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Abstract

In this work we study the smoothing effect of rough differential equations driven by a frac-
tional Brownian motion with parameter H > 1/4. The regularization estimates we obtain
generalize to the fractional Brownian motion previous results by Kusuoka and Stroock and can
be seen as a quantitative version of the existence of smooth densities under Hörmander’s type
conditions.

Contents

1 Introduction 2

2 Stochastic differential driven by fractional Brownian motions 4

2.1 Fractional Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Malliavin calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Stochastic differential equations driven by fractional Brownian motions . . . . . . . . 6

3 Basic estimates 7

4 Integration by parts formula 16

5 Regularization bounds 18

∗Department of Mathematics, Purdue University, West Lafayette, IN, USA
†Department of Math, Statistics and Computer Science, University of Illinois at Chicago, IL, USA
‡Department of Mathematics, Purdue University, West Lafayette, IN, USA

1

http://arxiv.org/abs/1304.4838v1


1 Introduction

In this paper, we study stochastic differential equations driven by a fractional Brownian motion

with Hurst parameter H ∈ (1/4, 1). More precisely, let us consider the equation

Xx
t = x+

d
∑

i=1

∫ t

0
Vi(X

x
s )dB

i
s, (1.1)

where the vector fields V1, . . . , Vd are C∞-bounded vector fields on R
n and where B is a R

d-valued

centered Gaussian process with covariance

E(Bs ⊗Bt) =
1

2

(

t2H + s2H − |t− s|2H
)

.

The parameter H is the so-called Hurst parameter of the fractional Brownian motion. It quantifies

the sample path regularity of B since a straightforward application of the Kolmogorov continuity

theorem implies that the paths of B are almost surely locally Hölder of index H − ε for 0 < ε < H.

When H = 1/2, B is a Brownian motion. Fractional Brownian and equations driven by it appear

as a natural model in biology and physics (see for instance [11, 21, 22]).

If H > 1/2, then the paths of B are regular enough and the equation (1.1) is understood in the

sense of Young. Existence and uniqueness of solutions are well-known in that case (see [19, 23]).

When 1/4 < H ≤ 1/2, it can be shown (see [7]) that B can canonically be lifted as a geometric

p-rough path with p > 1/H. As a consequence, rough paths theory (see [8, 17]) can be used to give

a sense to what is solution of equation (1.1). In the case H = 1/2, this notion of solution coincides

with the solution of the corresponding Stratonovitch stochastic differential equation.

In the past few years, the study of the regularity of the law of Xx
t has generated great amount of

work. In [2], the authors prove, in the regular case H > 1/2, that if the vector fields V1, · · · , Vd
satisfy the classical Hörmander’s bracket generating condition, then for t > 0, the random variable

Xx
t admits a smooth density with respect to the Lebesgue measure. In [4], the authors prove, in

the case H > 1/4, and under the same assumption on the vector fields, the existence of the density.

The smoothness of this density is proved in [10] for H > 1/3, conditioned on the integrality of the

Jacobian of such systems which is established in [6]. Finally, smoothness of the density function in

the case H > 1/4 is proved in [5].

The regularity of the law of Xx
t is intimately related to the regularization properties of the operator:

Ptf(x) = E(f(Xx
t )),

that is defined for a Borel and bounded function f . It should be denoted that whenH 6= 1/2, (Pt)t≥0

is not a semigroup and that there is no direct connection with the theory of partial differential
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equations unless the vector fields V1, · · · , Vd commute (see [1] for further discussion on that aspect).

By regularization property of Pt, we mean that Pt has ”smoothing” effect on the initial datum f : If

f is a Borel and bounded function f , then Ptf is a smooth function for every t > 0. In the Brownian

motion case, that is if H = 1/2, the regularization property of Pt has been extensively studied and

explicitly quantified by Kusuoka and Stroock [12, 13, 14] and Kusuoka [15]. In particular, in his

work [15], Kusuoka introduces the UFG condition on the vector fields (this is our Assumption 3.1)

and proves that if this condition is satisfied, then the following theorem holds:

Theorem 1.1 (Brownian motion case, Kusuoka [15]) Let x ∈ R
n. For any integer k ≥ 1 and

0 ≤ i1, · · · , ik ≤ d, there exists a constant C > 0 (depending on x) such that for every C∞ bounded

function f and t ∈ (0, 1],

|Vi1 · · ·VikPtf(x)| ≤ Ct−k/2‖f‖∞.

The main purpose of the present paper is to generalize this statement to any H ∈ (1/4, 1). More

precisely, we prove the following theorem:

Theorem 1.2 (Fractional Brownian motion case) Assume H ∈ (1/4, 1) and that the vector

fields V1, · · · , Vd satisfy the Kusuoka’s condition UFG (see Assumption 3.1). Let x ∈ R
n. For any

integer k ≥ 1 and 0 ≤ i1, · · · , ik ≤ d, there exists a constant C > 0 (depending on x) such that for

every C∞ bounded function f and t ∈ (0, 1],

|Vi1 · · ·VikPtf(x)| ≤ Ct−Hk‖f‖∞.

Our result is obviously an extension of Kusuoka’s result, since it encompasses the case H = 1/2. It

is interesting to observe that the framework given by the most recent developments in rough paths

theory (see in particular [5, 6, 10]) actually simplifies Kusuoka’s approach and, in our opinion,

provides an overall simpler and clearer proof of his result which originally built on [12, 13, 14].

We should mention that Theorem 1.2 was already proved by two of the authors in the regular case

H > 1/2 and under a strong ellipticity assumption on the vector fields, see [3]. The rough setting

and the more general UFG assumption on the vector fields make the proof of Theorem 1.2 much

more difficult.

The paper is organized as follows. In Section 2, we give the necessary background on Malliavin

calculus that will be needed throughout the paper. Section 3 is devoted to the proof of the main

technical estimates that are needed. It is the heart of our contribution. In the Brownian motion

case, similar estimates are obtained in [13, 14, 15], but the proof of those heavily relies on Markov

and martingale methods. We prove here that such estimates may be obtained in a more general

setting by using quantitative versions of Norris’ type lemma (see [2] and [10]) which are based

on interpolation inequalities and by using small ball probability estimates for fractional Brownian
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motions (see [16]). Once these estimates are obtained, after some work the integration by part

technique of Kusuoka-Stroock [14] and Kusuoka [15] can essentially be adapted to the fractional

Brownian motion case after suitable changes. Let us however observe that we obtain the correct

order in t by using a rescaling argument on the vector fields Vi’s instead of analyzing the small time

behavior of the estimates of Section 2.

2 Stochastic differential driven by fractional Brownian motions

In this preliminary section, we present the tools about the stochastic analysis of fractional Browian

motion that are needed for the remainder of the paper.

2.1 Fractional Brownian motion

A fractional Brownian motion B = (B1, · · · , Bd) is a d-dimensional centered Gaussian process,

whose covariance is given by

R (t, s) := E

(

Bj
s B

j
t

)

=
1

2

(

s2H + t2H − |t− s|2H
)

, for s, t ∈ [0, 1] and j = 1, . . . , d.

In particular it can be shown, by a standard application of Kolmogorov’s criterion, that B admits

a continuous version whose paths are γ-Hölder continuous for any γ < H.

Let E be the space of R
d-valued step functions on [0, 1], and H the closure of E for the scalar

product:

〈(1[0,t1], · · · ,1[0,td]), (1[0,s1], · · · ,1[0,sd])〉H =

d
∑

i=1

R(ti, si).

When H > 1
2 it can be shown that L1/H([0, 1],Rd) ⊂ H, and that for φ,ψ ∈ L1/H([0, 1],Rd), we

have

〈φ,ψ〉H = H(2H − 1)

∫ 1

0

∫ 1

0
| s− t |2H−2 〈φ(s), ψ(t)〉Rddsdt.

The following interpolation inequality that was proved in [2], will be an essential tool in our analysis.

For every γ > H − 1
2 , there exists a constant C such that for every continuous function f ∈ H,

‖f‖H ≥ C
‖f‖3+

1
γ

∞

‖f‖2+
1
γ

γ

, (2.2)

where

‖f‖γ = sup
0≤s<t≤1

‖f(t)− f(s)‖
|t− s|γ + ‖f‖∞,

is the usual Hölder norm.

When 1
4 < H < 1

2 one has

H ⊂ L2([0, 1])
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and the following interpolation inequality classically holds for every f ∈ H,

‖f‖H ≥ C‖f‖L2 .

Let us also mention the following inequality that is useful to bound from below the L2 norm by the

supremum norm and the Hölder norm

‖f‖∞ ≤ 2max

{

‖f‖L2 , ‖f‖
2γ

2γ+1

L2 ‖f‖
1

2γ+1
γ

}

.

Such inequality was already used in connection with the space H in [10].

2.2 Malliavin calculus

Let us remind the basic framework of Malliavin calculus (see [18] for further details). A real valued

random variable F is then said to be cylindrical if it can be written, for a given n ≥ 1, as

F = f

(
∫ 1

0
〈h1s, dBs〉, . . . ,

∫ 1

0
〈hns , dBs〉

)

,

where hi ∈ H and f : Rn → R is a C∞-bounded function. The set of cylindrical random variables

is denoted S.
The Malliavin derivative is defined as follows: for F ∈ S, the derivative of F is the R

d valued

stochastic process (DtF )0≤t≤1 given by

DtF =
n
∑

i=1

hi(t)
∂f

∂xi

(
∫ 1

0
〈h1s, dBs〉, . . . ,

∫ 1

0
〈hns , dBs〉

)

.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

Dk
t1,...,tk

F = Dt1 . . .DtkF.

For any p ≥ 1, it can be checked that the operator Dk is closable from S into Lp(Ω). We will denote

by D
k,p the domain of this closure, that is closure of the class of cylindrical random variables with

respect to the norm

‖F‖k,p =



E (|F |p) +
k
∑

j=1

E

(

∥

∥DjF
∥

∥

p

H⊗j

)





1
p

,

and

D
∞ =

⋂

p≥1

⋂

k≥1

D
k,p.

For p > 1 we can consider the divergence operator δ which is defined as the adjoint of D defined on

Lp(Ω). It is characterized by the duality formula:

E(Fδu) = E (〈DF, u〉H) , F ∈ D
1,p.

It is proved in [18], Proposition 1.5.7 that δ is continuous from D
1,p into Lp(Ω).
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2.3 Stochastic differential equations driven by fractional Brownian motions

In this paper, we will consider the following kind of equation:

Xx
t = x+

d
∑

i=1

∫ t

0
Vi(X

x
s )dB

i
s, (2.3)

where the vector fields V1, . . . , Vd are C∞ bounded vector fields on R
n and where B is a fractional

Brownian motion with parameter H ∈ (1/4, 1).

If H > 1/2. The equation (2.3) is understood in Young’s sense, but if H ∈ (1/3, 1/2], we need to

understand the equation in the sense of rough paths theory (see e.g. [7, 8]). In both cases, the

C∞ boundedness of the vector fields is more than enough to ensure the existence and uniqueness

of solutions.

Once equation (2.3) is solved, the vector Xx
t is a typical example of random variable which can be

differentiated in the sense of Malliavin. It is classical that one can express this Malliavin derivative in

terms of the first variation process J of the equation, which is defined by the relation J ij
0→t = ∂xj

Xx,i
t .

Setting ∂Vj for the Jacobian of Vj seen as a function from R
n to R

n, it is well known that J is the

unique solution to the linear equation

J0→t = I +

d
∑

j=1

∫ t

0
∂Vj(X

x
s )J0→s dB

j
s , (2.4)

and that the following results hold true (see [4] and [20] for further details):

Proposition 2.1 Let Xx be the solution to equation (2.3). Then for every i = 1, . . . , n and t > 0,

and x ∈ R
n, we have Xx,i

t ∈ D
∞ and

Dj
sX

x
t = Js→tVj(Xs), j = 1, . . . , d, 0 ≤ s ≤ t,

where Dj
sX

x,i
t is the j-th component of DsX

x,i
t , J0→t = ∂xX

x
t and Js→t = J0→tJ

−1
0→s.

We finally mention the recent result [6], which gives a useful estimate for moments of the Jacobian

of rough differential equations driven by Gaussian processes.

Proposition 2.2 Let p > 1/H. For any n ≥ 0,

E

(

‖J‖np−var;[0,1]

)

< +∞, (2.5)

where ‖ · ‖p−var;[0,1] denotes the p-variation norm on the interval [0, 1].
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3 Basic estimates

Let us consider vector fields V1, · · · , Vd on R
n. Let A = {∅}∪⋃∞

k=1{1, 2, · · · , d}k and A1 = A \ {∅}.
We say that I ∈ A is a word of length k if I = (i1, · · · , ik) and we write |I| = k. If I = ∅, then
we denote |I| = 0. For any integer l ≥ 1, we denote by A(l) the set {I ∈ A; |I| ≤ l} and by A1(l)

the set {I ∈ A1; |I| ≤ l} . We also define an operation ∗ on A by I ∗ J = (i1, · · · , ik, j1, · · · , jl) for
I = (i1, · · · , ik) and J = (j1, · · · , jl) in A. We define vector fields V[I] inductively by

V[j] = Vj , V[I∗j] = [V[I], Vj ], j = 1, · · · , d

Throughout this paper, we will make the following assumptions on the vector fields.

Assumption 3.1

1. The V ′
i s are bounded smooth vector fields on R

n with bounded derivatives at any order.

2. There exists an integer l ≥ 1 and ωJ
I ∈ C∞

b (Rn,R) such that for any x ∈ R
n

V[I](x) =
∑

J∈A(l)

ωJ
I (x)V[J ](x), I ∈ A1 (3.6)

The second condition was introduced by S. Kusuoka in [15]. It holds for a system of vector fields

that satisfy a uniform strong Hömander’s bracket generating condition, but observe that in order

that Assumption 3.1 holds, it is not even necessary that the bracket generating condition holds.

Let us consider the following rescaled differential equations, which depend on the parameter ǫ > 0:

Xǫ,x
t =x+

d
∑

i=1

∫ t

0
V ǫ
i (X

ǫ,x
s )dBi

s

=x+
d
∑

i=1

∫ t

0
ǫHVi(X

ǫ,x
s )dBi

s. (3.7)

Clearly, the rescaled vector fields V ǫ
i are defined as V ǫ

i (x) = ǫHVi(x). More generally, for any

I ∈ A1(l), we denote V ǫ
[I](x) = ǫ|I|HV[I](x). Note that:

V ǫ
[I](x) =ǫ

|I|HV[I](x)

=
∑

J∈A1(l)

ǫ|I|HωJ
I (x)V[J ](x)

=
∑

J∈A1(l)

ǫ(|I|−|J |)HωJ
I (x)V

ǫ
[J ](x)

=
∑

J∈A1(l)

ωJ,ǫ
I (x)V ǫ

[J ](x)
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where ωJ,ǫ
I (x) = ǫ(|I|−|J |)HωJ

I (x).

It is known that for any ǫ ∈ (0, 1] and any t > 0, the map Φǫ
t(x) = Xǫ,x

t : Rn → R
n is a flow of C∞

diffeomorphism (see [8]). We denote the Jacobian of Φǫ
t(x) by J ǫ

0→t =
∂Xǫ,x

t

∂x . As we mentioned it

earlier, J ǫ
0→t and (J ǫ

0→t)
−1 satisfies the following linear equations:

dJ ǫ
0→t =

d
∑

i=1

∂V ǫ
i (X

ǫ,x
t )J ǫ

0→tdB
i
t , with J ǫ

0 = I (3.8)

and

d(J ǫ
0→t)

−1 = −
d
∑

i=1

(J ǫ
0→t)

−1∂V ǫ
i (X

ǫ,x
t )dBi

t , with (J ǫ
0)

−1 = I (3.9)

Let us introduce a linear system βJ,ǫI (t, x) that satisfies the following linear equations:















dβJ,ǫI (t, x) =

d
∑

j=1





∑

K∈A1(l)

−ωK,ǫ
I∗j (X

x,ǫ
t )βJ,ǫK (t, x)



 dBj
t

βJ,ǫI (0, x) = δJI

(3.10)

Lemma 3.2 Fix ǫ ∈ (0, 1]. For any I ∈ A1(l), we have:

(J ǫ
0→t)

−1(V ǫ
[I](X

ǫ,x
t )) =

∑

J∈A1(l)

βJ,ǫI (t, x)V ǫ
[J ](x)

Proof. To simpify the notation, let us denote

aǫI(t, x) = (J ǫ
0→t)

−1(V ǫ
[I](X

ǫ,x
t ))

and

bǫI(t, x) =
∑

J∈A1(l)

βJ,ǫI (t, x)V ǫ
[J ](x)

Clearly by definition, we have aǫI(0, x) = bǫI(0, x) = V ǫ
[I](x). Next, we show that aǫI(t, x) and b

ǫ
I(t, x)

satisfy the same differential equation. Indeed, by change of variable formula, we have:

daǫI(t, x) =d(J
ǫ
0→t)

−1(V ǫ
[I](X

ǫ,x))

=
d
∑

j=1

(−1)(J ǫ
0→t)

−1[V ǫ
[I], V

ǫ
j ](X

ǫ,x
t )(x)dBj

t

=

d
∑

j=1

∑

J∈A1(l)

−ωJ,ǫ
I∗j(X

ǫ,x
t )(J ǫ

0→t)
−1V ǫ

[J ](X
ǫ,x
t )dBj

t

=
d
∑

j=1

∑

J∈A1(l)

−ωJ,ǫ
I∗j(X

ǫ,x
t )aǫJ(t, x)dB

j
t

8



on the other hand, by the definition of βJ,ǫI (t, x), we have:

dbǫI(t, x) =d(
∑

K∈A1(l)

βK,ǫ
I (t, x)V ǫ

[K](x))

=
∑

K∈A1(l)

dβK,ǫ
I (t, x)V ǫ

[K](x)

=

d
∑

j=1

∑

J∈A1(l)

−ωJ,ǫ
I∗j(X

ǫ,x
t )

∑

K∈A1(l)

βK,ǫ
J (t, x)V ǫ

[K](x)dB
j
t

d
∑

j=1

∑

J∈A1(l)

−ωJ,ǫ
I∗j(X

ǫ,x
t )bǫJ (t, x)dB

j
t

And the result follows by the uniqueness of solutions. �

The following lemma gives the order of βJ,ǫI (t, x).

Lemma 3.3 Let I, J ∈ A1(l) such that |I| ≤ |J |, then

βJ,ǫI (t, x) =
∑

L∈A
δJI∗L(−1)|L|BK

t + γǫ,JI (t, x)

where

sup
x∈Rn

E

[(

sup
t∈(0,1],ǫ∈(0,1]

t−(l+1−|I|)H |γǫ,JI (t, x)|
)p]

<∞

holds for any p ≥ 1.

Proof. Let us consider the Taylor expansion obtained by iterating the equation (3.10). Note that

since

V[I](x) =
∑

J∈A1(l)

ωJ
I (x)V[J ](x)

then we know that for any ǫ ∈ (0, 1] and when |I| ≤ l, ωJ,ǫ
I = ωJ

I = δJI . For any I, J ∈ A1(l) with

|I| ≤ |J |, we have:

βJ,ǫI (t, x) =δJI +

d
∑

j=1

∫ t

0





∑

K∈A1(l)

−ωK,ǫ
I∗j (X

ǫ
s)β

J,ǫ
K (s, x)



 dBj
s

=δJI +

d
∑

j=1

∫ t

0
(−1)βJ,ǫI∗j(s, x)dB

j
s

9



Now let us iterate this equation l − |I|+ 1 times and we have:

βJ,ǫI (t, x) =δJI +

d
∑

l1=1

∫ t

0
(−1)βJ,ǫI∗l1(s1, x)dB

l1
s1

=δJI +
d
∑

l1=1

(−1)Bl1δJI∗l1 +
d
∑

l1,l2=1

∫ t

0

∫ s1

0
(−1)2βJ,ǫI∗l1∗l2(s2, x)dB

l2
s2dB

l1
s1

·
·
·

=
∑

L∈A
δJI∗L(−1)|L|BL

t +
∑

L,j

∑

K∈A1(l)

∫ t

0
· · ·
∫ sk

0
(−1)|L|+1ωK,ǫ

I∗L∗j(X
ǫ
sk+1

)βJ,ǫK (sk+1, x)dB
j
sk+1

· · · dBl1
s1

=
∑

L∈A
δJI∗L(−1)|L|BL

t + γǫ,JI (t, x)

where γǫ,JI (t, x) denotes the remainder term. Now, as an application of Theorem 10.41 in [8] (see

also [1]), there exists a random variable C ∈ Lp such that:

‖γǫ,JI (t, x)‖ ≤ Ct(l−|I|+1)H
∑

L,j

∑

K∈A1(l)

‖ωK,ǫ
I∗L∗j‖Lipγ−1

where γ > 1/H and ‖ · ‖Lipγ−1 is the γ − 1-Lipschitz norm. The result follows then easily. �

Remark 3.4 Note that

∑

L∈A
δJI∗L(−1)|L|BL

t =

{

(−1)|K|BK
t , ifJ = I ∗K for some K ∈ A

0, otherwise

Therefore, when t→ 0, the dominating term of βǫ,JI (t, x) is of order O(tH(|J |−|I|)).

Now, let us introduce the following notations: for any J ∈ A1(l),

D(J)f(Xǫ,x
t ) = 〈D·f(X

x,ǫ
t ), βJ,ǫ(·, x)1[0,t](·)〉H

where we denote by βJ,ǫ(·, x) the column vector (βJ,ǫi (·, x))i=1,...,n. For any I, J ∈ A1(l), we define

M ǫ
I,J(t, x) = 〈βI,ǫ(·, x)1[0,t](·), βJ,ǫ(·, x)1[0,t](·)〉H.

In the following part, we will only consider the case t = 1 and we writeM ǫ
I,J(x) instead ofM ǫ

I,J(1, x).

The following theorem is the main result of this section and the main technical difficulty of our

work:

Theorem 3.5 For any p ∈ (1,∞),

sup
ǫ∈(0,1],x∈Rn

E
(

‖(M ǫ
I,J(x))I,J∈A1(l)‖−p

)

<∞
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The proof of the Theorem 3.5 is splitted in several steps.

Lemma 3.6 For m ≥ 0 and p ≥ 1, there exists a constant CH,d,p > 0 such that for any small ǫ > 0

sup
∑

a2
I
=1

P







∥

∥

∥

∥

∥

∥

∑

I∈A(m)

aIB
I
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

< ǫ






≤ CH,n,pǫ

p

Proof. We first prove the statement when H > 1/2. Note that when m = 0, A(m) = {∅} and

‖a∅‖ = 1. The statement is true for any ǫ < 1. When m = 1, A(m) = {∅, 1, 2, · · · , d}. Let

f(t) = a∅ +
∑d

i=1 a{i}B
i
t . We first assume that a∅ = 0, then f(t) =

∑d
i=1 a{i}B

i
t has the same law

as one dimensional fractional Brownian motion Bt. Then by Theorem 4.6 in [16] we have:

P(‖f(t)‖∞,[0,1] < ǫ) = P(‖Bt‖∞,[0.1] < ǫ) ≤ CH,pǫ
p

Now if a∅ 6= 0, since f(0) = a∅, we have:

P(‖f(t)‖∞,[0,1] < ǫ) ≤P(‖f(t)‖∞,[0,1] < ǫ, |a∅| ≥ ǫ) + P(‖f(t)‖∞,[0,1] < ǫ, |a∅| < ǫ)

=P(‖f(t)‖∞,[0,1] < ǫ, |a∅| < ǫ)

≤P(‖
d
∑

i=1

a{i}B
i
t‖∞,[0,1] − |a∅| < ǫ, |a∅| < ǫ)

≤P(‖
d
∑

i=1

a{i}B
i
t‖∞,[0,1] < 2ǫ)

≤P







∥

∥

∥

∥

∥

∥

d
∑

i=1

a{i}
√

∑

a2{i}
Bi

t

∥

∥

∥

∥

∥

∥

∞,[0,1]

<
2ǫ

√

∑

a2{i}







Note that when |a∅| < ǫ, we have
∑d

i=1 a
2
{i} ≥ 1− ǫ2. Therefore when ǫ <

√
3
2 , we have

P(‖f(t)‖∞,[0,1] < ǫ) ≤P







∥

∥

∥

∥

∥

∥

d
∑

i=1

a{i}
√

∑

a2{i}
Bi

t

∥

∥

∥

∥

∥

∥

∞,[0,1]

< 4ǫ







≤Cn,pǫ
p,

where the last inequality follow by the earlier case when a∅ = 0. Now we assume that the statement

is true for every k = 0, 1, · · · ,m. As in the case when m = 1, we may assume that a∅ = 0.Let

f(t) =
∑

I∈A1(m+1)

aIB
I
t with the restriction

∑

I∈A1(m+1)

a2I = 1. Note that BI
t ’s are iterated integrals
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and we have BI∗j
t =

∫ t

0
BI

sdB
j
s . Therefore,

f(t) =
∑

I∈A1(m+1)

aIB
I
t

=
d
∑

j=1

∫ t

0





∑

J∈A(m)

aJ∗jBJ
t



 dBj
t ,

where

d
∑

j=1

∑

J∈A(m)

a2J∗j = 1. Now by Propostion 3.4 in [2], we have:

P(‖f(t)‖∞,[0,1] < ǫ) ≤ Cpǫ
p + min

j=1,··· ,n











P







∥

∥

∥

∥

∥

∥

∑

J∈A(m)

aJ∗jB
J
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

< ǫq

















Note that since
∑d

j=1

∑

J∈A(m) a
2
J∗j = 1, there exists 1 ≤ k ≤ d such that

∑

J∈A(m) a
2
J∗k ≥ 1

d .

Therefore,

P(‖f(t)‖∞,[0,1] < ǫ) ≤Cpǫ
p + P







∥

∥

∥

∥

∥

∥

∑

J∈A(m)

aJ∗kB
J
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

< ǫq







≤Cpǫ
p + P







∥

∥

∥

∥

∥

∥

∑

J∈A(m)

aJ∗k
√

∑

a2J∗k

BJ
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

<
ǫq

√

∑

a2J∗k







≤Cpǫ
p + P







∥

∥

∥

∥

∥

∥

∑

J∈A(m)

aJ∗k
√

∑

a2J∗k

BJ
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

<
√
dǫq







≤CH,d,pǫ
p

where the last inequality follows by the induction hypothesis. When a∅ 6= 0, we repeat the argument

in case m = 1.

Now we turn to the irregular case when 1/4 ≤ H ≤ 1/2. For the base case m = 0 or m = 1, the

same argument as in the regular case H > 1/2 works. We just need the irregular version of the

Norris lemma ( see Theorem 5.6 in [5]) to run the induction. Assume that the statement is true for

k = 0, 1, · · ·m. Let f(t) =
∑

I∈A1(m+1)

aIB
I
t with the restriction

∑

I∈A1(m+1)

a2I = 1.

We have:

f(t) =

∫ t

0
AsdBs,

where Bt = (B1
t , · · · , Bd

t ) and At = (
∑

J∈A(m) aJ∗1B
J
t , · · · ,

∑

J∈A(m) aJ∗dB
J
t ). We pick 1 ≤ k ≤ d
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such that
∑

J∈A(m) a
2
J∗k ≥ 1

d . Then by Theorem 5.6 in [5], we have:
∥

∥

∥

∥

∥

∥

∑

J∈A(m)

aJ∗kB
J
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

≤MRq‖f(t)‖r∞,[0,1]

Therefore we have:

P(‖f‖∞,[0,1] < ǫ) =P(‖f‖r∞,[0,1] < ǫr)

≤P

(

‖∑J∈A(m) aJ∗kB
J
t ‖∞,[0,1]

MRq
≤ ǫr

)

≤P



‖
∑

J∈A(m)

aJ∗kB
J
t ‖∞,[0,1] ≤ ǫr/2



+ P

(

MRq ≥ ǫ−r/2
)

≤P







∥

∥

∥

∥

∥

∥

∑

J∈A(m)

aJ∗k
√

∑

a2J∗k

BJ
t

∥

∥

∥

∥

∥

∥

∞,[0,1]

≤
√
dǫr/2






+ Cpǫ

p

≤CH,d,pǫ
p

The last inequality follows from the induction hypothesis and the fact that R has finite moment of

all orders. �

Corollary 3.7 For any m ≥ 0 and p > 1, we have

E



inf







∫ 1

0
(
∑

I∈A(m)

aIB
I
t )

2dt;
∑

I∈A(m)

a2I = 1







−p

 = CH,d,m,p <∞

Proof. By Lemma 2.3.1 in [18], we only need to show that for any ǫ > 0, there exists Cp > 0 such

that

sup
∑

I∈A(m) a
2
I
=1

P





∫ 1

0





∑

I∈A(m)

aIB
I
t





2

dt < ǫ



 ≤ Cpǫ
p

Let us denote that f(t) =
∑

I∈(A)(m) aIB
I
t . Then we have:

P





∫ 1

0





∑

I∈A(m)

aIB
I
t





2

dt < ǫ



 = P(‖f‖2L2 < ǫ) = P(‖f‖L2 <
√
ǫ)

By using the interpolation inequality

‖f‖∞ ≤ 2max{‖f‖L2 , ‖f‖
2r

2r+1

L2 ‖f‖
1

2r+1
r }

we obtain:

{‖f‖L2 <
√
ǫ} ⊆

{‖f‖∞
2

<
√
ǫ, ‖f‖L2 > ‖f‖r

}

∪















‖f‖∞
2‖f‖

1
2r+1
r





2r+1
2r

<
√
ǫ, ‖f‖L2 < ‖f‖r
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therfore we have:

P(‖f‖L2,[0,1] <
√
ǫ) ≤P(‖f‖∞,[0,1] < 2

√
ǫ) + P(‖f‖

2r+1
2r

∞,[0,1] < ǫ1/4) + P((2‖f‖
1

2r+1
r )

2r+1
2r > ǫ−1/4)

≤P(‖f‖∞,[0,1] < 2
√
ǫ) + P(‖f‖∞,[0,1] < ǫ

1
4r+1 ) + P(‖f‖r > 2−2r−1ǫ−r/2)

Therefore, the result follows by Lemma 3.6 and the fact that ‖f‖r has finite moments of all orders.�

We can observe that thanks to Corollary 3.7, we have for and m ≥ 0, p > 1 and T, s > 0,

E



inf







∫ T

0
(
∑

I∈A(m)

aIB
I
t )

2dt;
∑

I∈A(m)

T 2|I|H+1a2I ≥ s







−p

 = CH,d,m,ps
−p

Lemma 3.8 Let m ≥ 0 and I ∈ A(m), if gǫI : (0, 1]
2 × Ω → R is a continuous process such that:

Ap = sup
T∈(0,1],ǫ∈(0,1]

E












T−(m+1)H−1/2





∑

I∈A(m)

∫ T

0
(gǫI(t))

2dt





1/2






p




<∞

then

P






inf{





∫ T

0
(
∑

I∈A(m)

aI(B
I
t + gǫI(t)))

2dt





1/2

;
∑

I∈A(m)

T 2|I|H+1a2I = 1} ≤ z−1






≤ (4pCH,d,m,p+A2p)z

−pr

for any T ∈ (0, 1] and z ≥ 1, r = H
(m+1/2)H+1/2 .

Proof. For any T ∈ (0, 1] and y ≥ 1, we have





∫ T

0





∑

I∈A(m)

aI(B
I
t + gǫI(t))





2

dt





1/2

≥





∫ T/y

0





∑

I∈A(m)

aI(B
I
t + gǫI(t))





2

dt





1/2

≥





∫ T/y

0





∑

I∈A(m)

aIB
I
t





2

dt





1/2

−





∑

I∈A(m)

T 2|I|H+1a2I





1/2

T−(2mH+1)
∑

I∈A(m)

∫ T/y

gǫI(t)
2dt





1/2
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Now let us pick z = y(m+1/2)H+1/2, we have

P






inf{





∫ T

0
(
∑

I∈A(m)

aI(B
I
t + gǫI(t)))

2dt





1/2

;
∑

I∈A(m)

T 2|I|H+1a2I = 1} ≤ z−1







≤ P






inf{





∫ T/y

0
(
∑

I∈A(m)

aIB
I
t )

2dt





1/2

;
∑

I∈A(m)

T 2|I|H+1a2I = 1} ≤ 2z−1







+ P






T−(2mH+1)/2





∑

I∈A(m)

∫ T/y

(gǫI(t))
2dt





1/2

≥ z−1







≤ P



inf{
∫ T/y

0
(
∑

I∈A(m)

aIB
I
t )

2dt;
∑

I∈A(m)

(T/y)2|I|H+1a2I ≥ y−(2mH+1)} ≤ 4z−2





+ P






(T/y)−(m+1)H−1/2





∑

I∈A(m)

∫ T/y

(gǫI(t))
2dt





1/2

≥ y(m+1)H+1/2z−1







≤
(

4z−2y2mH+1
)p
Cm,n,p +

(

y−(m+1)H−1/2z
)2p

A2p

≤ (4pCH,d,m,p +A2p) y
−Hp

≤ (4pCH,d,m,p +A2p) z
−rp

�

Now, by applying the above lemma withm = l−1 and Lemma 3.3, we obtain the following corollary:

Corollary 3.9 For any p ≥ 1 and δ > 0, there exists a constant Cp such that

P



inf







∑

I,J∈A1(l)

∫ t

0
t−(|I|+|J |−2)H+1aIaJ〈βI,ǫ(s, x), βJ,ǫ(s, x)〉Rdds;

∑

I∈A1(l)

|aI |2 = 1







≤ δ



 ≤ Cpδ
p

for any ǫ ∈ (0, 1] and any x ∈ R
n.

We are finally in position to give the proof of Theorem 3.5. First, let us recall that M ǫ
I,J(x) =

〈βI,ǫ(·, x), βJ,ǫ(·, x)〉H. We separate the case 1/4 < H ≤ 1/2 and H > 1/2, since we are using

different interpolation inequalities for each case. When 1/4 < H ≤ 1/2, for any a ∈ R
A1(l) we have:

∑

I,J∈A1(l)

aIaJM
ǫ
I,J(x) =

d
∑

j=1

‖
∑

I∈A1(l)

aIβ
I,ǫ
j (·, x)‖2H

≥ CH

d
∑

j=1

∫ 1

0
(
∑

I∈A1(l)

aIβ
I,ǫ
j (t, x))2dt

= CH

∑

I,J∈A1(l)

∫ 1

0
aIaJ〈βI,ǫ(t, x), βJ,ǫ(t, x)〉Rddt
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Therefore we conclude that:

P



inf







∑

I,J∈A1(l)

aIaJM
ǫ
I,J(x);

∑

I∈A1(l)

|aI |2 = 1







≤ δ



 ≤ Cp,Hδ
p,

by applying the Corollary 3.9 above when t = 1. Now we turn to the case when H > 1/2. To

simpify the notation, let us denote fj =
∑

I∈A1(l)
aIβ

I,ǫ
j (t, x). Applying the interpolation inequality

(2.2) and note that ‖fj‖∞ ≥ ‖fj‖L2 on the interval [0, 1], we have:

∑

I,J∈A1(l)

aIaJM
ǫ
I,J(x) =

d
∑

j=1

‖
∑

I∈A1(l)

aIβ
I,ǫ
j (·, x)‖2H

≥ CH

d
∑

j=1

(

‖fj‖3+1/γ
L2

‖fj‖2+1/γ
γ

)2

≥
CH

∑d
j=1 ‖fj‖

6+2/γ
L2

maxj=1,··· ,d ‖fj‖4+2/γ
γ

≥
CHd

−2−1/γ(
∑d

j=1 ‖fj‖2L2)
3+1/γ

maxj=1,··· ,d ‖fj‖4+2/γ
γ

=
Cd,H

(

∑

I,J∈A1(l)

∫ 1
0 aIaJ〈βI,ǫ(t, x), βJ,ǫ(t, x)〉Rddt

)3+1/γ

maxj=1,··· ,d ‖fj‖4+2/γ
γ

Then we have:

P



inf







∑

I,J∈A1(l)

aIaJM
ǫ
I,J(x);

∑

I∈A1(l)

|aI |2 = 1







≤ δ





≤ P



inf







∑

I,J∈A1(l)

∫ 1

0
aIaJ〈βI,ǫ(t, x), βJ,ǫ(t, x)〉Rddt;

∑

I∈A1(l)

|aI |2 = 1







≤
(

δ1/2

Cd,H

)1/(3+1/γ)




+ P



inf







max
j=1,··· ,d

‖fj‖4+2/γ
γ ;

∑

I∈A1(l)

|aI |2 = 1







≥ δ−1/2





and the result follows by chosing t = 1 in Corollary 3.9 and by the fact that ‖fj‖γ has finite moment

of all orders.

4 Integration by parts formula

In this section, we will the integration by parts formula which leads to our main result.

Proposition 4.1 For any f ∈ C∞
b (Rn,R), ǫ ∈ (0, 1] and x ∈ R

n, we have

V ǫ
[I]f(X

ǫ,x
1 ) =

∑

J∈A1(l)

(M ǫ
I,J(x))

−1D(J)f(Xǫ,x
1 )
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Proof. First note that by chain rule together with Lemma 3.2 we have:

Dj
tf(X

ǫ,x
1 ) =〈∇f(Xǫ,x

1 ),Dj
tX

ǫ,x
1 〉Rn

=〈∇f(Xǫ,x
1 ), J ǫ

0→1(J
ǫ
0→t)

−1V ǫ
j (X

ǫ,x
s )〉Rn

=〈∇f(Xǫ,x
t ), J ǫ

0→1(
∑

I∈A1(l)

βI,ǫj (t, x)V ǫ
[I](x))〉Rn

=〈∇f(Xǫ,x
t ),

∑

I∈A1(l)

βI,ǫj (t, x)J ǫ
0→1V

ǫ
[I](x)〉Rn

=
∑

I∈A1(l)

βI,ǫj (t, x)V ǫ
[I]f(X

ǫ,x
t )

Now for J ∈ A1(l), by definition, we have:

D(J)f(Xǫ,x
1 ) =〈D·f(X

ǫ,x
1 ), βJ,ǫ(·, x)〉H

=〈
∑

I∈A1(l)

βI,ǫ(·, x)V ǫ
[I]f(X

ǫ,x
1 ), βJ,ǫ(·, x)〉H

=
∑

I∈A1(l)

V ǫ
[I]f(X

ǫ,x
1 )〈βI,ǫ(·, x), βJ,ǫ(·, x)〉H

=
∑

I∈A1(l)

M ǫ
I,J(x)V

ǫ
[I]f(X

ǫ,x
1 )

Hence we conclude

V ǫ
[I]f(X

ǫ,x
1 ) =

∑

J∈A1(l)

(M ǫ
I,J(x))

−1D(J)f(Xǫ,x
1 )

�

Let us introduce the following definition:

Definition 4.2 We denote by K the set of mappings Φ(ǫ, x) : (0, 1] × R
n → D

∞ that satisfies the

following conditions:

1. Φ(ǫ, x) is smooth in x and ∂|ν|Φ
∂xν (ǫ, x) is continues in (ǫ, x) ∈ (0, 1]×R

nwith probability one for

any muti-index ν;

2. For any k, p > 1 and multi-index ν we have:

sup
ǫ∈(0,1]

∥

∥

∥

∥

∥

∂|ν|Φ
∂νx

(ǫ, x)

∥

∥

∥

∥

∥

Dk,p

<∞.

Lemma 4.3

1. βJ,ǫI (1, x) ∈ K for any I, J ∈ A1(l).

2. (M ǫ
I,J(x))

−1 ∈ K for any I, J ∈ A1(l).
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3. ΨI(ǫ, t, x) =
∑

J∈A1(l)
βJ,ǫ(t, x)(M ǫ

I,J (x))
−1 ∈ K.

Proof. This is a direct consequence of Lemma 3.3 and Theorem 3.5. �

Proposition 4.4 Let Φ(ǫ, x) ∈ K, then for any I ∈ A1(l) , there exists T ∗
V ǫ
[I]
Φ(ǫ, x) ∈ K such that

E(Φ(ǫ, x)V ǫ
[I]f(X

ǫ,x
1 )) = E

(

f(Xǫ,x
1 )T ∗

V ǫ
[I]
Φ(ǫ, x)

)

.

Proof. We have

E(Φ(ǫ, x)V[I]f(X
ǫ,x
1 )) =E



Φ(ǫ, x)
∑

J∈A1(l)

(M ǫ
I,J(x))

−1D(J)f(Xǫ,x
1 )





=E



Φ(ǫ, x)
∑

J∈A1(l)

(M ǫ
I,J(x))

−1〈D·f(X
ǫ,x
1 ), βJ,ǫ(·, x)〉H





=E



〈D·f(X
ǫ,x
1 ),

∑

J∈A1(l)

βJ,ǫ(·, x)(M ǫ
I,J (x))

−1Φ(ǫ, x)〉H





=E

(

f(Xǫ,x
1 )T ∗

V ǫ
[I]
Φ(ǫ, x)

)

where

T ∗
V ǫ
[I]
Φ(ǫ, x) =δ





∑

J∈A1(l)

βJ,ǫ(t, x)(M ǫ
I,J (x))

−1Φ(ǫ, x)





=δ (ΨI(ǫ, t, x)Φ(ǫ, x)) .

Then, by using the continuity of δ : Dk+1 → D
k and Hölder’s inequality we have:

‖T ∗
V ǫ
[I]
Φ(ǫ, x)‖

Dk,p ≤Ck,p‖ΨI(ǫ, t, x)Φ(ǫ, x)‖Dk+1,p

≤Ck,p‖ΨI(ǫ, t, x)‖Dk+1,r‖Φ(ǫ, x)‖Dk+1,q

where 1
r +

1
q = 1

p . �

5 Regularization bounds

Now we are ready to state our main theorem. Consider the equation:

Xx
t = x+

d
∑

i=1

∫ t

0
Vi(X

x
s )dB

i
s, (5.11)

where the vector fields V1, . . . , Vd are C∞ bounded vector fields on R
n and where B is a fractional

Brownian motion with parameter H ∈ (1/4, 1).
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Theorem 5.1 Let x ∈ R
n and p ≥ 1. For any integer k ≥ 1 and I1, · · · , Ik ∈ A1(l), there exists a

constant C > 0 (depending on x) such that for every C∞ bounded function f ,

|V[I1] · · ·V[Ik]Ptf(x)| ≤ Ct−(|I1|+···+|Ik|)H(Ptf
p(x))

1
p , t ∈ (0, 1].

Proof. Let ǫ = t. By the fact that Xx
ǫ has the same distribution as Xǫ,x

1 , we have:

V[I1] · · ·V[Ik]Ptf(x) =V[I1] · · ·V[Ik]E(f(Xx
t ))

=V[I1] · · ·V[Ik]E(f(Xx
ǫ ))

=ǫ−(|I1|+···|I|k)V ǫ
[I1]

· · ·V ǫ
[Ik]

E(f(Xǫ,x
1 ))

To prove the theorem, it is sufficient to show that there exists Φ(ǫ, x) ∈ K such that:

V ǫ
[I1]

· · ·V ǫ
[Ik]

E(f(Xǫ,x
1 )) = E(f(Xǫ,x

1 )Φ(ǫ, x)) (5.12)

And the result follows by a simple application of Hölder’s inequality. We prove the equation (5.12)

by induction. When k = 1, by Proposition 4.4, there exists T ∗
V ǫ
[I1]

1(ǫ, x) ∈ K. Now suppose the

statement is true for k = m, then there exists Φ(ǫ, x) ∈ K and we have:

V ǫ
[Im+1]

V ǫ
[Im] · · ·V ǫ

[I1]
E(f(Xǫ,x

1 )) =V ǫ
[Im+1]

E(f(Xǫ,x
1 )Φ(ǫ, x))

=E

(

Φ(ǫ, x)V ǫ
[Im+1]

f(Xǫ,x
1 ) + f(Xǫ,x

1 )V ǫ
[Im]Φ(ǫ, x)

)

=E

(

f(Xǫ,x
1 )T ∗

V ǫ
[Im+1]

Φ(ǫ, x) + f(Xǫ,x
1 )V ǫ

[Im+1]
Φ(ǫ, x)

)

=E

(

f(Xǫ,x
1 )

(

T ∗
V ǫ
[Im+1]

Φ(ǫ, x) + V ǫ
[Im+1]

Φ(ǫ, x)

))

.

Since by induction hypothesis we know Φ(ǫ, x) ∈ K. Now by Proposition 4.4, we have that
(

T ∗
V ǫ
[Im+1]

Φ(ǫ, x) + V ǫ
[Im+1]

Φ(ǫ, x)

)

∈ K and this completes the proof �

As a straightforward corollary of the previous result, we finally deduce the following regularization

result:

Theorem 5.2 For any integer k ≥ 1 and I1, · · · , Ik ∈ A1(l), there exists a constant C > 0 such

that for every C∞ bounded function f ,

|V[I1] · · ·V[Ik]Ptf(x)| ≤ Ct−(|I1|+···+|Ik|)H‖f‖∞

for any t ∈ (0, 1].

19



References

[1] F. Baudoin, L. Coutin: Operators associated with a stochastic differential equation driven by

fractional Brownian motions. Stoch. Proc. Appl. 117 (2007), no. 5, 550–574.
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