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Abstract. By taking a functional analytic point of view, we consider a family

of distributions (continuous linear functionals on smooth functions), denoted
by {µt, t > 0}, associated to the law of iterated logarithm for Brownian motion

on a compact manifold. We give a complete characterization of the collection

of limiting distributions of {µt, t > 0}.

1. Introduction

Let M be a compact C∞-Riemannian manifold (without boundary). For any
fixed x ∈ M , it is well-known that the Laplace-Beltrami operator 4M generates a
unique diffusion process X starting from x, which is called the Brownian motion
on M starting from x. It is a continuous, strong Markov process with transition
density p(t, x, y), the fundamental solution of

∂

∂t
p(t, x, ·) =

1

2
4Mp(t, x, ·) .

Denote by m the volume measure on M induced by the metric and m0 = m(M).
Since m/m0 is the invariant probability measure for X, the well-known ergodic
theorem implies that for all f ∈ L1(M), almost surely

lim
t→∞

1

t

∫ t

0

f(Xs)ds =
1

m0

∫
M

fdm.

Hence,
∫ t
0
f(Xs) ds blows up to infinity with a rate of t and scalar 1

m0

∫
M
fdm. The

second order term is given by∫ t

0

f(Xs)ds−
t

m0

∫
M

fdm.

When t tends to infinity, the magnitude of the above is characterized by the law
of the iterated logarithm (see, for example [1] and [2]). More precisely, we have
almost surely

lim sup
t→∞

∫ t
0
f(Xs)ds−m−10 t

∫
M
fdm

√
2t log log t

=

√
2

m0
(Gf, f)L2 .(1.1)

In the above, (·, ·)L2 is the standard inner product associated to L2(M), and G
is the Green operator introduced by Baxter and Brosamler in [1] (see Section 2
below for an explicit definition of G). It took some effort to show that (1.1) is true
simultaneously for all f ∈ C∞(M). Indeed, the following was proved by Brosamler
in [2].
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Theorem 1.1. We have

P
{

lim sup
t→∞

∫ t
0
f(Xs)ds−m−10 t

∫
M
fdm

√
2t log log t

(1.2)

=

√
2

m0
(Gf, f)L2 , all f ∈ C∞

}
= 1.

The present work is concerned with the family of signed measures {µt, t > 0} on
M obtained by ∫

M

fdµt =

∫ t
0
f(Xs)ds−m−10 t

∫
M
fdm

√
2t log log t

.

With Theorem 1.1 in mind, we would rather think of µt as a distribution (contin-
uous linear functional) on C∞(M) and write, for all f ∈ C∞(M)

µt(f) =

∫
M

fdµt.

Of course, µt also depends on the sample path ω ∈ Ω of X. In the event that we
want to emphasize such dependence, we will write µωt . Throughout this paper, we
use the term distributions exclusively for continuous linear functionals on C∞(M).
It is then natural to wonder what the limiting distributions of the family {µt} are.
More precisely, we are interested in, for each ω ∈ Ω, how one can characterize the
class of distributions µ on C∞(M) such that there exists a sequence {tn, n ≥ 1}

µωtn(f)→ µ(f), all f ∈ C∞(M).(1.3)

The result of our investigation on the above question is reported in the next theo-
rem.

Theorem 1.2. Let D be the collection of distributions on C∞(M) satisfying the
following four properties.

(a) µ can be identified as a signed measure on M , still denoted by µ;
(b) µ(M) = 0;
(c) µ is absolutely continuous with respect to the volume measure m, with

Radon-Nikodym derivative g = dµ/dm in L2(M). Moreover,
(d) g is in the domain of G−11/2, and

‖G−11
2

g‖L2 ≤
√

2

m0
.

Here, roughly speaking, G1/2 = (−4M/2)−1/2, and is defined more precisely in the
next section.

Then, almost surely, the class of limiting distributions of the family {µωt , t > 0}
is exactly D .

Clearly, the above theorem gives a complete characterization of the collection of
limiting distributions of {µt}.

Careful readers may wonder whether Theorem 1.2 remains valid if we replace
C∞(M) in (1.3) by C(M), the collection of (bounded) continuous functions on
M . That is, we regard {µt} and µ in Theorem 1.2 as genuine signed measures
and consider weak convergence in the space of signed measures, as opposed to
convergence in the space of distributions. The main reason why we do not work in
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the former setting in the present work is due to the fact that, in that case, Theorem
1.2 is intimately related to a version of the law of the iterated logarithm that holds
simultaneously for all f ∈ C(M). Whether one has such an iterated logarithm
is a non-trivial question. It seems the best result in this direction is obtained by
Brosamler in [2] for the Sobolev spaces Hα

0 with α > max(d− 3/2, d/2), where d is
the dimension of M and Hα

0 is that in Definition 2.1 below.

The rest of this paper has two sections. In Section 2, we provide some preliminary
material that will be needed for our discussion later. In particular, we introduce
some operators and Sobolev spaces associated to Brownian motion on manifolds.
The proof of Theorem 1.2 is detailed in Section 3.

2. Brownian motion on manifolds and Sobolev spaces

Throughout our discussion below, we assume that M is a compact Riemannian
manifold of dimension d. Fix any x ∈ M , let X = {Xt, t ≥ 0} be a Brownian
motion on M starting from x; that is, X is the unique diffusion process generated
by the Laplace-Beltrami operator4M . Denote by p(t, x, y) its probability transition
density function. In this section, we briefly introduce some operators and Sobolev
spaces associated to X, that will be needed in the sequel. A more detailed discussion
on these materials can be found, e.g., in [2].

We first introduce the Green kernel

g(x, y) =

∫ ∞
0

(p(t, x, y)−m−10 ) dt, x, y ∈M,x 6= y.(2.1)

Clearly g(x, y) inherits its symmetry in x and y from p(t, x, y). It is also not hard
to see that g is continuous off the diagonal of M ×M . Since for large t, there exists
α > 0 and C > 0 such that (see, e.g., [1])

sup
x,y∈M

|p(t, x, y)−m−10 | ≤ Ce−αt,

and for small t, p(t, x, y) is known to have an order (see, e.g., [4] and [3])

(2πt)−
d
2 e−

d(x,y)2

2t .

Here d(x, y) is the Riemannian distance between x and y. Moreover, with some
extra work, one can show that g(x, y) is C∞ off the diagonal.

More generally, we introduce for α > 0 the kernel

gα(x, y) = Γ(α)−1
∫ ∞
0

tα−1(p(t, x, y)−m−10 ) dt, x, y ∈M,x 6= y.(2.2)

Obviously g1(x, y) = g(x, y), and gα(x, y) is symmetric in x and y. The semigroup
property of p(t, x, y) implies that∫

M

gα(x, z)gβ(z, y)m(dz) = gα+β(x, y), for α, β > 0.

Hence, for any f ∈ L2(M), letting

(Gαf)(x) =

∫
M

gα(x, y)f(y)m(dy),

we obtain a semigroup of bounded symmetric linear operators Gα on L2(M). In
particular, we denote G = G1 which is the Green operator introduced in [1].
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In the following, we let

L2
0(M) =

{
f ∈ L2(M) :

∫
M

fdm = 0

}
,

and

C∞0 (M) =

{
f ∈ C∞(M) :

∫
M

fdm = 0

}
.

For simplicity, we will suppress M in the notation when there is no danger of
possible confusion.

Definition 2.1. For any α > 0, let Hα
0 = Gα/2(L2

0), with inner product(
Gα

2
f1, Gα

2
f2
)
Hα0

= 2α(f1, f2)L2 .

We write ‖ · ‖Hα0 for the norm induced by (·, ·)Hα0 .

It is known (see, e.g., [2]) that for α1 < α2, Hα2
0 is continuously embedded into

Hα1
0 , and ∩α>0H

α
0 = C∞0 . Moreover, the Sobolev spaces Hα

0 are the completion of
C∞0 with respect to the norm ‖ · ‖Hα0 .

The characterization of operators Gα and spaces Hα
0 is probably more familiar

to some readers in a functional analytic setting. Denote by 0 = λ0 < λ1 ≤ λ2 ≤ ...
the eigenvalues of −4M and by φ0 = m

−1/2
0 , φ1, φ2, ... an orthonormal sequence of

corresponding eigenfunctions.

Proposition 2.2. The following facts are well-known.

(1) φn ∈ C∞, n ≥ 0.
(2) Gαφ0 = 0 and

Gαφn = 2αλ−αn φn,

for α > 0.
(3) Set

φαn = λ−α/2n φn.

For all α > 0, the functions {φαn, n ≥ 1} form a complete orthonormal
system in Hα

0 .
(4) For any f ∈ L2

0, let fn = (f, φn)L2 . We have

f =

∞∑
n=1

fnφn.

Moreover, f belongs to Hα
0 if and only if
∞∑
n=1

λαnf
2
n <∞.

(5) For f ∈ Hα
0 ,

‖f‖2Hα0 =

∞∑
n=1

λαnf
2
n.

Remark 2.3. By the characterization in terms of eigenvalues and eigenfunctions, it is
clear that Gα : L2

0 → H2α
0 is a self-adjoint operator and, indeed, Gα = (−4M/2)−α.

Finally, we state one of the main results in [2], which plays a key role in our
discussion below.
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Theorem 2.4. For α > max(d− 3/2, d/2), we have almost surely∣∣∣∣∣
∫ t
0
f(Xs)ds√

2t log log t

∣∣∣∣∣ ≤ ‖f‖Hα0 C(ω), t ≥ 3, f ∈ Hα
0 .

In the above, C is a finite constant depending on sample path ω (but not on t).

Proof. This is essentially the content of [2, Theorem 3.8]. �

3. Limiting distributions

Recall that X is a Brownian motion on a compact manifold M starting from a
pre-fixed point x ∈ M . For each t > 0 and ω ∈ Ω, we consider the distribution µωt
on C∞(M) obtained by

µωt (f) =

∫ t
0
f(Xs(ω))ds−m−10 t

∫
M
fdm

√
2t log log t

, f ∈ C∞(M).

To lighten the notation, we usually suppress its dependence on ω and simply write
µt. We are interested in understanding the class of limiting distributions (accumu-
lating points) of the family {µt}. Clearly, in order to prove Theorem 1.2, we only
need to show the following two theorems hold.

Theorem 3.1. For each ω ∈ Ω, if µ is a limiting distribution of the family {µωt , t ≥
0}, then µ can be identified as a signed measure on M , still denoted by µ, such that

(a) µ(M) = 0;
(b) µ is absolutely continuous with respect to the volume measure m, with

Radon-Nikodym derivative g = dµ/dm in L2
0(M). Moreover,

(c) g is in the domain of G−11/2, and∥∥∥G−11
2

g
∥∥∥
L2
≤
√

2

m0
.

Theorem 3.2. There exists a subset Ω0 ⊂ Ω with P(Ω0) = 1 such that for any
signed measure µ satisfying the characterizations in Theorem 3.1 and any ω ∈ Ω0,
we can find a sequence of times {tn, n ≥ 1} such that for all f ∈ C∞(M),

µωtn(f)→ µω(f),

as n→∞.

The rest of this section is devoted to the proof of Theorem 3.1 and Theorem 3.2
above.

Proof of Theorem 3.1. Fix any ω ∈ Ω in (1.2), and suppose µ is a limiting
distribution of the family {µωt , t ≥ 0}. First note that µ can be identified as (or, in
another word, extended to) a signed measure on M . Indeed, by (1.2) and the fact
that G : L2(M)→ L2(M) is a bounded linear operator, we have for all f ∈ C∞,

|µ(f)| ≤
√

2

m0
(f,Gf)L2 ≤ C

√
2

m0
‖f‖L2

for some constant C > 0. Since C∞(M) is dense in L2(M), the above inequality
implies that µ can be extended to (and hence be identified as) a bounded linear
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functional on L2(M). Now, the Riesz representation theorem tells us that there
exists a function g ∈ L2(M) such that

µ(f) = (g, f)L2 =

∫
M

fgdm, f ∈ L2(M).

As a consequence, we can identify µ = g dm, a signed measure on M which is
absolutely continuous with respect to the volume measure m. Clearly, the Radon-
Nikodym derivative g is L2(M). In addition, for any constant function f , we have

µt(f) = 0.

It implies

µ(f) = 0,

and in particular for f ≡ 1,

µ(M) =

∫
M

g dm = 0.

Hence g ∈ L2
0(M). This proves (a) and (b) of Theorem 3.1.

Next, we show that g satisfies (c) of Theorem 3.1. For any f ∈ C∞0 , denote by

h = G 1
2
f.

By (1.2), we have ∣∣∣∣∫
M

fgdm

∣∣∣∣ = |µ(f)|

≤
√

2

m0
(f,Gf)L2

=

√
2

m0
(G 1

2
f,G 1

2
f)L2

=

√
2

m0
‖h‖L2 .

That is ∣∣∣(G−11
2

h, g)L2

∣∣∣ =

∣∣∣∣∫
M

(
G−11

2

h
)
gdm

∣∣∣∣ ≤√ 2

m0
‖h‖L2 ,(3.1)

for all h = G1/2f, f ∈ C∞0 . Observe that C∞0 = ∩α≥0Hα
0 , together with the

definition of Hα
0 , we have G1/2(C∞0 ) = C∞0 . Thus we conclude that (3.1) holds

valid for all h ∈ C∞0 . As a consequence, g is in the domain of (G−11/2)∗, the adjoint

of G−11/2, for C∞0 is dense in L2
0. Thus(

h,
(
G−11

2

)∗
g
)
L2
≤
√

2

m0
‖h‖L2 .

Again, the density of C∞0 in L2
0 and the above inequality implies∥∥∥(G−11

2

)∗
g
∥∥∥
L2
≤
√

2

m0
.

Now the proof of (c) is completed by observing that G−11/2 is a self-adjoint operator

on L2
0 . �
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Finally, we focus on the proof of Theorem 3.2. First, observe that for f1, ..., fn ∈
L2
0, the matrix ((fi, Gfj)L2 , i, j = 1, ..., n) is positive definite if and only if f1, ..., fn

are linearly independent. Let f1, ..., fn ∈ L2
0 be linearly independent and consider

the ellipsoid Ef1,...,fn defined by

Ef1,...,fn =

(z1, ..., zn) ∈ Rn,
n∑

i,j=1

aijzizj ≤ 1

 .(3.2)

Here (m0

2 aij) is the inverse matrix of ((fi, Gfj)L2 , i, j = 1, ..., n).

Remark 3.3. Recall our φ1, φ2, ... in Proposition 2.2. Clearly φ1, φ2, ... are linearly
independent and φk ∈ C∞0 for all k ≥ 1. Since

Gφk = 2λ−1k φk,

we have for fk =
√
λk/2φk,

(fi, Gfj)L2 = δij .

Throughout our discussion below we pick this particular choice of fk’s. In this case,
for each n ≥ 1, Ef1,...,fn is simply a ball in Rn centered at the origin with radius√

2/m0.

Lemma 3.4. Suppose α > max
(
d− 3

2 ,
d
2

)
, and denote by

Lt(f) =

∫ t

0

f(Xs)ds.

There exists a subset Ω0 ⊂ Ω with P(Ω0) = 1 such that for all n ≥ 1

Rn − cluster set
(Lt(f1), ..., Lt(fn))√

2t log log t
= Ef1,...,fn , when t→∞.

Proof. This a restatement of Theorem 4.6 of [2]. �

Proof of Theorem 3.2. We want to show that for any ω ∈ Ω0 in Lemma 3.4
and any fixed µ, a signed measure satisfying the characterizations in Theorem 3.1,
we can find a sequence of times t1 < t2 < t3 < ... such that

µtn → µ, as n→∞,

in the space of distributions. We break our proof into three steps.

Step 1. We first show that for any n ≥ 1, the vector

vn = (µ(f1), ..., µ(fn))

is an element in the ball Ef1,...,fn defined in (3.2).
By our choice of {fk, k ≥ 1} in Remark 3.3, Ef1,...,fn is a ball in Rn centered

at the origin with radius
√

2/m0. Hence the proof reduces to show that the inner
product vn · ζ in Rn satisfies

|vn · ζ| ≤
√

2

m0
,(3.3)
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for any unit vector ζ = (ζ1, ..., ζn) ∈ Rn. Indeed, we have

vn · ζ =

n∑
k=1

µ(fk)ζk

= µ

(
n∑
k=1

ζkfk

)

=

∫
M

(
n∑
k=1

ζkfk

)
g dm

=

(
n∑
k=1

ζkfk , g

)
L2

=

(
n∑
k=1

ζkG 1
2
fk , G

−1
1
2

g

)
L2

,

where g = dµ/dm. Hence, by the Cauchy-Schwarz inequality and our choice of fk
and µ, we obtain

‖vn · ζ| ≤

∥∥∥∥∥
n∑
k=1

ζkG 1
2
fk

∥∥∥∥∥
L2

∥∥∥G−11
2

g
∥∥∥
L2

=
√

(ζ1)2 + ..+ (ζn)2
∥∥∥G−11

2

g
∥∥∥
L2

≤
√

2

m0
,

where we used the fact that ∥∥∥G−11
2

g
∥∥∥
L2
≤
√

2

m0
.

Hence we have proved the desired inequality in (3.3).

Step 2. Fix any ω ∈ Ω0 in Lemma 3.4. We show in this step that we can find a
sequence of times t1 < t2 < t3 < ... such that

µtn(fk)→ µ(fk), as n→∞,(3.4)

for all k ≥ 1.
For each fixed n ≥ 1, still let

vn = (µ(f1), ..., µ(fn)).

Recall that for f ∈ C∞0 ,

µt(f) =

∫ t
0
f(Xs)ds√

2t log log t
=

Lt(f)√
2t log log t

.

Introduce

vn,t = (µt(f1), ..., µt(fn)).

By Lemma 3.4 and what we have proved in Step 1, for each fixed n there exists an
increasing sequence of times {tnm,m ≥ 1} such that

|vn,tnm − vn| → 0, as m→∞.
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Start with n = 1. Because v1,t1m → v1, in particular, we can find t1 ∈ {t1m} such
that

|v1,t1 − v1| < 1.

For n = 2, v2,t2m → v2 implies that we can find t2 ∈ {t2m} such that t2 > t1 and

|v2,t2 − v2| <
1

2
.

In general, we can choose tn ∈ {tnm} such that tn > tn−1 and

|vn,tn − vn| <
1

n
.(3.5)

We claim that with such choice of {tn, n ≥ 1}, the convergence in (3.4) holds
true for all k. Indeed, for each fixed k, we observe that µtn(fk)− µ(fk) is the k-th
entry of the vector vn,tn − vn when n ≥ k. Hence by (3.5),

|µtn(fk)− µ(fk)| ≤ |vn,tn − vn| ≤
1

n
, n ≥ k.

Letting n→∞, the proof is completed.
We emphasize that our choice of {tn} in this step may depend on ω ∈ Ω0.

Step 3. We complete our proof of Theorem 3.2 in this step. That is, we show for
any fixed ω ∈ Ω0 in Lemma 3.4 and any µ in Theorem 3.1, there exists a sequence
of times {tn, n ≥ 1} (that may depend on ω) such that for all f ∈ C∞,

µtn(f)→ µ(f).

Obviously, since µt(f) = µ(f) = 0 for constant f , we only need to prove the desired
convergence for all f ∈ C∞0 .

Let
L = {f, f is a (finite) linear combination of f1, f2, ...}.

Clearly L is a dense subset of Hα
0 for all α > 0, for {φαn, n ≥ 1} is a complete

orthonormal system in Hα
0 .

On the other hand, by what we have proved in Step 2, together with the linearity
of both µt(·) and µ(·), for each fixed ω ∈ Ω0 there exists {tn, n ≥ 1} such that for
all f ∈ L,

µtn(f)→ µ(f).

By a standard density argument, in order to conclude our proof it suffices to show
that, uniformly in t, µt(·) is a continuous functional on the space Hα

0 for some α > 0,
and that µ(·) is a continuous functional on the same Hα

0 . Fortunately, the desired
uniform continuity of µt(·) is given by Theorem 2.4 for any α > max(d− 3/2, d/2).

For the continuity of µ(·), we only need to note that for f ∈ Hα
0 ,

|µ(f)| = |(f, g)L2 |
≤ C1‖f‖L2‖g‖L2

≤ C2‖f‖Hα0 ‖g‖H1
0

≤ 2C2

√
1

m0
‖f‖Hα0 ,

where we have used the fact that ‖ · ‖L2 ≤ C‖ · ‖Hα0 for α > 0, and that

‖g‖H1
0

=
√

2
∥∥∥G−11

2

g
∥∥∥
L2
≤ 2

√
1

m0
,
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by our choice of µ. The proof of Theorem 3.2 is thus completed. �
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