v) =
(
d +

p

r

)
L −

(
a1 +

p1

r

)
E1 − ∙ ∙ ∙ −

(
ak +

pk

r

)
Ek

where d = bδc and ai = bαic. Suppose M = eL − b1E1 − ∙ ∙ ∙ − bkEk is a line bundle such that
e ∈ {d, d + 1} and bi ∈ {ai, ai + 1} for all i. Our assumptions imply that M has no higher
cohomology. Now we can construct a direct sum E = L1 ⊕ ∙ ∙ ∙ ⊕Lr of line bundles of this form such
that c1(E) = c1(v). Indeed, we only need to ensure that exactly p of the Li’s have a coefficient of
d + 1 on L, and similarly for the other coefficients. By construction, E is L-good. �

5. Del Pezzo surfaces

In this section we improve on Theorem 4.5 in the special case of a smooth del Pezzo surface X
of degree 4 ≤ d ≤ 7. Thus X = Blp1,...,pk

P2 is a blowup of P2 at 2 ≤ k = 9 − d ≤ 5 points with no
three lying on a line, and −KX = 3L − E1 − ∙ ∙ ∙ − Ek is ample. As in the previous section we fix a
fiber class F = L − E1 and study F -prioritary sheaves. Our main theorem is the following.

Theorem 5.1. Let X be a del Pezzo surface of degree 4 ≤ d ≤ 7. Let v ∈ K(X) with χ(v) = 0,
and suppose c1(v) is nef. Then the stack PX,F (v) of prioritary sheaves is nonempty and a general
E ∈ PX,F (v) has no cohomology.
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The cone of curves NE(X) is spanned by the classes of the (−1)-curves on X; the (−1)-curves
are an exceptional divisor, a line through two points, or a conic through 5 points if d = 4 (review
Example 2.2). Dually, the nef cone Nef(X) ⊂ N1(X) is the subcone of classes ν such that ν ∙C ≥ 0
for every (−1)-curve C.

The main additional ingredient that goes into the proof of Theorem 5.1 is the action of the Weyl
group on Pic(X). The Weyl group preserves the intersection pairing, so it preserves the nef cone,
the Euler characteristic, and the dimensions of cohomology groups of line bundles. The Weyl group
acts transitively on length ` ≤ k configurations (C1, . . . , C`) of disjoint (−1)-curves unless ` = k−1,
in which case the action has two orbits [Man97].

The Weyl group additionally preserves the canonical bundle KX . For this reason, we will take
N = −KX in Definition 4.3 and study (−KX)-good direct sums of line bundles—note that the
needed inequality KX .(F +KX) ≥ 2 follows from our assumption that d ≥ 4. Then the Weyl group
additionally preserves the set Λr,−KX

of first Chern classes of rank r (−KX)-good direct sums of
line bundles. Theorem 5.1 is a direct consequence of the next result and Corollary 4.4.

Proposition 5.2. If X is a del Pezzo surface of degree 4 ≤ d ≤ 7 we have Nef(X)Z ⊂ Λr,−KX
.

Since the Weyl group preserves both the nef cone and Λr,−KX
, we only need to show that if

D ∈ Nef(X)Z, then some translate of D by a Weyl group element is in Λr,−KX
. Our next lemma

further allows us to repeatedly replace D with a different divisor D′ until D′ is on the boundary of
the nef cone.

Lemma 5.3. Let D ∈ Nef(X)Z be a nef divisor, and suppose D ∙ Ei ≥ D ∙ Ej. Suppose D′ =
D − Ei + Ej is nef and that D′ ∈ Λr,−KX

. Then D ∈ Λr,−KX
.

Proof. Since D′ ∈ Λr,−KX
, there is a (−KX)-good direct sum of line bundles E ′ such that c1(E ′) = D′.

Since D ∙ Ei ≥ D ∙ Ej , we have D′ ∙ Ei > D′ ∙ Ej , and at least one of the line bundles L′ in E ′ must
have L′.Ei > L′.Ej ≥ −1. If we put M = L′ + Ei − Ej , then since L′ has no higher cohomology
it follows that M has no higher cohomology. Additionally, M ∙ (−KX) = L′ ∙ (−KX). Then if we
define E by taking E ′ and replacing L′ with M , it follows that E is (−KX)-good and c1(E) = D. �

Now let D ∈ Nef(X)Z be arbitrary. If there are i, j such that Lemma 5.3 can be applied,
then we replace D with D′. We iterate this process until we arrive at a divisor D such that the
lemma cannot be applied for any pair of indices i, j. Note that if C is any (−1)-curve on X, then
C ∙ (−Ei + Ej) ≥ −1. This implies that D must be orthogonal to some (−1)-curve. If k ≥ 3, then
applying an element of the Weyl group we may assume D is orthogonal to Ek. In this case, we
reduce to studying a divisor class on the blowup at k − 1 points.

Likewise, if k = 2 then by inspection D is orthogonal to either E1 or E2. That is, up to the Weyl
group action, D takes the form D = dL− aE1 for some 0 ≤ a ≤ d. In the end, we have reduced the
proof of Proposition 5.2 to the following statement.

Proposition 5.4. Let D = dL − aE1 with 0 ≤ a ≤ d be a nef divisor on X = Blp1,p2 P
2, and let

r ≥ 1. Then D ∈ Λr,−KX
.

Remark 5.5. It is crucial to regard D as a divisor on the blowup at 2 points instead of as a divisor
on the blowup at 1 point. For example, consider D = 2L and r = 3. Then D ∙ (−KX) = 6, so we
need to express 2L as a sum of 3 line bundles of (−KX)-degree 2 with no higher cohomology. The
only such line bundle on the blowup at 1 point is L−E1, so there is no way to achieve this. On the
other hand, on the blowup at 2 points, there is the additional line bundle E1 + E2 of (−KX)-degree
2, and

2L = (L − E1) + (L − E2) + (E1 + E2).



WEAK BRILL-NOETHER FOR RATIONAL SURFACES 19

Proof of Proposition 5.4. The proof is by induction on r. The result is clear for r = 1. Let r ≥ 2.
If r = 2 and D = L − E1, then D = (L − 2E1) + E1, so we may ignore this case. We will prove the
following claim.

Claim: Suppose it is not the case that r = 2 and D = L − E1. Write

D ∙ (−KX)
r

=
3d − a

r
= m +

p

r
(0 ≤ p < r).

(We clearly have m ≥ 0.) Then there is a line bundle M with M ∙ (−KX) = m such that M has no
higher cohomology and D − M is nef.

First observe that the claim implies the result. Indeed, by induction and Lemma 5.3 it follows
that D − M ∈ Λr−1,−KX

. We have

(D − M) ∙ (−KX)
r − 1

= m +
p

r − 1
,

so D − M can be written as c1(E) for a good sum E of p line bundles of (−KX)-degree m + 1 and
(r − 1) − p line bundles of (−KX)-degree m. Then D = c1(E ⊕ M), and E ⊕ M is a good sum.

Next we prove the claim by constructing the line bundle M . Note that the claim is trivial if
m = 0, since then we can take M = 0. In what follows we assume m > 0. Write

m = 3s + t (0 ≤ t < 3).

For 0 ≤ t < 3 we define line bundles Mt as follows:

M0 = 0

M1 = E1

M2 = E1 + E2

noting that Mt.(−KX) = t. Then we put

B = sL + Mt,

and observe B.(−KX) = m. The line bundle B is the basic line bundle of (−KX)-degree m. Note
that B has no higher cohomology.

We now modify B by adding some number α of copies of L − 3E1 and some number β of copies
of L − 2E1 − E2 to it; call such a line bundle

B′ = B + α(L − 3E1) + β(L − 2E1 − E2) = d′L − a′E1 − b′E2.

Then B′ still has B′.(−KX) = m since L − 3E1 and L − 2E1 − E2 are both orthogonal to KX . For
B′ to be the desired line bundle M that proves the claim, we need to choose α and β so that B′ has
no higher cohomology and D − B′ is nef.

For D−B′ to be nef we must have (D−B′) ∙E2 ≥ 0, so we have −1 ≤ b′ ≤ 0. Then either β = 0,
or t = 2 and β = 1. Similarly, considering E1 shows −1 ≤ a′ ≤ a. Now suppose we first make β
as large as possible, then make α as large as possible, without violating the inequalities b′ ≤ 0 or
a′ ≤ a. We claim that then D−B′ is nef, i.e. that (D−B′) ∙ (L−E1 −E2) ≥ 0. There are a couple
cases to consider.

Case 1: t = 2 and a = 0. In this case α = β = 0. We have D ∙ (L − E1 − E2) = d and
B′ = sL + E1 + E2, so B′ ∙ (L − E1 − E2) = s + 2. Then

3(d − (s + 2)) = 3d − m + t − 6 = mr + p − m − 4 = m(r − 1) + p − 4.

Now m ≡ 2 (mod 3) and m > 0, so d ≥ s + 2 unless m = 2, s = 0, and d = 1. But then m = b3/rc,
so this is impossible since r ≥ 2. Therefore d ≥ s + 2 and D − B′ is nef. Note that also B′ has no
higher cohomology, so we may take M = B′ in this case to complete the proof.
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Case 2: t 6= 2 or a > 0. If t = 2 but a > 0 then we have β = 1, and therefore b′ = 0. We also
have b′ = 0 if t 6= 2, so b′ = 0 in every case. Then B′ takes one of the following three forms:

d′L − (a − 2)E1 d′L − (a − 1)E1 d′L − aE1.

In order to have (D − B′) ∙ (L − E1 − E2) ≥ 0, we will need to compare d′ with d. To do this we
first compute d′. Observe that the total number of line bundles added to the basic line bundle is

α + β =

⌊
a + t

3

⌋

;

write
a + t = 3(α + β) + ` (0 ≤ ` < 3).

Then
d′ = s + α + β,

and

3(d − d′) = 3d − 3s − 3(α + β) = (mr + a + p) − (m − t) − (a + t − `) = m(r − 1) + p + `.

Therefore d′ < d in any case, which implies D − B′ is nef unless B′ = d′L − (a − 2)E1. In this case
we need the stronger inequality d′ ≤ d − 2, or equivalently we must show

m(r − 1) + p + ` > 3.

But if B′ = d′L − (a − 2)E1 then ` = 2, and the only way the inequality can fail is if m = 1, r = 2,
and p = 0. In this case 3d− a = 2, and since a ≤ d we have d = a = 1. Thus this case is the special
case D = L − E1, r = 2, which we have already excluded. Therefore D − B′ is nef.

Finally we are ready to construct the line bundle M that proves the claim in case t 6= 2 or
a > 0. Starting from the basic line bundle B, add a single copy of L − 2E1 − E2 if it won’t violate
the inequality b′ ≤ 0 (this won’t violate the inequality a′ ≤ a since a > 0 if t 6= 2). After that,
repeatedly add copies of L − 3E1. Sometime before the inequality a′ ≤ a is violated, we will have
B′ ∙ (L−E1−E2) ≤ D ∙ (L−E1−E2). Let M be the first B′ where this inequality holds. Each copy
of L− 2E1 −E2 or M − 3E1 that is added decreases the intersection number with M −E1 −E2 by
2. Thus we will additionally have M ∙ (L − E1 − E2) ≥ D ∙ (L − E1 − E2) − 1 ≥ −1. Since b′ = 0,
this implies M has no higher cohomology and D − M is nef. �
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