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We consider a Markov process X, which is the solution of a stochastic differential equation driven by a
Lévy process Z and an independent Wiener process W . Under some regularity conditions, including non-
degeneracy of the diffusive and jump components of the process as well as smoothness of the Lévy density
of Z outside any neighborhood of the origin, we obtain a small-time second-order polynomial expansion
for the tail distribution and the transition density of the process X. Our method of proof combines a recent
regularizing technique for deriving the analog small-time expansions for a Lévy process with some new
tail and density estimates for jump-diffusion processes with small jumps based on the theory of Malliavin
calculus, flow of diffeomorphisms for SDEs, and time-reversibility. As an application, the leading term for
out-of-the-money option prices in short maturity under a local jump-diffusion model is also derived.

Keywords: local jump-diffusion models; option pricing; small-time asymptotic expansion; transition
densities; transition distributions

1. Introduction

The small-time asymptotic behavior of the transition densities of Markov processes {Xt(x)}t≥0
with deterministic initial condition X0(x) = x has been studied for a long time, with a certain
focus to consider either purely-continuous or purely-discontinuous processes. Starting from the
problem of existence, there are several sets of sufficient conditions for the existence of the tran-
sition density of Xt(x), denoted hereafter pt(·;x). A stream in this direction is based on the
machinery of Malliavin calculus, originally developed for continuous diffusions (see the mono-
graph Nualart [24]) and, then, extended to Markov process with jumps (see the monograph
Bichteler, Gravereaux and Jacod [6]). This approach can also yield estimates of the transition
density pt (·;x) in small time t . For purely-jump Markov processes, the key assumption is that
the Lévy measure of the process admits a smooth Lévy density. The pioneer of this approach
was Léandre [18], who obtained the first-order small-time asymptotic behavior of the transition
density for fully supported Lévy densities. This result was extended in Ishikawa [16] to the case
where the point y cannot be reached with only one jump from x but rather with finitely many
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jumps, while Picard [26] developed a method that can also be applied to Lévy measures with a
non-zero singular component (see also Picard [27] and Ishikawa [17] for other related results).

The main result in Léandre [18] states that, for y �= 0,

lim
t→0

1

t
pt (x + y;x) = g(x;y),

where g(x;y) is the so-called Lévy density of the process X to be defined below (see (1.5)).
Léandre’s approach consisted of first separating the small jumps (say, those with sizes smaller
than an ε > 0) and the large jumps of the underlying Lévy process, and then conditioning on the
number of large jumps by time t . Malliavin’s calculus was then applied to control the resulting
density given that there is no large jump. For ε > 0 small enough, the term when there is only
one large jump was proved to be equivalent, up to a remainder of order o(t), to the term resulting
from a model in which there is no small-jump component at all. Finally, the terms when there is
more than one large jump were shown to be of order O(t2).

Higher-order expansions of the transition density of Markov processes with jumps have been
considered quite recently and only for processes with finite jump activity (see, e.g., Yu [34]) or
for Lévy processes with possibly infinite jump-activity. We focus on the literature of the latter
case due to its close connection to the present work. Rüschendorf and Woerner [31] was the first
work to consider higher-order expansions for the transition densities of Lévy processes using
Léandre’s approach. Concretely, the following expansion for the transition densities {pt(y)}t≥0
of a Lévy process {Zt }t≥0 was proposed therein:

pt(y) := d

dy
P(Zt ≤ y) =

N−1∑
n=1

an(y)
tn

n! + O
(
tN

)
(y �= 0,N ∈ N). (1.1)

As in Léandre [18], the idea was to justify that each higher-order term (say, the term correspond-
ing to k large jumps) can be replaced, up to a remainder of order O(tN ), by the resulting density
as if there were no small-jump component. However, this approach is able to produce the correct
expressions for the higher-order coefficients a2(y), . . . only in the compound Poisson case (cf.
Figueroa-López and Houdré [11]). The problem was subsequently resolved in Figueroa-López,
Gong and Houdré [10] (see Section 6 therein as well as Figueroa-López and Houdré [11] for a
preliminary related result), using a new approach, under the assumption that the Lévy density
of the Lévy process {Zt }t≥0 is sufficiently smooth and bounded outside any neighborhood of
the origin. There are two key ideas in Figueroa-López, Gong and Houdré [10], Figueroa-López
and Houdré [11]. Firstly, instead of working directly with the transition densities, the following
analog expansions for the tail probabilities were first obtained:

P(Zt ≥ y) =
N−1∑
n=1

An(y)
tn

n! + tN Rt (y) (y > 0,N ∈ N), (1.2)

where sup0<t≤t0
|Rt (y)| < ∞, for some t0 > 0. Secondly, by considering a smooth threshold-

ing of the large jumps (so that the density of large jumps is smooth) and conditioning on the
size of the first jump, it was possible to regularize the discontinuous functional 1{Zt≥x} and,
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subsequently, proceed to use an iterated Dynkin’s formula (see Section 3.2 below for more in-
formation) to expand the resulting smooth moment functions E(f (Zt )) as a power series in t .
Equation (1.1) was then obtained by differentiation of (1.2), after justifying that the functions
An(y) and the remainder Rt (y) were differentiable in y.

The results and techniques described in the previous paragraph open the door to the study of
higher-order expansions for the transition densities of more general Markov models with infinite
jump-activity. We take the analysis one step further and consider a jump-diffusion model with
non-degenerate diffusion and jump components. Our analysis can also be applied to purely-
discontinuous processes as in Léandre [18], but we prefer to consider a “mixture model” due to
its relevance in financial applications where empirical evidence supports models containing both
continuous and jump components (see Section 6 below for detailed references in this direction).
More concretely, we consider the following stochastic differential equations (SDE) driven by a
Wiener process {Wt }t≥0 and an independent pure-jump Lévy process {Zt }t≥0:

Xt(x) = x +
∫ t

0
b
(
Xu(x)

)
du +

∫ t

0
σ
(
Xu(x)

)
dWu

(1.3)

+
∑

u∈(0,t]: |�Zu|≥1

γ
(
Xu−(x),�Zu

) +
c∑

u∈(0,t]: 0<|�Zu|≤1

γ
(
Xu−(x),�Zu

)
.

Here, �Zu := Zu − Zu− := Zu − lims↗t Zs denotes the jump of Z at time u, while
∑c denotes

the compensated Poisson sum of the terms therein. The functions b,σ : R → R, γ : R × R → R

are some suitable deterministic functions so that (1.3) is well-posed.
As it will be evident from our work, an important difficulty to deal with the model (1.3)

arises from the more complex interplay of the jump and continuous components. In particular,
conditioning on the first “big jump” of {Xs(x)}s≤t leads us to consider the short-time expansions
of the tail probability of a SDE with random initial value J̃ , which creates important, albeit
interesting, subtleties. More concretely, in the case of a Lévy process (i.e., when b, σ , and γ

above are state-independent), conditioning on the first big jump naturally leads to analyzing the
small-time expansion of the tail probability P(Xε

t (x)+ J̃ ≥ x + y), where {Xε
s (x)} stands for the

“small jump” component of {Xs(x)} (see the end of Section 2 for the terminology). This task is
relatively simple to handle since the smooth density of J̃ “regularizes” the problem. By contrast,
in the general local jump-diffusion model, conditioning on the first big jump leads to consider
P(Xε

t (x + J̃ ) ≥ x + y), a problem that does not allow a direct application of Dynkin’s formula.
Instead, to obtain the second-order expansion of the latter tail probability, we need to rely on
smooth approximations of the tail probability building on the theoretical machinery of the flow
of diffeomorphisms for SDEs and time-reversibility.

Under certain regularity conditions on b,σ and γ , as well as the Lévy measure ν of Z, we
show the following second-order expansion (as t → 0) for the tail distribution of {Xt(x)}t≥0:

P
(
Xt(x) ≥ x + y

) = tA1(x;y) + t2

2
A2(x;y) + O

(
t3) for x ∈ R, y > 0. (1.4)

The assumptions required for (1.4) include boundedness and sufficient smoothness of the SDE’s
coefficients as well as non-degeneracy conditions on |∂ζ γ (x, ζ )| and |1 + ∂xγ (x, ζ )|. As in
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Léandre [18], the key assumption on the Lévy measure ν of Z is that this admits a density
h : R \ {0} → R+ that is bounded and sufficiently smooth outside any neighborhood of the ori-
gin. In that case, the leading term A1(x;y) depends only on the jump component of the process
as follows

A1(x;y) = ν
({

ζ : γ (x, ζ ) ≥ y
}) =

∫
{ζ :γ (x,ζ )≥y}

h(ζ )dζ.

The second-order term A2(x;y) admits a more complex (but explicit) representation, which
enables us, for instance, to precisely characterize the effects of the drift b and the diffusion σ of
the process in the likelihood of a “large” positive move (say, a move of size more than y) during
a short time period t (see Remark 4.2 below for further details).

Once the asymptotic expansion for tail distribution is obtained, we proceed to obtain a second-
order expansion for the transition density function pt(y;x). As expected from taking formal
differentiation of the tail expansion (1.4) with respect to y, the leading term of pt (x + y;x)

is of the form tg(x;y) for y > 0, where g(x;y) is the so-called Lévy density of the process
{Xt(x)}t≥0 defined by

g(x;y) := − ∂

∂y
ν
({

ζ : γ (x, ζ ) ≥ y
})

(y > 0), (1.5)

while the second-order term takes the form −∂yA2(x;y)t2/2. One of the main subtleties here
arises from attempting to control the density of Xt(x) given that there is no “large” jump. To
this end, we generalize the result in Léandre [18] to the case where there is a non-degenerate
diffusion component. Again, Malliavin calculus is proved to be the key tool for this task.

Let us briefly make some remarks about the practical relevance of our results. Short-time
asymptotics for the transition densities and distributions of Markov processes are important
tools in many applications such as non-parametric estimation methods of the model under high-
frequency sampling data and numerical approximations of functionals of the form 	t(x) :=
E(φ(XT (x))). In many of these applications, a certain discretization of the continuous-time ob-
ject under study is needed and, in that case, short-time asymptotics are important not only in
developing such discrete-time approximations but also to determine the rate of convergence of
the discrete-time proxies to their continuous-time counterparts.

As an instance of the applications referred to in the previous paragraph, a problem that has
received a great deal of attention in the last few years is the study of small-time asymptotics for
option prices and implied volatilities (see, e.g., Gatheral et al. [15], Feng, Forde and Fouque [8],
Forde and Jacquier [13], Berestyki, Busca and Florent [5], Figueroa-López and Forde [9],
Roper [30], Tankov [33], Gao and Lee [14], Muhle-Karbe and Nutz [23], Figueroa-López, Gong
and Houdré [10]). As a byproduct of the asymptotics for the tail distributions (1.4), we derive
here the leading term of the small-time expansion for the arbitrage-free prices of out-of-the-
money European call options. Specifically, let {St }t≥0 be the stock price process and denote
Xt = logSt for each t ≥ 0. We assume that P is the option pricing measure and that under this
measure the process {Xt }t≥0 is of the form in (1.3). Then, we prove that

lim
t→0

1

t
E(St − K)+ =

∫ ∞

−∞
(
S0eγ (x,ζ ) − K

)
+h(ζ )dζ, (1.6)
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which extends the analog result for exponential Lévy model (cf. Roper [30] and Tankov [33]).
A related paper is Levendorskii [20], where (1.6) was obtained for a wide class of multi-factor
Lévy Markov models under certain technical conditions (see Theorem 2.1 therein), including
the requirement that limt→0 E(St − K)+/t exists in the “out-of-the-money region” and some
stringent integrability conditions on the Lévy density h.

The paper is organized as follows. In Section 2, we introduced the model and the assumptions
needed for our results. The probabilistic tools, such as the iterated Dynkin’s formula as well as
tail estimates for semimartingales with bounded jumps, are presented in Section 3. The main
results of the paper are then stated in Sections 4 and 5, where the second-order expansion for
the tail distributions and the transition densities are obtained, respectively. The application of the
expansion for the tail distribution to option pricing in local jump-diffusion financial models is
presented in Section 6. The proofs of our main results as well as some preliminaries of Malliavin
calculus on Wiener–Poisson spaces are given in several appendices.

2. Setup, assumptions and notation

Throughout, C
≥1
b (resp., C∞

b ) represents the class of continuous (resp., bounded) functions with
bounded and continuous partial derivatives of arbitrary order n ≥ 1. We let Z := {Zt }t≥0 be
a pure-jump Lévy process with Lévy measure ν and {Wt }t≥0 be a Wiener process indepen-
dent of Z, both of which are defined on a complete probability space (�, F ,P), equipped
with the natural filtration (Ft )t≥0 generated by W and Z and augmented by all the null sets
in F so that it satisfies the usual conditions (see, e.g., Chapter I in Protter [29]). The jump
measure of the process Z is denoted by M(du,dζ ) := #{u > 0: (u,�Zu) ∈ du × dζ }, where
�Zu := Zu −Zu− := Zu − lims↗t Zs denotes the jump Z at time u. This is necessarily a Poisson
random measure on R+ × R \ {0} with mean measure EM(du,dζ ) = duν(dζ ). The correspond-
ing compensated random measure is denoted M̄(du,dζ ) := M(du,dζ ) − duν(dζ ).

As stated in the Introduction, in this paper, we consider the following local jump-diffusion
model:

Xt(x) = x +
∫ t

0
b
(
Xu(x)

)
du +

∫ t

0
σ
(
Xu(x)

)
dWu

+
∫ t

0

∫
|ζ |>1

γ
(
Xu−(x), ζ

)
M(du,dζ ) (2.1)

+
∫ t

0

∫
|ζ |≤1

γ
(
Xu−(x), ζ

)
M̄(du,dζ ),

where b,σ : R → R and γ : R×R → R are deterministic functions satisfying suitable conditions
under which (2.1) admits a unique solution. Typical sufficient conditions for (2.1) to be well-
posed include linear growth and Lipschitz continuity of the coefficients b, σ , and γ (see, e.g.,
Applebaum [3], Theorem 6.2.3, Oksendal and Sulem [25], Theorem 1.19).

Below, we will make use of the following assumptions about Z:
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(C1) The Lévy measure ν of Z has a C∞(R \ {0}) strictly positive density h such that, for
every ε > 0 and n ≥ 0,

sup
|ζ |>ε

∣∣h(n)(ζ )
∣∣ < ∞. (2.2)

Remark 2.1. Condition (2.2) is actually needed for the tail probabilities of {Xt(x)}t≥0 to admit
an expansion in integer powers of time. Indeed, even in the simplest pure Lévy case (Xt(x) =
Zt + x), it is possible to build examples where P(Zt ≥ y) converges to 0 at a fractional power
of t in the absence of (2.2)(ii) (see Marchal [21]).

Throughout the paper, the jump coefficient γ is assumed to satisfy the following conditions:

(C2)(a) γ (·, ·) ∈ C
≥1
b (R × R) and γ (x,0) = 0 for all x ∈ R;

(C2)(b) There exists a constant δ > 0 such that |∂ζ γ (x, ζ )| ≥ δ, for all x, ζ ∈ R.

Both of the previous conditions were also imposed in Léandre [18]. Note that (C2)(a) implies
that, for any ε > 0, there exists Cε < ∞ such that

sup
x

∣∣∣∣∂iγ (x, ζ )

∂xi

∣∣∣∣ ≤ Cε|ζ | (2.3)

for all |ζ | ≤ ε and i ≥ 0. Condition (C2)(b) is imposed so that, for each x ∈ R, the mapping
ζ → γ (x, ζ ) admits an inverse function γ −1(x, ζ ) with bounded derivatives. Note that (C2)(b)
together with the continuity of ∂γ (x, ζ )/∂ζ implies that the mapping ζ → γ (x, ζ ) is either
strictly increasing or decreasing for all x.

We will also require the following boundedness and non-degeneracy conditions:

(C3) The functions b(x) and v(x) := σ 2(x)/2 belong to C∞
b (R).

(C4) There exists a constant δ > 0 such that, for all x, ζ ∈ R,

(i)

∣∣∣∣1 + ∂γ (x, ζ )

∂x

∣∣∣∣ ≥ δ, (ii) σ (x) ≥ δ. (2.4)

Remark 2.2. Boundedness conditions of the type (C3) above are not restrictive in practice. In-
deed, on one hand, extremely large values of b and σ will not typically make sense in a particular
financial or physical phenomenon in mind (e.g., a large volatility value σ could hardly be jus-
tified financially). On the other hand, a stochastic model with arbitrary (but sufficiently regular)
functions b and v could be closely approximated by a model with C∞

b functions b and v. The
condition (2.4)(i), which was also imposed in Léandre [18], guarantees the a.s. existence of a
flow 	s,t (x) : R → R, x → Xs,t (x) of diffeomorphisms for all 0 ≤ s ≤ t (cf. Léandre [18]),
where here {Xs,t (x)}t≥s is defined as in (2.1) but with initial condition Xs,s(x) = x. Finally,
let us mentioned that condition (C4)(ii) is used only for the density expansion, but not the tail
expansion.
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As it is usually the case with Lévy processes, we shall decompose Z into a compound Poisson
process and a process with bounded jumps. More specifically, let φε ∈ C∞(R) be a truncation
function such that 1|ζ |≥ε ≤ φε(ζ ) ≤ 1|ζ |≥ε/2 and let Z(ε) := {Zt(ε)}t≥0 and Z′(ε) := {Z′

t (ε)}t≥0
be independent Lévy processes with respective Lévy densities

hε(ζ ) := φε(ζ )h(ζ ) and h̄ε(ζ ) := (
1 − φε(ζ )

)
h(ζ ). (2.5)

Clearly, we have that

Z
D=Z′(ε) + Z(ε). (2.6)

The process Z′(ε), that we referred to as the small-jump component of Z, is a pure-jump Lévy
process with jumps bounded by ε. In contrast, the process Z(ε), hereafter referred to as the
big-jump component of Z, is taken to be a compound Poisson process with intensity of jumps
λε := ∫

φε(ζ )h(ζ )dζ and jumps {J ε
i }i≥1 with probability density function

h̆ε(ζ ) := φε(ζ )h(ζ )

λε

. (2.7)

Throughout the paper, {τi}i≥1 and N := {Nε
t }t≥0, respectively, denote the jump arrival times and

the jump counting process of the compound Poisson process Z(ε), and J := J ε represents a
generic random variable with density h̆ε(ζ ).

The next result will be needed in what follows. The different properties below follow from
standard applications of the implicit function theorem, and the required smoothness and non-
degeneracy conditions stated above. We refer the reader to Figueroa-López, Luo and Ouyang [12]
for a detailed proof.

Lemma 2.1. Under the conditions (C1), (C2) and (C4), the following statements hold:

1. Let γ̃ (z, ζ ) := γ (z, ζ ) + z. Then, for each z ∈ R, the mapping ζ → γ̃ (z, ζ ) (equiv. ζ →
γ (z, ζ )) is invertible and its inverse γ̃ −1(z, ζ ) (resp., γ −1(z, ζ )) is C

≥1
b (R × R).

2. Both γ̃ (z, J ε) and γ (z, J ε) admit densities in C∞
b (R × R), denoted by �̃(ζ ; z) := �̃ε(ζ ; z)

and �(ζ ; z) := �ε(ζ ; z), respectively. Furthermore, they have the representation:

�̃ε(ζ ; z) = h̆ε

(
γ̃ −1(z, ζ )

)∣∣∣∣∂γ

∂ζ

(
z, γ̃ −1(z, ζ )

)∣∣∣∣−1

, (2.8)

�ε(ζ ; z) = h̆ε

(
γ −1(z, ζ )

)∣∣∣∣∂γ

∂ζ

(
z, γ −1(z, ζ )

)∣∣∣∣−1

. (2.9)

3. The mappings (z, ζ ) → P(γ̃ (z, J ε) ≥ ζ ) and (z, ζ ) → P(γ (z, J ε) ≥ ζ ) are C∞
b (R × R).

4. The mapping z → u := z + γ (z, ζ ) admits an inverse, denoted hereafter γ̄ (u, ζ ), that be-
longs to C

≥1
b (R × R).

We finish this section with the definition of some important processes. Let M̃ and M ′ := M ′
ε

denote the jump measure of the process Z̃ := Z(ε) + Z′(ε) and Z′(ε), respectively. For each
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ε ∈ (0,1), we construct a process {X̃s(ε, x)}s≥0, defined as the solution of the SDE

X̃t (ε, x) = x +
∫ t

0
b
(
X̃u(ε, x)

)
du +

∫ t

0
σ
(
X̃u(ε, x)

)
dW̃u

+
∫ t

0

∫
|ζ |>1

γ
(
X̃u−(ε, x), ζ

)
M̃(du,dζ )

+
∫ t

0

∫
|ζ |≤1

γ
(
X̃u−(ε, x), ζ

)
M̃(du,dζ ),

where M̃ is the compensated measure of M̃ and W̃ is a Wiener process, which is independent
of Z̃. In terms of the jumps of the processes Z(ε) and Z′(ε), we can express X̃(ε, x) as

X̃t (ε, x) = x +
∫ t

0
bε

(
X̃u(ε, x)

)
du +

∫ t

0
σ
(
X̃u(ε, x)

)
dW̃u

(2.10)

+
Nε

t∑
i=1

γ
(
X̃τ−

i
(ε, x), J ε

i

) +
∫ t

0

∫
γ
(
X̃u−(x), ζ

)
M̄ ′(du,dζ ),

where M̄ ′ is the compensated random measure M̄ ′(du,dζ ) := M ′(du,dζ ) − h̄ε(ζ )dudζ and

bε(x) := b(x) −
∫

|ζ |≤1
γ (x, ζ )hε(ζ )dζ .

Since Z has the same distribution law as Z̃ := Z(ε) + Z′(ε), the process {X̃t (ε, x)}t≥0 has
the same distribution as {Xt(x)}t≥0. Hence, in order to obtain the short time asymptotics of
P(Xt (x) ≥ x + y), we can (and will) analyze the behavior of P(X̃t (ε, x) ≥ x + y). For simplicity
and with certain abuse of notation, we shall write from now on X(x) instead of X̃(ε, x) and W

instead of W̃ .
Next, we let {Xs(ε,∅, x)}s≥0 be the solution of the SDE:

Xs(ε,∅, x) = x +
∫ s

0
bε

(
Xu(ε,∅, x)

)
du +

∫ s

0
σ
(
Xu(ε,∅, x)

)
dWu

(2.11)

+
∫ s

0

∫
γ
(
Xu−(ε,∅, x), ζ

)
M̄ ′(du,dζ ).

As seeing from the representation (2.10), the law of the process (2.11) can be interpreted as the
law of {X̃s(ε, x)}0≤s≤t = {Xs(x)}0≤s≤t conditioning on not having any “big” jumps during [0, t].
In other words, denoting the law of a process Y (resp., the conditional law of Y given an event B)
by L(Y ) (resp., L(Y |B)), we have that, for each fixed t > 0,

L
({

Xs(x)
}

0≤s≤t
|Nε

t = 0
) = L

({
Xs(ε,∅, x)

}
0≤s≤t

)
.
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Similarly, for a collection of times 0 < s1 < · · · < sn, let {Xs(ε, {s1, . . . , sn}, x)}s≥0 be the solu-
tion of the SDE:

Xs

(
ε, {s1, . . . , sn}, x

) := x +
∫ s

0
bε

(
Xu

(
ε, {s1, . . . , sn}, x

))
du

+
∫ s

0
σ
(
Xu

(
ε, {s1, . . . , sn}, x

))
dWu

+
∑

i: si≤s

γ
(
Xs−

i

(
ε, {s1, . . . , sn}, x

)
, J ε

i

)

+
∫ s

0

∫
γ
(
Xu−

(
ε, {s1, . . . , sn}, x

)
, ζ

)
M̄ ′(du,dζ ).

From (2.10), it then follows that

L
({

Xs(x)
}

0≤s≤t
|Nε

t = n, τ1 = s1, . . . , τn = sn
) = L

({
Xs

(
ε, {s1, . . . , sn}, x

)}
0≤s≤t

)
.

The previous two processes will be needed in order to implement Léandre’s approach in which
the tail distribution P(Xt (x) ≥ x + y) is expanded in powers of time by conditioning on the
number of jumps of Z(ε) by time t .

3. Probabilistic tools

Throughout, Cn
b (I ) (resp., Cn

b ) denotes the class of functions having continuous and bounded
derivatives of order 0 ≤ k ≤ n in an open interval I ⊂ R (resp., in R). Also, ‖g‖∞ = supy |g(y)|.

3.1. Uniform tail probability estimates

The following general result will be important in the sequel.

Proposition 3.1. Let M be a Poisson random measure on R+ × R0 with mean measure
EM(du,dζ ) = ν(dζ )dt and M̄ be its compensated random measure. Let Y := Y (x) be the solu-
tion of the SDE

Yt = x +
∫ t

0
b̄(Ys)ds +

∫ t

0
σ̄ (Ys)dWs +

∫ t

0

∫
γ̄ (Ys−, ζ )M̄(ds,dζ ).

Assume that b̄(x) and σ̄ (x) are uniformly bounded and γ̄ (x, ζ ) is such that, for a constant
S ∈ (0,∞), supy |γ̄ (y, ζ )| ≤ S(|ζ | ∧ 1), for ν-a.e. ζ . In particular, the jumps of {Yt }t≥0 are
bounded by S, and there exists a constant k such that the quadratic variation for the martingale
part of Y is bounded by kt for any time t . Then there exists a constant C(S, k) depending on S

and k, such that, for any fixed p > 0 and all 0 ≤ t ≤ 1,

P
{

sup
0≤s≤t

|Ys − x| ≥ 2pS
}

≤ C(S, k)tp.
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Proof. Let

Vt =
∫ t

0
σ̄ (Ys)dWs +

∫ t

0

∫
γ̄ (Ys−, z)M̄(ds,dz)

be the martingale part of Yt . It is clear that Vt is a martingale with its jumps bounded by S.
Moreover, in light of the boundedness of σ̄ and γ̄ , its quadratic variation satisfies 〈V,V 〉t ≤ kt ,
for some constant k. By equation (9) in Lepeltier and Marchal [19], we have

P
{

sup
0≤s≤t

|Vs | ≥ C
}

≤ 2 exp

[
−λC + λ2

2
kt

(
1 + exp[λS])] for all C,λ > 0. (3.1)

Now take C = 2pS and λ = | log t |/2S, the claimed result follows for the martingale part Vt

of Yt . By equation (9) in Lepeltier and Marchal [19] and the fact that the drift term is bounded
by ‖b̄‖∞t , we have for all C,λ > 0

P
{

sup
0≤s≤t

|Ys − x| ≥ C
}

≤ P
{

sup
0≤s≤t

|Vs | ≥ C − t‖b̄‖∞
}

(3.2)

≤ 2 exp

[
−λ

(
C − ‖b̄‖∞t

) + λ2

2
kt

(
1 + exp[λS])].

Now take C = 2pS and λ = | log t |/2S, the claimed result follows. �

As a direct corollary of the previous proposition, we have the following estimate for the tail
probability of the small-jump component {Xt(ε,∅, x)}t≥ of X defined in (2.11). We also provide
a related estimate for the tail probability of exp(|Xt(ε,∅, x)|), which will be needed for the
asymptotic result of option prices discussed in Section 6 below.

Lemma 3.1. Fix any η > 0 and a positive integer N . Then, under the conditions (C2)–(C3) of
Section 2, there exist an ε := ε(N,η) > 0 and C := C(N,η) < ∞ such that

(1) For all t < 1,

sup
0<ε′<ε,x∈R

P
(∣∣Xt

(
ε′,∅, x

) − x
∣∣ ≥ η

)
< CtN . (3.3)

(2) For all t < 1,

sup
ε′<ε,x∈R

∫ ∞

eη

P
(
e|Xt (ε

′,∅,x)−x| ≥ s
)

ds < CtN .

Proof. The first statement is a special case of Proposition 3.1, which can be applied in light of
the boundedness conditions (C3) as well as the condition (C2)(a). To prove the second statement,
we keep the notation of the proof of Proposition 3.1 and note that, by (3.2), there exists a constant
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C > 0 such that∫ ∞

eη

P
{∣∣Xt(ε,∅, x) − x

∣∣ ≥ log s
}

ds ≤ C

∫ ∞

eη

exp

[
−λ log s + λ2

2
kt

(
1 + exp[λε])]ds

= Ceη

(λ − 1)eλη
exp

[
λ2

2
kt

(
1 + exp[λε])].

Now it suffices to take λ = | log t |/2ε and ε = η/2N . �

3.2. Iterated Dynkin’s formula

We now proceed to state a second-order iterated Dynkin’s formula for the “small-jump compo-
nent” of X, {Xt(ε,∅, x)}t≥0, defined in (2.11). To this end, let us first recall that the infinitesimal
generator of X(ε,∅, x), hereafter denoted by Lε , can be written as follows (cf. Oksendal and
Sulem [25], Theorem 1.22):

Lεf (y) := Dεf (y) + Iεf (y) with

Dεf (y) := σ 2(y)

2
f ′′(y) + bε(y)f ′(y), (3.4)

Iεf (y) :=
∫ (

f
(
y + γ (y, ζ )

) − f (y) − γ (y, ζ )f ′(y)
)
h̄ε(ζ )dζ.

The following two alternative representations of Iεf will be useful in the sequel:

Iεf (y) =
∫ ∫ 1

0
f ′′(y + γ (y, ζ )β

)
(1 − β)dβ

(
γ (y, ζ )

)2
h̄ε(ζ )dζ (3.5)

=
∫ ∫ 1

0

[
f ′′(y + γ (y, ζβ)

)(
∂ζ γ (y, ζβ)

)2 + f ′(y + γ (y, ζβ)
)
∂2
ζ γ (y, ζβ)

(3.6)
− f ′(y)∂2

ζ γ (y, ζβ)
]
(1 − β)dβζ 2h̄ε(ζ )dζ.

In particular, from the previous representations, it is evident that Iεf is well-defined whenever
f ∈ C2

b , in view of (2.3), which follows from our condition (C2)(a).
The n-order iterated Dynkin’s formula for the process X(ε,∅, x) takes the generic form

Ef
(
Xt(ε,∅, x)

) =
n−1∑
k=0

tk

k!L
k
εf (x) + tn

(n − 1)!
∫ 1

0
(1 − α)n−1E

{
Ln

εf
(
Xαt (ε,∅, x)

)}
dα, (3.7)

where as usual L0
εf = f and Ln

εf = Lε(L
n−1
ε f ), n ≥ 1. (3.7) can be proved for n = 1 using

Itô’s formula (see Oksendal and Sulem [25], Theorem 1.23) while, for a general order n, it can
be proved by induction, provided that the iterated generators Lk

εf satisfy sufficient smoothness
and boundedness conditions for any k = 0, . . . , n. The next lemma explicitly states the second-
order formula so that we can refer to it in the sequel. Its proof is standard and is omitted for the
sake of brevity (see Figueroa-López, Luo and Ouyang [12] for the details).
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Lemma 3.2. For a fix ε ∈ (0,1), let Kε,m denote a finite constant whose value only depends on∫
ζ 2h̄ε(ζ )dζ , ‖f (k)‖∞, ‖b(k)‖∞, and ‖v(k)‖∞ with k = 0, . . . ,m. Then, under the conditions

(C1)–(C3) of Section 2, the following assertions hold true:

1. For any function f in C2
b , supy Lεf (y) ≤ Kε,2, and the iterated Dynkin’s formula (3.7) is

satisfied with n = 1.
2. If, additionally, f ∈ C4

b , then supy L2
εf (y) ≤ Kε,4 and, furthermore, the iterated Dynkin’s

formula (3.7) is satisfied with n = 2.

4. Second-order expansion for the tail distributions

We are ready to state our first main result; namely, we characterize the small-time behavior of
the tail distribution of {Xt(x)}t≥0:

F̄t (x, y) := P
(
Xt(x) ≥ x + y

)
(y > 0). (4.1)

As in Léandre [18], the key idea is to take advantage of the decomposition (2.6), by conditioning
on the number of “large” jumps occurring before time t . Concretely, recalling that {Nε

t }t≥0 and
λε := ∫

φε(ζ )h(ζ )dζ represent the jump counting process and the jump intensity of the large-
jump component process {Zt(ε)}t≥0 of Z, we have

P
(
Xt(x) ≥ x + y

) = e−λεt
∞∑

n=0

P
(
Xt(x) ≥ x + y|Nε

t = n
) (λεt)

n

n! . (4.2)

The first term in (4.2) (when n = 0) can be written as

P
(
Xt(x) ≥ x + y|Nε

t = 0
) = P

(
Xt(ε,∅, x) ≥ x + y

)
.

In light of (3.3), this term can be made O(tN ) for an arbitrarily large N ≥ 1, by taking ε small
enough. In order to deal with the other terms in (4.2), we use the iterated Dynkin’s formula
introduced in Section 3.2. The following is the main result of this section (see Appendix A for
the proof). Below, hε and h̄ε denote the Lévy densities defined in (2.5), while g(x;y) denotes
the so-called Lévy density of the process {Xt(x)}t≥0 defined by

g(x;y) :=

⎧⎪⎪⎨
⎪⎪⎩

− ∂

∂y

∫
{ζ :γ (x,ζ )≥y}

h(ζ )dζ, y > 0,

∂

∂y

∫
{ζ :γ (x,ζ )≤y}

h(ζ )dζ, y < 0.
(4.3)

for y �= 0. In light of Lemma 2.1, g admits the representation:

g(x;y) = h
(
γ −1(x, y)

)∣∣(∂ζ γ )
(
x, γ −1(x, y)

)∣∣−1
,

where ∂ζ γ is the partial derivative of the function γ (x, ζ ) with respect to its second variable.
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Theorem 4.1. Let x ∈ R and y > 0. Then, under the conditions (C1)–(C4) of Section 2, we have

F̄t (x, y) := P
(
Xt(x) ≥ x + y

) = tA1(x;y) + t2

2
A2(x;y) + O

(
t3) (4.4)

as t → 0, where A1(x;y) and A2(x;y) admit the following representations (for ε > 0 small
enough):

A1(x;y) :=
∫ ∞

y

g(x; ζ )dζ =
∫

{γ (x,ζ )≥y}
h(ζ )dζ,

A2(x;y) := D(x;y) + J1(x;y) + J2(x;y),

with

D(x;y) = bε(x)

(
∂

∂x

∫ ∞

y

g(x; ζ )dζ + g(x;y)

)
+ bε(x + y)g(x;y)

+ σ 2(x)

2

(
∂2

∂x2

∫ ∞

y

g(x; ζ )dζ + 2
∂

∂x
g(x;y) − ∂

∂y
g(x;y)

)

− σ(x + y)

2

(
σ(x + y)

∂

∂y
g(x;y) + 2σ ′(x + y)g(x;y)

)
,

(4.5)

J1(x;y) =
∫ (∫ ∞

y−γ (x,ζ̄ )

g
(
x + γ (x, ζ̄ ); ζ )

dζ +
∫ ∞

γ̄ (x+y,ζ̄ )−x

g(x; ζ )dζ − 2
∫ ∞

y

g(x; ζ )dζ

− γ (x, ζ̄ )∂x

∫ ∞

y

g(x; ζ )dζ − γ (x, ζ̄ )g(x;y) − γ (x + y, ζ̄ )g(x;y)

)
h̄ε(ζ̄ )dζ̄ ,

J2(x;y) =
∫ ∫ ∞

y−γ (x,ζ̄ )

g
(
x + γ (x, ζ̄ ); ζ )

dζhε(ζ̄ )dζ̄ − 2
∫ ∞

y

g(x; ζ )dζ

∫
hε(ζ )dζ.

Remark 4.1. Note that if supp(ν) ∩ {ζ : γ (x, ζ ) ≥ y} = ∅ (so that it is not possible to reach the
level y from x with only one jump), then A1(x;y) = 0 and P(Xt (x) ≥ x + y) = O(t2) as t → 0.
If, in addition, it is possible to reach the level y from x with two jumps, then J2(x;y) �= 0,
implying that P(Xt (x) ≥ x + y) decreases at the order of t2. These observations are consistent
with the results in Ishikawa [16] and Picard [27].

Remark 4.2. In the case that the coefficient γ (x, ζ ) does not depend on x, we get the following
expansion for P(Xt (x) ≥ x + y):

P
(
Xt(x) ≥ x + y

) = t

∫ ∞

y

g(ζ )dζ + bε(x) + bε(x + y)

2
g(y)t2

−
(

σ 2(x) + σ 2(x + y)

2
g′(y) + 2σ(x + y)σ ′(x + y)g(y)

)
t2

2
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+
∫ (∫ ∞

y−γ (ζ̄ )

g(ζ )dζ −
∫ ∞

y

g(ζ )dζ − 2g(y)γ (ζ̄ )

)
h̄ε(ζ̄ )dζ̄ t2

+
(∫ ∫ ∞

y−γ (ζ̄ )

g(ζ )dζhε(ζ̄ )dζ̄ − 2
∫ ∞

y

g(ζ )dζ

∫
hε(ζ )dζ

)
t2

2
+ O

(
t3).

The leading term in the above expression is determined by the jump component of the process
and it has a natural interpretation: if within a very short time interval there is a “large” positive
move (say, a move by more than y), this move must be due to a “large” jump. It is until the second
term, when the diffusion and drift terms of the process X(x) appear. If, for instance, b and σ are
constants, the effect of a positive “drift” bε > 0 is to increase the probability of a “large” positive
move of more than y by bεg(y)t2(1 + o(1)). Similarly, since typically g′(y) < 0 when y > 0,
the effect of a non-zero spot volatility σ is to increase the probability of a “large” positive move

by σ 2

2 |g′(y)|t2(1 + o(1)).

5. Expansion for the transition densities

Our goal here is to obtain a second-order small-time approximation for the transition densities
{pt(·;x)}t≥0 of {Xt(x)}t≥0. As it was done in the previous section, the idea is to work with the
expansion (4.2) by first showing that each term there is differentiable with respect to y, and then
determining their rates of convergence to 0 as t → 0. One of the main difficulties of this approach
comes from controlling the term corresponding to no “large” jumps. As in the case of purely
diffusion processes, Malliavin calculus is proved to be the key tool for this task. This analysis is
presented in the following subsection before our main result is presented in Section 5.2.

5.1. Density estimates for SDE with bounded jumps

In this part, we analyze the term corresponding to Nε
t = 0:

P
(
Xt(x) ≥ x + y|Nε

t = 0
) = P

(
Xt(ε,∅, x) ≥ x + y

)
.

We will prove that, for any fixed positive integer N and η > 0, there exist an ε0 > 0 and a constant
C < ∞ (both only depending on N and η) such that the density pt (·; ε,∅, x) of Xt(ε,∅, x)

satisfies

sup
|y−x|>η,ε<ε0

pt(y; ε,∅, x) < CtN (5.1)

for all 0 < t ≤ 1.
To simplify notation, in this subsection, we write Xx

t for Xt(ε,∅, x). Recall that Xx
t satisfies

an equation of the following general form

Xx
t = x +

∫ t

0
bε

(
Xx

s−
)

ds +
∫ t

0
σ
(
Xx

s−
)

dWs +
∫ t

0

∫
γ
(
Xx

s−, ζ
)
M̄ ′(ds,dζ ), (5.2)
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where, M ′(ds,dζ ) is a Poisson random measure on R+ × R \ {0} with mean measure
μ′(ds,dζ ) = ν′(dζ )ds = h̄ε(ζ )dζ ds and M̄ ′ = M ′ −μ′ is its compensated measure. Since there
are no “big jumps” for Xx

t , h̄ε is supported in a ball B(0, ε).
Malliavin calculus is the main tool to analyze the existence and smoothness of density for Xx

t .
Throughout this subsection, we follow closely the presentation of Bichteler, Gravereaux and
Jacod [6], Chapter IV (see also Appendix A in Figueroa-López, Luo and Ouyang [12] for an
introduction to this theory). As described therein, there are different ways to define a Malliavin
operator for Wiener–Poisson spaces. For our purposes, it suffices to consider the Malliavin op-
erator corresponding to ρ = 0 (see Bichteler, Gravereaux and Jacod [6], Section 9a–9c, for the
details). The intuitive explanation of ρ = 0 is that when making perturbation of the sample path
on the Wiener–Poisson space, we only perturb the Brownian path.

Let us start by noting that our assumption on the coefficients of (5.2) ensures that x → Xx
t is a

C2-diffeomorphism with a continuous density (see Bichteler, Gravereaux and Jacod [6] for more
details). Define

Ut := �
(
Xx

t ,Xx
t

) =
{∫ t

0
σ 2(Xx

s

)
Js(x)−2 ds

}
Jt (x)2. (5.3)

In the above, we use the standard notation:

Jt (x) = dXx
t

dx
. (5.4)

Remark 5.1. Under the condition (C4) of Section 2, Jt (x) admits an inverse Yt := Jt (x)−1,
almost surely. Indeed, one can show that (cf. Bichteler, Gravereaux and Jacod [6])

dJt (x) = 1 + ∂xbε

(
Xx

t−
)
Jt−(x)dt + ∂xσ

(
Xx

t−
)
Jt−(x)dWt

+ ∂xγ
(
Xx

t−, ζ
)
Jt−(x)M̄ ′(dt,dζ ),

while Yt = Jt (x)−1 satisfies an equation of the form:

dYt = 1 + Yt−Dt dt + Yt−Et dWt + Yt−FtM̄
′(dt,dζ ).

Here Dt,Et and Ft are determined by bε(x), σ (x), γ (x, ζ ) and Xx
t . As a consequence, together

with our assumption on b,σ and γ , one has

E sup
0≤t≤1

Jt (x)p and E sup
0≤t≤1

Jt (x)−p < ∞

for all p > 1.

The main result of this section is Theorem 5.1 below. For this purpose, we state some prelim-
inary known results. Let us start with the following integration by parts formula (the main ingre-
dient for existence and smoothness of the density of Xx

t ), which is a special case of Lemma 4–14
in Bichteler, Gravereaux and Jacod [6] together with the discussion of Chapter IV therein.
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Proposition 5.1 (Integration by parts). For any f ∈ C∞
c (R), there exists a random variable

Gt ∈ Lp for all p ∈ N, such that

E∂xf
(
Xx

t

) = EGtU
−2
t f

(
Xx

t

)
.

The following existence and regularity result for the density of a finite measure is well known
(see, e.g., Theorem 5.3 in Shigekawa [32]).

Proposition 5.2. Let m be a finite measure supported in an open set O ⊂ R. Take any p > 1.
Suppose that there exists g ∈ Lp(m) such that∫

R

∂xf dm =
∫

R

fg dm, f ∈ C∞
c (O).

Then m has a bounded density function q ∈ Cb(O) satisfying

‖q‖∞ ≤ C‖g‖Lp(m)m(O)1−1/p.

Here the constant C depends on p.

The following lemma is the main ingredient in proving Theorem 5.1.

Lemma 5.1. Recall Ut = �(Xt ,Xt ). Under the condition (C4) of Section 2, we have

EU
−p
t ≤ Ct−p,

for all p > 1.

Proof. The proof is a direct consequence of assumption (C4) and Remark 5.1. More precisely,

EU
−p
t = E

Jt (x)−2p

(
∫ t

0 Js(x)−2σ(Xx
s )2 ds)p

≤ 1

tp
E

Jt (x)−2p

δ2p inf0≤s≤t Js(x)−2p

= 1

tp
δ−2pE

(
Jt (x)−2p sup

0≤s≤1
Js(x)2p

)
.

The proof is completed. �

Remark 5.2. The above lemma is where condition (C4)(ii) is used. It could be relaxed to include
degenerate diffusion coefficients. But in the degenerate case, we need to take a non-trivial ρ

(as opposed to ρ = 0 in the present setting) in the construction of Malliavin operator on the
Wiener–Poisson space. In this case, the process Ut becomes

Ut := Jt (x)2
∫ t

0
σ 2(Xx

s

)
Js(x)−2 ds

+ Jt (x)2
∫

R

∫ t

0
Js−(x)−2(1 + ∂xγ

(
Xx

s−, ζ
))2(

∂ζ γ
(
Xx

s−, ζ
))2

ρ(ζ )M ′(ds,dζ ).
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Under suitable conditions on ρ, the above is well-defined and it is also possible to obtain an
estimate of the form:

EU
−p
t ≤ Ct−N(p).

Finally, we can state and prove our main result of this section.

Theorem 5.1. Assume the condition (C3) of Section 2 is satisfied. Let {Xx
t }t≥0 be the solution to

equation (5.2) and denote the density of Xx
t by pt(y;x). Fix η > 0 and N > 0. Then, there exists

r(η,N) > 0 such that, if ν′ is supported in B(0, r) with r ≤ r(η,N), we have, for all 0 ≤ t ≤ 1,

sup
|x−y|≥η

pt (y;x) ≤ C(η,N)tN .

Proof. For a fix t ≥ 0, define a finite measure m
η
t on R by

m
η
t (A) = P

({
Xx

t ∈ A ∩ B̄c(x, η)
})

, A ⊂ R,

where B̄c(x, r) denotes the complement of the closure of B(x, r). Thus, to prove our result it
suffices to prove that m

η
t admits a density that has the desired bound. To this end, for any smooth

function f compactly supported in B̄c(x, η), we have:∫
R

(∂xf )(y)m
η
t (dy) = E∂xf

(
Xx

t

) = EGtU
−2
t f

(
Xx

t

)
=

∫
R

E
[
GtU

−2
t |Xx

t = y
]
f (y)m

η
t (dy),

where the second equality follows from integration by parts. Now by an application of Proposi-
tion 3.1 to Xx

t , one has, for any p > 0,

m
η
t (R) ≤ P

(
sup

0≤s≤t

∣∣Xx
s − x

∣∣ ≥ η
)

≤ C(η,p)tp.

The rest of the proof follows from Proposition 5.2 and Lemma 5.1. �

5.2. Expansion for the transition density

We are ready to state the main result of this section, namely, the second-order expansion for the
transition densities {pt(·;x)}t≥0 of the process {Xt(x)}t≥0 in terms of the Lévy density g(x;y)

defined in (4.3). The proof is presented in Appendix B.

Theorem 5.2. Let x ∈ R and y > 0. Then, under the hypothesis of Theorem 4.1, we have

pt (x + y;x) := −∂P(Xt (x) ≥ x + y)

∂y
= ta1(x;y) + t2

2
a2(x;y) + O

(
t3) (5.5)
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as t → 0, where a1(x;y) and a2(x;y) admit the following representations (for ε > 0 small
enough):

a1(x;y) := g(x;y), a2(x;y) := ð(x;y) + �1(x;y) + �2(x;y),

with

ð(x;y) = − ∂

∂y
D(x;y),

�1(x;y) =
∫ (

g
(
x + γ (x, ζ̄ );y − γ (x, ζ̄ )

) + g
(
x; γ̄ (x + y, ζ̄ ) − x

)
∂uγ̄ (x + y, ζ̄ )

− 2g(x;y) − γ (x, ζ̄ )∂xg(x;y) + γ (x, ζ̄ )∂yg(x;y) (5.6)

+ ∂y

(
γ (x + y, ζ̄ )g(x;y)

))
h̄ε(ζ̄ )dζ̄ ,

�2(x;y) =
∫

g
(
x + γ (x, ζ );y − γ (x, ζ )

)
hε(ζ )dζ − 2g(x;y)

∫
hε(ζ )dζ,

and D(x, y) be given as in (4.5).

6. The first-order term of the option price expansion

In this section, we use our previous results to derive the leading term of the small-time expansion
for option prices of out-of-the-money (OTM) European call options. This can be achieved by
either the asymptotics of the tail distributions or the transition density. Given that the former
requires less stringent conditions on the coefficients of the SDE, we choose the former approach.

It is well known by practitioners that the market implied volatility skewness is more pro-
nounced as the expiration time approaches. Such a phenomenon indicates that a jump risk
should be included into classical purely-continuous financial models (e.g., local volatility models
and stochastic volatility models) to reproduce more accurately the implied volatility skews ob-
served in short-term option prices. Moreover, further studies have shown that accurate modeling
of the option market and asset prices requires a mixture of a continuous diffusive component
and a jump component (see Aït-Sahalia and Jacod [1], Aït-Sahalia and Jacod [2], Barndorff-
Nielsen and Shephard [4], Podolskij [28], Carr and Wu [7], and Medvedev and Scailllet [22]).
The study of small-time asymptotics of option prices and implied volatilities has grown sig-
nificantly during the last decade, as it provides a convenient tool for testing various pricing
models and calibrating parameters in each model (see, e.g., Gatheral et al. [15], Feng, Forde
and Fouque [8], Forde and Jacquier [13], Berestyki, Busca and Florent [5], Figueroa-López and
Forde [9], Roper [30], Tankov [33], Gao and Lee [14], Muhle-Karbe and Nutz [23], Figueroa-
López, Gong and Houdré [10]). In spite of the ample literature on the asymptotic behavior of the
transition densities and option prices for either purely-continuous or purely-jump models, results
on local jump-diffusion models are scarce. Our result in this section is thus a first attempt in this
direction.

Throughout this section, let {St }t≥0 be the stock price process and let Xt = logSt for each
t ≥ 0. We assume that P is the option pricing measure and that under this measure the process
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{Xt }t≥0 is of the form in (2.1). As usual, without loss of generality we assume that the risk-free
interest rate r is 0. In particular, in order for St = expXt to be a Q-(local) martingale, we fix

b(x) := −1

2
σ 2(x) −

∫ (
eγ (x,z) − 1 − γ (x, ζ )1{|ζ |≤1}

)
h(z)dz.

We assume that σ and γ are such that the conditions (C1)–(C4) of Section 2 are satisfied. We
also impose an extra condition for h(z) and γ (x, z) in order to derive option price expansion, as
we are working with the exponential of a jump-diffusion now:

(C5) h(z) and γ (x, z) are such that supx∈R

∫
|z|≥1 e3|γ (x,z)|h(z)dz < ∞.

Note that this condition ensures immediately that b(x) above is well defined.
By the Markov property of the system, it will suffice to compute a small-time expansion for

vt = E(St − K)+ = E
(
eXt − K

)
+.

In particular, using the well-known formula

EU1{U>K} = KP{U > K} +
∫ ∞

K

P{U > s}ds,

we can write

E
(
eXt − K

)
+ =

∫ ∞

K

P{St > s}ds = S0

∫ ∞

K/S0

P{Xt − x > log s}ds,

where x = X0 = logS0. Recall that

P(Xt − x ≥ y) = e−λεt

∞∑
n=0

P
(
Xt − x ≥ y|Nε

t = n
) (λεt)

n

n! , (6.1)

where λε := ∫
φε(ζ )h(ζ )dζ is the jump intensity of {Nε

t }t≥0. We proceed as in Section 4. First,
note that

vt = S0

∫ ∞

K/S0

P{Xt − x > log s}ds = S0e−λεt (I1 + I2 + I3), (6.2)

where

I1 =
∫ ∞

K/S0

P
{
Xt − x ≥ log s|Nε

t = 0
}

ds =
∫ ∞

K/S0

P
{
Xt(ε,∅, x) − x ≥ log s

}
ds,

I2 = λεt

∫ ∞

K/S0

P
{
Xt − x ≥ log s|Nε

t = 1
}

ds,

I3 = λ2
εt

2
∞∑

n=2

(λεt)
n−2

n!
∫ ∞

K/S0

P
{
Xt − x ≥ log s|Nε

t = n
}

ds.
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It is clear that I1/t → 0 as t → 0 by Lemma 3.1. We show that the same is true for I3, which is
the content of the following lemma. Its proof is given in Appendix C.

Lemma 6.1. With the above notation, we have

sup
n∈N,t∈[0,1]

1

n!
∫ ∞

0
P
(|Xt − x| ≥ logy|Nε

t = n
)

dy < ∞.

As a consequence, I3/t → 0 as t → 0.

Note that the above lemma actually implies that Ee|Xt−x| < ∞ for all t ∈ [0,1). We are ready
to state the main result of this section.

Theorem 6.1. Let vt = E(St − K)+ be the price of a European call option with strike K > S0.
Under the conditions (C1)–(C5), we have

lim
t→0

1

t
vt =

∫ ∞

−∞
(
S0eγ (x,ζ ) − K

)
+h(ζ )dζ. (6.3)

Proof. We use the notation introduced in (6.2). Following a similar argument as in the proof of
Lemma 6.1, one can show that∫ ∞

K/S0

sup
t∈[0,1]

P
{
Xt − x ≥ log s|Nε

t = 1
}

ds < ∞. (6.4)

Also, it is clear that I1/t converges to 0 when t approaches to 0 by Lemma 3.1. Using the latter
fact, equation (6.4), Lemma 6.1, equation (6.2), and dominated convergence theorem, we have

lim
t→0

vt

t
= lim

t→0

S0I2

t
= λεS0

∫ ∞

K/S0

lim
t→0

P
{
Xt − x ≥ log s|Nε

t = 1
}

ds.

Next, using Theorem 4.1, it follows that

lim
t→0

vt

t
= S0

∫ ∞

K/S0

A1(x, log s)ds = S0

∫ ∞

K/S0

∫
{γ (x,ζ )≥log s}

h(ζ )dζ ds.

Finally, (6.3) follows from applying Fubini’s theorem to the right-hand side of the above equal-
ity. �

Remark 6.1. As a special case of our result, let γ (x, ζ ) = ζ . The model reduces to an exponential
Lévy model. The above first-order asymptotics becomes to

lim
t→0

1

t
vt =

∫ ∞

−∞
(
S0eζ − K

)
+h(ζ )dζ.

This recovers the well-known first-order asymptotic behavior for exponential Lévy model (see,
e.g., Roper [30] and Tankov [33]).
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Appendix A: Proof of the tail distribution expansion

The proof of Theorem 4.1 is decomposed into three steps described in the following three sub-
sections. For future use in obtaining the expansion for the transition densities, we will write
explicitly the remainder terms when applying Dynkin’s formula (3.7) or in any other type of
approximation.

A.1. Key lemma to control the tail of the process with one large jump

The following result will allow us to obtain the second-order expansion for the process with
one large jump. Below, we recall that J := J ε represents the jump size of the big-jump compo-
nent Z(ε); that is, a random variable with density h̆ε(ζ ) := hε(ζ )/λε := φε(ζ )h(ζ )/λε .

Lemma A.1. Under the setting and conditions (C1)–(C4) of Section 2,

P
(
Xt

(
ε,∅, z + γ (z, J )

) ≥ ϑ
) = H0(z;ϑ) + tH1(z;ϑ) + t2 R̆t (z;ϑ) (A.1)

for any z,ϑ ∈ R, where

H0(z;ϑ) := P
(
γ (z, J ) + z ≥ ϑ

)
, H1(z;ϑ) := D(z;ϑ) + I (z;ϑ),

D(z;ϑ) := �̃(ϑ; z)bε(ϑ) − ∂ϑ �̃(ϑ; z)v(ϑ) − �̃(ϑ; z)v′(ϑ), (A.2)

I (z;ϑ) :=
∫ [

P
(
z + γ (z, J ) ≥ γ̄ (ϑ, ζ )

) − P
(
z + γ (z, J ) ≥ ϑ

) − �̃(ϑ; z)γ (ϑ, ζ )
]
h̄ε(ζ )dζ ,

and, for ε > 0 small enough,

lim sup
t→0

sup
z∈R

∣∣R̆1
t (z;ϑ)

∣∣ < ∞, sup
z,ϑ

∣∣H1(z;ϑ)
∣∣ < ∞.

The idea to obtain (A.1) consists of approximating the function 1{Xt (ε,∅,z+γ (z,J ))≥ϑ} by a
smooth sequence of functions fδ(Xt (ε,∅, z + γ (z, J ))), δ > 0. Concretely, we let

fδ(w) := kϑ ∗ ϕδ(w) =
∫ w−ϑ

−∞
ϕδ(u)du,

where ∗ denotes the convolution operation, kϑ(w) := 1w≥ϑ , and ϕδ(w) := δ−1ϕ(δ−1w) for a
density function ϕ ∈ C∞ with supp(ϕ) = [−1,1]. In particular, as δ → 0,

fδ(w) → kϑ(w) = 1{w≥ϑ} and
∫

g(w)f ′
δ(w)dw =

∫
g(w)ϕδ(w − ϑ)dw → g(ϑ), (A.3)

whenever w �= ϑ and g is bounded and continuous at ϑ . It is then natural to apply Dynkin’s
formula to fδ(Xt (ε,∅, z+γ (z, J ))) and show that each of the resulting terms is convergent when
δ → 0. The following result, whose proof is presented in Appendix C, is needed to formalize the
last step.
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Lemma A.2. Let �̃(·; z) be the density of the random variable z + γ (z, J ) and let pt(·; ε,∅, ζ )

be the density of Xt(ε,∅, ζ ). Then, under the conditions (C1)–(C4) of Section 2, there exists an
ε > 0 small enough such that for any compact set K ⊂ R,

lim sup
t→0

sup
z∈R

sup
η∈K

∣∣∣∣ ∂k

∂ηk

∫
�̃(ζ ; z)pt (η; ε,∅, ζ )dζ

∣∣∣∣ < ∞, k ≥ 0. (A.4)

Furthermore, (A.4) holds also true with ∂ηpt (η; ε,∅, ζ ) in place of pt (η; ε,∅, ζ ) inside the
integral.

We are now in position to show (A.1).

Proof of Lemma A.1. Throughout, ∂yγ and ∂ζ γ will denote the partial derivatives of γ (y, ζ )

with respect to its first and second arguments, respectively. By dominated convergence theorem,
we have

P
(
Xt

(
ε,∅, z + γ (z, J )

) ≥ ϑ
) = lim

δ↓0
Efδ

(
Xt

(
ε,∅, z + γ (z, J )

))
. (A.5)

Note that

Efδ

(
Xt

(
ε,∅, z + γ (z, J )

)) =
∫

�̃(ζ ; z)Efδ

(
Xt(ε,∅, ζ )

)
dζ, (A.6)

and, thus, an application of the Dynkin’s formula (3.7) with n = 2 to the expectation in the above
integral yields

Efδ

(
Xt

(
ε,∅, z + γ (z, J )

))
(A.7)

=
∫

�̃(ζ ; z)fδ(ζ )dζ + t

∫
�̃(ζ ; z)Lεfδ(ζ )dζ

+ t2
∫

�̃(ζ ; z)
∫ 1

0
(1 − α)E(Lε)

2fδ

(
Xαt (ε,∅, ζ )

)
dα dζ. (A.8)

We analyze the limit of each of the three terms on the right-hand side of the previous equation.
By dominated convergence theorem, the leading term of (A.5) is given by

H0(z;ϑ) := lim
δ↓0

∫
�̃(ζ ; z)fδ(ζ )dζ =

∫
�̃(ζ ; z)I[ϑ,∞)(ζ )dζ = P

(
γ (z, J ) + z ≥ ϑ

)
.

To compute the limit of the second term, recall that Lεfδ = Dεfδ + Iεfδ with Dε and Iε defined
as in (3.4). Then, the term of order t has the following two contributions:

Aδ :=
∫

�̃(ζ ; z)Dεfδ(ζ )dζ, Bδ :=
∫

�̃(ζ ; z)Iεfδ(ζ )dζ.

Using that f ′
δ(ζ ) = ϕδ(ζ − ϑ) and by integration by parts, it follows that

Aδ = ∫ (
�̃(ζ ; z)bε(ζ ) − ∂ζ �̃(ζ ; z)v(ζ ) − �̃(ζ ; z)v′(ζ )

)
ϕδ(ζ − ϑ)dζ,
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where we recall that v(x) := σ 2(x)/2 and bε(x) := b(x) − ∫
|ζ |≤1 γ (x, ζ )hε(ζ )dζ . Apply-

ing (A.3) and Lemma 2.1(2),

lim
δ↓0

Aδ = �̃(ϑ; z)bε(ϑ) − ∂ϑ �̃(ϑ; z)v(ϑ) − �̃(ϑ; z)v′(ϑ).

We now analyze the limit of the second term Bδ . Since f ′
δ(·) = ϕδ(· − ϑ) has compact support,

we can apply (C.9) below to write Bδ as

Bδ =
∫

ϕδ(w − ϑ)H̃ε�̃(w; z)dw

(A.9)

=
∫

ϕδ(w − ϑ)

∫ (∫ w

γ̄ (w,ζ )

�̃(η; z)dη − �̃(w; z)γ (w, ζ )

)
h̄ε(ζ )dζ dw.

Since

∂2
ζ

(∫ w

γ̄ (w,ζ )

�̃(η; z)dη − �̃(w; z)γ (w, ζ )

)
= −∂ζ �̃

(
γ̄ (w, ζ ); z)(∂ζ γ̄ (w, ζ )

)2

− �̃
(
γ̄ (w, ζ ); z)∂2

ζ γ̄ (w, ζ ) − �̃(w; z)∂2
ζ γ (w, ζ ),

the factor multiplying ϕδ(w − ϑ) in (A.9) can be written as

H̃ε�̃(w; z) = −
∫ ∫ 1

0

[
∂ζ �̃

(
γ̄ (w, ζβ); z)(∂ζ γ̄ (w, ζβ)

)2 + �̃
(
γ̄ (w, ζβ); z)∂2

ζ γ̄ (w, ζβ)

+ �̃(w; z)∂2
ζ γ (w, ζβ)

]
(1 − β)dβζ 2h̄ε(ζ )dζ,

which shows that H̃ε�̃(w; z) is bounded and continuous in w in light of conditions (C2) and (C4).
Thus, using (A.3),

lim
δ↓0

Bδ =
∫ (∫ ϑ

γ̄ (ϑ,ζ )

�̃(η; z)dη − �̃(ϑ; z)γ (ϑ, ζ )

)
h̄ε(ζ )dζ =: B0(z;ϑ).

Recalling that �̃(ζ ; z) is the density of J̃ := z + γ (z, J ), B0(z;ϑ) can also be written as

B0(z;ϑ) =
∫ (

P
(
z + γ (z, J ) ≥ γ̄ (ϑ, ζ )

) − P
(
z + γ (z, J ) ≥ ϑ

) − �̃(ϑ; z)γ (ϑ, ζ )
)
h̄ε(ζ )dζ.

Putting together the previous two limits, we obtain the term of order t :

H1(z;ϑ) := lim
δ↓0

∫
�̃(ζ ; z)Lεfδ(ζ )dζ = D(z;ϑ) + I (z;ϑ),

with D(z;ϑ) and I (z;ϑ) given as in the statement of the lemma.
Finally, we estimate the remainder term

R̆t (z;ϑ) := lim
δ↓0

∫
�̃(ζ ; z)

∫ 1

0
(1 − α)E(Lε)

2fδ

(
Xαt (ε,∅, ζ )

)
dα dζ (A.10)
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and show that this is uniformly bounded for t small enough. Let R̆t (z;ϑ; δ, ε) be the expression
following limδ↓0 and note that

R̆t (z;ϑ, δ, ε) =
∫

�̃(ζ ; z)
∫ 1

0
(1 − α)E(Dε)

2fδ

(
Xαt (ε,∅, ζ )

)
dα dζ

+
∫

�̃(ζ ; z)
∫ 1

0
(1 − α)E(Iε)

2fδ

(
Xαt (ε,∅, ζ )

)
dα dζ

(A.11)

+
∫

�̃(ζ ; z)
∫ 1

0
(1 − α)EIε Dεfδ

(
Xαt (ε,∅, ζ )

)
dα dζ

+
∫

�̃(ζ ; z)dζ

∫ 1

0
(1 − α)EDε Iεfδ

(
Xαt (ε,∅, ζ )

)
dα dζ.

The idea is to use Lemmas A.2 and C.2 to deal with the four terms on the right-hand side of
the previous equation. For simplicity, we only give the details for second term, that we denote
hereafter Ī

(2)
t (ϑ; δ, ε, z). The other terms can similarly be handled. First, let us show that Iεfδ(·)

has compact support in light of our condition (2.4) and the fact that f ′
δ has compact support.

Indeed, writing Iεfδ as

Iεfδ(y) =
∫ ∫ 1

0

(
f ′′

δ

(
y + γ (y, ζβ)

)(
∂ζ γ (y, ζβ)

)2 + f ′
δ

(
y + γ (y, ζβ)

)
∂2
ζ γ (y, ζβ)

− f ′
δ(y)∂2

ζ γ (y, ζβ)
)
(1 − β)dβζ 2h̄ε(ζ )dζ,

it is clear that Iεfδ(y) = 0 if y /∈ suppf ′
δ and y + γ (y, ζβ) /∈ S := (suppf ′

δ) ∩ (suppf ′′
δ ) for any

ζ,β . Since |1 + ∂yγ (y, ζ )| ≥ δ, it follows that, for y large enough, y + γ (y, ζβ) /∈ S regardless
of ζ and β . Next, since Iεfδ(·) has compact support, we can apply (C.8) to get

Ī
(2)
t (z;ϑ, δ, ε) =

∫
�̃(ζ ; z)

∫ 1

0
(1 − α)

∫
Iεfδ(w)Ĩεpαt (w; ε,∅, ζ )dw dα dζ.

Next, let p̃t (η; ζ ) := Ĩεpt (η; ε,∅, ζ ). An application of the identity (C.9) followed by Fubini
leads to

Ī
(2)
t (z;ϑ, δ, ε)

=
∫

f ′
δ(w)

∫ 1

0
(1 − α)

∫ (∫ w

γ̄ (w,ζ̃ )

∫
�̃(ζ ; z)p̃αt (η; ζ )dζ dη

−
∫

�̃(ζ ; z)p̃αt (w; ζ )dζγ (w, ζ̃ )

)
h̄ε(ζ̃ )dζ̃ dα dw.

Now, fix p̆t (η; z, ε) := ∫
�̃(ζ ; z)pt (η; ε,∅, ζ )dζ and note that

p̆′
t (η; z, ε) = ∂η

∫
�̃(ζ ; z)pt (η; ε,∅, ζ )dζ =

∫
�̃(ζ ; z)p′

t (η; ε,∅, ζ )dζ , (A.12)
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in light of the last statement of Lemma A.2, which will allow us to pass the derivative into the
integration sign. Using (A.12) and Fubini’s theorem, it follows that∫

�̃(ζ ; z)p̃αt (η; ζ )dζ =
∫

�̃(ζ ; z)Ĩεpαt (η; ε,∅, ζ )dζ = Ĩεp̆αt (η; z, ε). (A.13)

Therefore,

Ī
(2)
t (z;ϑ, δ, ε) =

2∑
j=1

∫
f ′

δ(w)Ī
(2,j)
t (w; z, ε)dw, (A.14)

where

Ī
(2,1)
t (w; z, ε)

= −
∫ 1

0
(1 − α)

∫ ∫ 1

0
(Ĩεp̆αt )

′(γ̄ (w, ζ̃ β̃); z, ε)(∂ζ γ̄ )(w, ζ̃ β̃)(1 − β̃)dβ̃ζ̃ 2h̄ε(ζ̃ )dζ̃ dα,

Ī
(2,2)
t (w; z, ε) = −

∫ 1

0
(1 − α)Ĩεp̆αt (w; z, ε)

∫ ∫ 1

0

(
∂2
ζ γ

)
(w, ζ̃ β̃)(1 − β̃)dβ̃ζ̃ 2h̄ε(ζ̃ )dζ̃ dα.

Now, let us define the operator

Îg(y; ζ ) := g
(
γ̄ (y, ζ )

)
∂yγ̄ (y, ζ ) − (

1 + ∂yγ (y, ζ )
)
g(y) − g′(y)γ (y, ζ ).

By writing Ĩεg(y) as

Ĩεg(y) =
∫ ∫ 1

0

(
∂2
ζ Îg

)
(y; ζ̄ β̄)(1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄ ,

it is not hard to see that Ĩεp̆αt (w; z, ε) can be expressed as follows

Ĩεp̆αt (w; z, ε) =
2∑

k=0

∫ ∫ 1

0
p̆

(k)
αt

(
γ̄ (w, ζ̄ β̄); z, ε)D(1)

k (w; ζ̄ β̄)(1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄

(A.15)

+
1∑

k=0

p̆
(k)
αt (w; z, ε)

∫ ∫ 1

0
D(2)

k (w; ζ̄ β̄)(1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄ ,

where D1
j (w; ζ ) is a finite sum of terms, which consists of the product of partial derivatives of

γ̄ (w; ζ ). Similarly, D2
j (w; ζ ) is a finite sum of terms, which consists of the product of partial

derivatives of γ (w; ζ ). In particular, both D1
j (w; ζ ) and D2

j (w; ζ ) are uniformly bounded and

continuous and, also, in light of Lemma A.2, (Ĩεp̆αt )
′(w; z, ε) will also be of the same form

as (A.15).
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Upon the substitutions of (A.15) (and the analog representation for (Ĩεp̆αt )
′(w; z, ε))

into (A.14), we can represent Ī
(2)
t (z;ϑ, δ, ε) as the sum of terms of the form∫
f ′

δ(w)

∫ 1

0
(1 − α)Ĩαt (w; z, ε)dα dw,

where Ĩαt (w; z, ε) will take one of the following four generic forms with some function D̃(w, ζ )

in C
≥1
b (R × R):

Ĩ
(1)
αt (w; z, ε) =

∫ ∫ 1

0

∫ ∫ 1

0
p̆

(k)
αt

(
γ̄
(
γ̄ (w, ζ̃ β̃), ζ̄ β̄

); z, ε)D̃
(
γ̄ (w, ζ̃ β̃); ζ̄ β̄

)
× (1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄ (∂ζ γ̄ )(w, ζ̃ β̃)(1 − β̃)dβ̃ζ̃ 2h̄ε(ζ̃ )dζ̃ ,

Ĩ
(2)
αt (w; z, ε) =

∫ ∫ 1

0

∫ ∫ 1

0
D̃

(
γ̄ (w, ζ̃ β̃); ζ̄ β̄

)
(1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄

(A.16)
× p̆

(k)
αt

(
γ̄ (w, ζ̃ β̃); z, ε)(∂ζ γ̄ )(w, ζ̃ β̃)(1 − β̃)dβ̃ζ̃ 2h̄ε(ζ̃ )dζ̃ ,

Ĩ
(3)
αt (w; z, ε) =

∫ ∫ 1

0
p̆

(k)
αt

(
γ̄ (w, ζ̄ β̄); z, ε)D̃(w; ζ̄ β̄)(1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄

×
∫ ∫ 1

0

(
∂2
ζ γ

)
(w, ζ̃ β̃)(1 − β̃)dβ̃ζ̃ 2h̄ε(ζ̃ )dζ̃ ,

Ĩ
(4)
αt (w; z, ε) = p̆

(k)
αt (w; z, ε)

∫ ∫ 1

0
D̃(w; ζ̄ β̄)(1 − β̄)dβ̄ζ̄ 2h̄ε(ζ̄ )dζ̄

×
∫ ∫ 1

0

(
∂2
ζ γ

)
(w, ζ̃ β̃)(1 − β̃)dβ̃ζ̃ 2h̄ε(ζ̃ )dζ̃ .

Using Lemma A.2, it is now clear that each Ĩ
(i)
αt (w; z, ε) is uniformly bounded in w and z for t

small enough. Concretely, using (A.4), it follows that, for ε, t > 0 small enough,

sup
z∈R,w∈suppf1

∣∣Ĩ (i)
t (w; z, ε)∣∣ < ∞. (A.17)

Due to the continuity Ĩ
(i)
t (w; z, ε) and uniformly boundedness condition (A.17), it turns out that

lim
δ→0

∫
f ′

δ(w)

∫ 1

0
(1 − α)Ĩαt (w; z, ε)dα dw =

∫ 1

0
(1 − α)Ĩαt (ϑ; z, ε)dα, (A.18)

which is uniformly bounded in z for any fixed ϑ and 0 < t < t0 with t0 > 0 small enough. �

A.2. The leading term

In order to determine the leading term of (4.1), we analyze the second term in (4.2) corresponding
to n = 1 (only one “large” jump). Again, we emphasize that in order to obtain the expansion for
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the transition densities below, we will need to write explicitly the remainder terms when applying
Dynkin’s formula (3.7).

By conditioning on the time of the jump (necessarily uniformly distributed on [0, t]),

P
(
Xt(x) ≥ x + y|Nε

t = 1
) = 1

t

∫ t

0
P
(
Xt

(
ε, {s}, x) ≥ x + y

)
ds. (A.19)

Conditioning on Fs− ,

P
(
Xt

(
ε, {s}, x) ≥ x + y

) = E
(
Gt−s

(
Xs−(ε,∅, x)

)) = E
(
Gt−s

(
Xs(ε,∅, x)

))
, (A.20)

where

Gt(z) := Gt(z;x, y) := P
[
Xt

(
ε,∅, z + γ (z, J )

) ≥ x + y
]
. (A.21)

Using Lemma A.1,

P
(
Xt

(
ε, {s}, x) ≥ x + y

)
= EH0

(
Xs(ε,∅, x);x + y

) + (t − s)EH1
(
Xs(ε,∅, x);x + y

)
(A.22)

+ (t − s)2ER1
t−s

(
Xs(ε,∅, x);x, y

)
,

where R1
t (w;x, y) := R̆t (w;x + y). Next, we apply the Dynkin’s formula (3.7) with n = 2 to

EH0(Xs(ε,∅, x);x + y), which is valid since H0(z;x + y) = P(γ (z, J ) + z ≥ x + y) is C4
b in

light of Lemma 2.1(3). By (3.7),

EH0
(
Xs(ε,∅, x);x + y

) = H0,0(x;y) + sH0,1(x;y) + s2 R2
s (x;y), (A.23)

where

H0,0(x;y) := H0(x;x + y) = P
[
γ (x, J ) ≥ y

]
,

H0,1(x;y) := (LεH0)(x;x + y) = bε(x)
∂H0(z;x + y)

∂z

∣∣∣∣
z=x

+ σ 2(x)

2

∂2H0(z;x + y)

∂z2

∣∣∣∣
z=x

(A.24)

+
∫ (

H0
(
x + γ (x, ζ );x + y

) − H0(x;x + y)

− γ (x, ζ )
∂zH0(z;x + y)

∂z

∣∣∣∣
z=x

)
h̄ε(ζ )dζ,

R2
s (x;y) :=

∫ 1

0
(1 − α)E

(
L2

εH0
)(

Xαs(ε,∅, x);x + y
)

dα.
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Note that sups<1,x,y |R2
s (x;y)| < ∞ in light of Lemma 3.2 and, also, by writing P[γ̃ (z, J ) ≥

x + y] = P[γ (z, J ) ≥ x + y − z] as G(z,x + y − z) with G(x,y) = P(γ (x, J ) ≥ y), we have

∂H0(z;x + y)

∂z

∣∣∣∣
z=x

= ∂P[γ̃ (z, J ) ≥ x + y]
∂z

∣∣∣∣
z=x

= ∂P[γ (x, J ) ≥ y]
∂x

+ �(y;x),

∂2H0(z;x + y)

∂z2

∣∣∣∣
z=x

= ∂2P[γ̃ (z, J ) ≥ x + y]
∂z2

∣∣∣∣
z=x

= ∂2P[γ (x, J ) ≥ y]
∂x2

+ 2
∂�(y;x)

∂x
− ∂�(y;x)

∂y
.

Substituting the previous identities in (A.24), we can write H0,1(x;y) as

H0,1(x;y) = bε(x)

(
∂P[γ (x, J ) ≥ y]

∂x
+ �(y;x)

)
(A.25)

+ σ 2(x)

2

(
∂2P[γ (x, J ) ≥ y]

∂x2
+ 2

∂�(y;x)

∂x
− ∂�(y;x)

∂y

)
+ Ĥ0,1(x;y),

with Ĥ0,1(x;y) given by

Ĥ0,1(x;y) =
∫ (

P
[
γ
(
x + γ (x, ζ ), J

) ≥ y − γ (x, ζ )
] − P

[
γ (x, J ) ≥ y

]
(A.26)

− γ (x, ζ )

(
∂P[γ (x, J ) ≥ y]

∂x
+ �(y;x)

))
h̄ε(ζ )dζ.

Plugging (A.23) in (A.22) and recalling from Lemma A.1 that the second and third terms on
the right-hand side of (A.22) are bounded for t small enough, we get that

P
(
Xt

(
ε, {s}, x) ≥ x + y

) = P
[
γ (x, J ) ≥ y

] + O(t).

The latter can then be plugged in (A.19) to get

P
(
Xt(x) ≥ x + y|Nε

t = 1
) = P

[
γ (x, J ) ≥ y

] + O(t).

Finally, (4.2) can be written as

P
(
Xt(x) ≥ x + y

) = e−λεt tλεP
[
γ (x, J ) ≥ y

] + O
(
t2)

(A.27)

= t

∫
1{γ (x,ζ )≥y}h(ζ )dζ + O

(
t2),

where, in the first equality, we used (3.3) to justify that P(Xt (x) ≥ x + y|Nε
t = 0) =

P(Xt (ε,∅, x) ≥ x +y) = O(t2) while, in the second equality above, we take ε > 0 small enough.
Equation (A.27) gives first-order asymptotic expansion of the tail probability P(Xt (x) ≥ x + y).
We now proceed to obtain the second-order term.
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A.3. Second-order term

In addition to (A.23), we also consider the leading terms in the term EH1(Xs(ε,∅, x);x + y)

of (A.22) and the term P(Xt (x) ≥ x +y|Nε
t = 2) of (4.2). Let us first show that z → H1(z;x +y)

is C2
b . To this end, let

K(ζ ;x, y, z) := P
[
z + γ (z, J ) ≥ γ̄ (x + y, ζ )

] − P
[
z + γ (z, J ) ≥ x + y

]
− �̃(x + y; z)γ (x + y, ζ ),

and recall that

H1(z;x + y) = �̃(x + y; z)bε(x + y) − (∂ζ �̃)(x + y; z)v(x + y)

− �̃(x + y; z)v′(x + y) +
∫

K(ζ ;x, y, z)h̄ε(ζ )dζ,

where ∂ζ �̃ and ∂z�̃ denote the partial derivatives of the density �̃(ζ ; z). Obviously, the first three
terms on the right-hand side of the previous expression are C2

b in light of Lemma 2.1(2). Hence,
for the derivative ∂zH1(z;x + y) to exist, it suffices to show that ∂zK(ζ ;x, y, z) exists and that

sup
z,x,y

∣∣∣∣∂K(ζ ;x, y, z)

∂z

∣∣∣∣ < C|ζ |2 (A.28)

for any |ζ | < ε and some constant C < ∞. Recalling that

K(ζ ;x, y, z) =
∫ x+y

γ̄ (x+y,ζ )

�̃(η; z)dη − �̃(x + y; z)γ (x + y, ζ )

=
∫ 1

0

[
(∂ζ �̃)

(
γ̄ (x + y, ζβ); z)(∂ζ γ̄ )(x + y, ζβ)

− �̃(x + y; z)(∂2
ζ γ

)
(x + y, ζβ)

]
(1 − β)dβζ 2

and using that �̃(η; z) ∈ C∞
b , we can write ∂zK(ζ ;x, y, z) as

∫ 1

0

((
∂2
z,ζ �̃

)(
γ̄ (x + y, ζβ); z)(∂ζ γ̄ )(x + y, ζβ)

− (∂z�̃)(x + y; z)(∂2
ζ γ

)
(x + y, ζβ)

)
(1 − β)dβζ 2.

Therefore, in light of Lemma 2.1 and the fact that γ ∈ C
≥1
b , there exists a constant C such

that (A.28) holds. We can similarly prove that ∂2
z H1(z;x, y) exists and is bounded.

Using Dynkin’s formula (3.7) with n = 1 and that �̃(ζ ; z) = �(ζ − z; z), we get

EH1
(
Xs(ε,∅, x);x, y

) = H1,0(x, y) + sR3
s (x;y), (A.29)
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where

H1,0(x;y) := H1(x;x + y) = D1,0(x;y) + Ĥ1,0(x;y) with

D1,0(x;y) := �(y;x)bε(x + y) − (∂ζ �)(y;x)v(x + y) − �(y;x)v′(x + y),

Ĥ1,0(x;y) :=
∫ (

P
[
x + γ (x, J ) ≥ γ̄ (x + y, ζ )

] − P
[
γ (x, J ) ≥ y

]
(A.30)

− �(y;x)γ (x + y, ζ )
)
h̄ε(ζ )dζ,

R3
s (x;y) :=

∫ 1

0
ELεH1

(
Xαs(ε,∅, x);x + y

)
dα = O(1) as s → 0.

In order to handle P(Xt (x) ≥ x + y|Nε
t = 2), we again condition on the times of the jumps,

which are necessarily distributed as the order statistics of two independent uniform [0, t] random
variables. Concretely,

P
(
Xt(x) ≥ x + y|Nε

t = 2
) = 2

t2

∫ t

0

∫ t

s1

P
(
Xt

(
ε, {s1, s2}, x

) ≥ x + y
)

ds2 ds1. (A.31)

Next, we determine the leading term of P(Xt (ε, {s1, s2}, x) ≥ x + y). By conditioning on Fs−
2

,

P
(
Xt

(
ε, {s1, s2}, x

) ≥ x + y
) = E

(
Gt−s2

(
Xs2

(
ε, {s1}, x

)))
,

where, by Lemma A.1,

Gt(z) = P
[
Xt

(
ε,∅, z + γ (z, J )

) ≥ x + y
]

(A.32)
= H0(z;x + y) + tH1(z;x + y) + t2R̆t (z;x + y).

Then, for ε > 0 and t small enough,

P
(
Xt

(
ε, {s1, s2}, x

) ≥ x + y
)

(A.33)
= E

(
H0

(
Xs2

(
ε, {s1}, x

);x + y
)) + (t − s2)ER4

t−s2

(
Xs2

(
ε, {s1}, x

);x, y
)
,

with

R4
t (z;x, y) := H1(z;x + y) + t R̆t (z;x + y).

Again, conditioning on Fs−
1

,

E
(
H0

(
Xs2

(
ε, {s1}, x

);x + y
)) = E

(
Ĝs2−s1

(
Xs1(ε,∅, x);x + y

))
,

where

Ĝt (z;x + y) := EH0
(
Xt

(
ε,∅, z + γ (z, J )

);x + y
)
.
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Since z → H0(z;x + y) = P(z + γ (z, J ) ≥ x + y) is C∞
b by Lemma 2.1(3), we can apply

Dynkin’s formula (3.7) with n = 1 to deduce

Ĝt (z;x + y) =
∫

�̃(ζ ; z)EH0
(
Xt(ε,∅, ζ );x + y

)
dζ

=
∫

�̃(ζ ; z)H0(ζ ;x + y)dζ + t R6
t (z;x, y)

=: H2(z;x + y) + t R6
t (z;x, y),

where, denoting two independent copies of J by J1, J2,

H2(z;x + y) := P
(
z + γ (z, J1) + γ

(
z + γ (z, J1), J2

) ≥ x + y
)
,

R6
t (z;x, y) :=

∫
�̃(ζ ; z)

∫ 1

0
ELεH0

(
Xαt (ε,∅, ζ );x + y

)
dα dζ.

Therefore,

P
(
Xt

(
ε, {s1, s2}, x

) ≥ x + y
)

= E
(
H2

(
Xs1(ε,∅, x);x + y

)) + (s2 − s1)ER6
s2−s1

(
Xs1(ε,∅, x);x, y

)
+ (t − s2)ER4

t−s2

(
Xs2

(
ε, {s1}, x

);x, y
)
.

Applying again Dynkin’s formula (3.7) with n = 1 to the first term on the right-hand side of the
previous equation, we can write

P
(
Xt

(
ε, {s1, s2}, x

) ≥ x + y
)

= H2,0(x;y) + s1 R5
s1

(x;y)
(A.34)

+ (s2 − s1)ER6
s2−s1

(
Xs1(ε,∅, x);x, y

)
+ (t − s2)ER4

t−s2

(
Xs2

(
ε, {s1}, x

);x, y
)
,

where

H2,0(x;y) := H2(x;x + y) = P
(
γ (x, J1) + γ

(
x + γ (x, J1), J2

) ≥ y
)
,

R5
s1

(x;y) :=
∫ 1

0
ELεH2

(
Xαs1(ε,∅, x);x + y

)
dα.

Therefore, we conclude that

P
(
Xt(x) ≥ x + y|Nε

t = 2
) = H2,0(x;y) + O(t). (A.35)
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In light of (A.19), (A.22)–(A.25), (A.29), and (A.35), we have the following second-order de-
composition of the tail distribution P(Xt (x) ≥ x + y):

P
(
Xt(x) ≥ x + y

)
= e−λεtλεtH0,0(x;y) + e−λεt

λεt
2

2

(
H0,1(x;y) + H1,0(x;y)

)
+ e−λεt

(λεt)
2

2
H2,0(x;y) + O

(
t3)

= λεtH0,0(x;y) + t2

2

{
λε

[
H0,1(x;y) + H1,0(x;y)

] + λ2
ε

[
H2,0(x;y) − 2H0,0(x;y)

]}
+ O

(
t3),

where, in the first equality above, we had again used (3.3) to justify that

P
(
Xt(x) ≥ x + y|Nε

t = 0
) = P

(
Xt(ε,∅, x) ≥ x + y

) = O
(
t3)

for ε small enough. The expressions in (4.5) follows from the fact that,

λεP
[
γ (x, J ) ≥ y

] =
∫ ∞

y

λε�ε(ζ ;x)dζ =
∫

{ζ :γ (x,ζ )≥y}
h(ζ )φε(ζ )dζ

(A.36)

=:
∫ ∞

y

gε(x; ζ )dζ

for some function gε(x; ζ ). Thus, for fixed x ∈ R and y > 0,

λε�ε(y;x) = gε(x;y). (A.37)

Furthermore, by differentiation of the last equality in (A.36) and using that γ (x,0) = 0, it follows
that, for ε > 0 small enough, gε(x;y) admits the representation on the right-hand side of (4.3).
Using (A.36)–(A.37), it then follows that

λεH0,0(x;y) =
∫ ∞

y

g(x; ζ )dζ,

λε

[
Ĥ0,1(x;y) + Ĥ1,0(x;y)

] = J1(x;y),

λε

[
H0,1(x;y) + H1,0(x;y)

] = D(x;y) + J1(x;y),

λ2
ε

[
H2,0(x;y) − 2H0,0(x;y)

] = J2(x;y),

with D(x;y), J1(x;y), and J2(x;y) given as in the statement of the theorem. This concludes
the result of Theorem 4.1.
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Appendix B: Proof of the expansion for the transition densities

The following result will allow us to control the higher-order terms of the expansion (4.2) (see
Appendix C for its proof):

Lemma B.1. Let

R̄t (x, y) := e−λεt
∞∑

n=3

P
(
Xt(x) ≥ x + y|Nε

t = n
) (λεt)

n

n! . (B.1)

Then, under the conditions of Theorem 5.2, there exists ε > 0 small enough as well as t0 :=
t0(ε) > 0 and B = B(ε) < ∞ such that, for any 0 < t < t0,∣∣∂y R̄t (x, y)

∣∣ ≤ Bt3.

Proof of Theorem 5.2. Let us consider the terms corresponding to one and two “large” jumps
in (4.2). From (A.19), (A.22), (A.23), and (A.29), it follows that

P
(
Xt(x) ≥ x + y|Nε

t = 1
)

= H0,0(x;y) + t

2

[
H0,1(x;y) + H1,0(x;y)

]
(B.2)

+ 1

t

∫ t

0

{
s2 R2

s (x;y) + (t − s)sR3
s (x;y) + (t − s)2ER1

t−s

(
Xs(ε,∅, x);x, y

)}
ds.

Similarly, from (A.31), (A.33), and (A.34), we have

P
(
Xt(x) ≥ x + y|Nε

t = 2
)

= H2,0(x;y) + 2

t2

∫ t

0

∫ t

s1

{
s1 R5

s1
(x;y) + (s2 − s1)ER6

s2−s1

(
Xs1(ε,∅, x);x, y

)
(B.3)

+ (t − s2)ER4
t−s2

(
Xs2

(
ε, {s1}, x

);x, y
)}

ds2 ds1.

Equations (B.2)–(B.3) show that in order for the derivatives

â1(x;y) := ∂

∂y
P
(
Xt(x) ≥ x + y|Nε

t = 1
)
, â2(x;y) := ∂

∂y
P
(
Xt(x) ≥ x + y|Nε

t = 2
)

to exist, it suffices that the partial derivatives with respect to y of the functions Hi,j (x;y) exist
and also that the partial derivatives with respect to y of the two types of functions, Ri

t (x;y) with

i = 2,3,5 and Rj
t (w;x, y) with j = 1,4,6, exist and are uniformly bounded on w ∈ R and on

a neighborhood of y. Furthermore, under the later boundedness property, we will then be able to
conclude that

â1(x;y) = ∂H0,0(x;y)

∂y
+ t

2

[
∂H0,1(x;y)

∂y
+ ∂H1,0(x;y)

∂y

]
+ O

(
t2) (t → 0), (B.4)

â2(x;y) = ∂H2,0(x;y)

∂y
+ O(t) (t → 0). (B.5)
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Note that (B.4)–(B.5) suffices to obtain the conclusion of the theorem, namely equation (5.5), in
light of (4.2), Theorem 5.1, and Lemma B.1. We now proceed to verify the differentiability of
the functions Hi,j (x, y) and the remainder terms.

(1) Differentiability of Hi,j (x;y): The desired differentiability essentially follows from
Lemma 2.1. Indeed, Lemma 2.1(2) implies that ∂yH0,0(x;y) = ∂yP[γ (x, J ) ≥ y] = −�(y;x)

and also, recalling the formula of H0,1(x, y) given in equations (A.25)–(A.26),

∂yH0,1(x;y) := σ 2(x)

2

(
−∂2�(y;x)

∂x2
+ 2

∂2�(y;x)

∂y ∂x
− ∂2�(y;x)

∂y2

)

+ bε(x)

(
−∂�(y;x)

∂x
+ ∂�(y;x)

∂y

)

+
∫

(�(y;x) − �

(
y − γ (x, ζ );x + γ (x, ζ )

− γ (x, ζ )

(
∂�(y;x)

∂y
− ∂�(y;x)

∂x

))
h̄ε(ζ )dζ.

Similarly, recalling the definition of H1,0(x;y) given in (A.30),

∂yH1,0(x;y) := ∂y

(
�(y;x)bε(x + y) − (∂ζ �)(y;x)v(x + y) − �(y;x)v′(x + y)

)
+

∫ (
�(y;x) − �

(
γ̄ (x + y, ζ ) − x;x)

∂yγ̄ (x + y, ζ )

− ∂y

(
�(y;x)γ (x + y, ζ )

))
h̄ε(ζ )dζ.

To compute ∂yH2,0(x;y), note that

∂

∂y
H2,0(x;y) = ∂

∂y

∫
P
(
γ
(
x + γ (x, ζ1), J2

) ≥ y − γ (x, ζ1)
)
hε(ζ1)dζ1

=
∫

∂

∂y

∫ ∞

y−γ (x,ζ1)

�
(
ζ2;x + γ (x, ζ1)

)
dζ2hε(ζ1)dζ1

= −
∫

�
(
y − γ (x, ζ1);x + γ (x, ζ1)

)
hε(ζ1)dζ1,

where the second equality above again follows from Lemma 2.1(2). Finally, the representations
in (5.6) can be deduced for ε small enough from the relationships (A.36)–(A.37).

(2) Boundedness of ∂y Ri (w;x, y): Analyzing the remainder terms R2(x;y), R3
t (x;y),

R5
t (x;y), and R6

t (w;x, y), it transpires that it suffices to show that ∂yL
2
εH0(w;x + y),

∂yLεH0(w;x + y), ∂yLεH1(w;x + y), and ∂yLεH2(w;x + y) exist and are uniformly bounded
in w and y. From the definition of Lε in (3.4), one can see that, for any function H(w;y) : R2 →
R in C∞

b (R2), ∂y(LεH(w;y)) exists and

∂y

(
LεH(w;y)

) = Lε(∂yH)(w;y), sup
w,y

∣∣∂yLεH(w;y)
∣∣ < ∞.
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From Lemma 2.1(4) and the relationship (A.28), one can verify that H0(w;x + y),H1(w;x +
y),H2(w;x + y) are C∞

b functions.
In order to show that ∂y R1

t (w;x, y) and ∂y R4
t (w;x, y) exist and are bounded, it suffices

that the remainder term R̆t (z;ϑ) of (A.1) is differentiable with respect to ϑ and ∂ϑ R̆t (z;ϑ) is
bounded. The remainder term is defined as in (A.10), which in turn is defined as the limit as
δ → 0 of each of the four terms in (A.11). We will show that the limit as δ → 0 of the second
term, which was therein denoted by Ī

(2)
t (z;ϑ, δ, ε), is indeed differentiable with respect to ϑ and

its derivative is bounded. The other three terms can be dealt with similarly. As shown in the proof
of Lemma A.1 (see (A.18) and arguments before), the limit of the second term in (A.11) can be
expressed as the sum of terms of the form

∫ 1
0 (1 − α)Ĩαt (ϑ; z, ε)dα, where Ĩαt (ϑ; z, ε) takes one

of the four generic terms listed in (A.17). So, we only need to show that each of these terms is
differentiable with respect to w and that their respective derivatives are bounded. The latter facts
will follow from Lemma A.2 together with the same arguments leading to (A.17). �

Appendix C: Proofs of other lemmas and additional needed
results

The following result is needed in order to prove Lemma A.2.

Lemma C.1. Assume that the conditions (C1)–(C4) of Section 2 are enforced. Let 	t :x →
Xt(ε,∅, x) be the diffeomorphism associated with the solution of the SDE (2.11). Then, for any
k ≥ 1, T < ∞, and compact K ⊂ R,

sup
t∈(0,T ]

sup
η∈K

E

(∣∣∣∣di	−1
t

dηi
(η)

∣∣∣∣k
)

< ∞, i = 1,2. (C.1)

Proof. To simplify the notation, we write X̆(x) = {X̆t (x)}t∈(0,T ] for {Xt(ε,∅, x)}t≥0 and fix
Yt (x) := X̆(T −t)−(x) for 0 ≤ t < T and YT (x) := X̆0(x) = x. We follow a similar approach to
that in the proof of Lemma 3.1 in Ishikawa [17] based on time-reversibility (see Section VI.4
in Protter [29] for further information). Recall that the time-reversal process of a cádág process
V = {Vt }0≤t≤T is given by the cádlág process

V
T

t = (V(T −t)− − VT −)10<t<T + (V0 − VT −)1t=T . (C.2)

Our main tool is Theorem VI.4.22 in Protter [29]. The following notation and definitions are
useful for verifying the assumptions in the theorem.

Throughout, 	t,T (·;ω) : R → R denotes the diffeomorphisms defined by 	t,T (x;ω) :=
Xε

t,T (x;ω) where Xε
t,T (x;ω) is the unique solution of the SDE

Xε
t,T (x) = x +

∫ T

t

σ
(
Xε

t,u(x)
)

dWu +
∫ T

t

bε

(
Xε

t,u(x)
)

du

(C.3)

+
c∑

t<u≤T

γ
(
Xε

t,u−(x),�Z′
u

)
,
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where
∑c denotes the compensated sum. The a.s. existence of this diffeomorphisms is guar-

anteed from (2.4) as stated in Remark 2.2. As usual, Ft = F 0
t ∨ N and F = (Ft )0≤t≤T , where

F 0
t = σ {Wu,Z

′
u;u ≤ t} (0 ≤ t ≤ T ) and N are the P-null sets of F 0

T . We also define the back-
ward filtration H̃ = (Ht )0<t≤T by Ht = ⋂

t<u≤T F̄u ∨ σ {X̆T }, where (F̄t )0≤t≤T is defined anal-

ogously to (Ft )0≤t≤T by W and Z′ replaced with their reversal processes W̄ T and Z̄′T .
We are ready to show the assertions of the lemma. First, note that, by the uniqueness of the

solution of (C.3), X̆T (x) = 	t,T (X̆t (x)). Thus, X̆t (x) = 	−1
t,T (X̆T (x)) ∈ HT −t and, of course,

X̆t (x) ∈ Ft , so that σ(X̆t (x)) ∈ Ft ∧ HT −t . Also, by Itô’s formula, the quadratic covariation of
W = {Wt }0≤t≤T with σ(X̆) := {σ(X̆t (x))}0≤t≤T is given by

[
σ(X̆),W

]
t
=

∫ t

0
σ ′(X̆u(x)

)
σ
(
X̆u(x)

)
du =

∫ t

0
σ ′(YT −u(x)

)
σ
(
YT −u(x)

)
du. (C.4)

Finally, recalling that W = {Wt }0≤t≤T is an (F, H̃)-reversible semimartingale (cf. Theo-
rem VI.4.20 in Protter [29]), the assumptions of Theorem VI.4.22 in Protter [29] are satisfied
with σ(X̆) and W in place of H and Y , respectively. By the theorem, we have

∫ ·

0
σ
(
X̆u(x)

)
dWu

T

t

+ [
σ(X̆),W

]T
t

=
∫ t

0
σ
(
X̆T −u(x)

)
dW̄ T

u ,

or equivalently, by (C.4) and the change of variable v = T − u,

∫ ·

0
σ
(
X̆u−(x)

)
dWu

T

t

−
∫ t

0
σ ′(Yv(x)

)
σ
(
Yv(x)

)
dv =

∫ t

0
σ
(
Yu(x)

)
dW

T

u . (C.5)

Omitting for simplicity the dependence of the processes on x, the first term on the left- hand side
of (C.5) can be written as

X̆· − x −
∫ ·

0
bε(X̆u−)du −

c∑
0<u≤·

γ
(
X̆u−,�Z′

u

)T

t

= X̆(T −t)− − X̆T − +
∫ T

T −t

b(X̆u)du +
c∑

T −t≤u<T

γ
(
X̆u−,�Z′

u

)

= Yt − Y0 +
∫ t

0
bε(Yv)dv +

c∑
0<v≤t

γ
(
X̆(T −v)− ,�Z′

T −v

)
,

where the last equality above is from the change of variable v = T − u. Then, (C.5) implies that

Yt (x) = Y0(x) −
∫ t

0
bε

(
Yv(x)

)
dv +

∫ t

0
σ ′(Yv(x)

)
σ
(
Yv(x)

)
dv +

∫ t

0
σ
(
Yv(x)

)
dW

T

v

−
c∑

0<v≤t

γ
(
X̆(T −v)−(x),�Z′

T −v

)
, Y0(x) = X̆T −(x).
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Let us write the jump component of Y in a more convenient way. To this end, note that, since
X̆(T −v)−(x) + γ (X̆(T −v)−(x),�Z′

T −v) = X̆T −v(x), one can express X̆(T −v)−(x) in terms of the
inverse γ̄ (u, ζ ) of the mapping z → u := z + γ (z, ζ ) as follows

Yv(x) = X̆(T −v)−(x) = γ̄
(
X̆T −v(x),�Z′

T −v

) = γ̄
(
Yv−(x),�Z′

T −v

)
.

Then,

�Yv(x) = γ̄
(
Yv−(x),�Z′

T −v

) − Yv−(x) = γ̄
(
Yv−(x),−�Z̄′

v

) − Yv−(x) = γ0
(
Yv−(x),�Z̄′

v

)
,

where γ0(u, ζ ) := γ̄ (u,−ζ ) − u and Z̄′
v := Z′T

v is the time-reversal process of {Z′
v}0≤v≤T . We

conclude that

Yt (x) = X̆T −(x) −
∫ t

0
bε

(
Yv(x)

)
dv +

∫ t

0
σ ′(Yv(x)

)
σ
(
Yv(x)

)
dv +

∫ t

0
σ
(
Yv(x)

)
dW

T

v

+
c∑

0<v≤t

γ0
(
Yv−(x),�Z̄′

v

)
.

Now, define the diffeomorphism �t : R → R as �t(η) := Y̆t (η), where {Y̆t (η)}0≤t≤T is the solu-
tion of the SDE

Y̆t (η) = η −
∫ t

0
bε

(
Y̆v(η)

)
dv +

∫ t

0
σ ′(Y̆v(η)

)
σ
(
Y̆v(η)

)
dv +

∫ t

0
σ
(
Y̆v(η)

)
dW

T

v

+
c∑

0<v≤t

γ0
(
Y̆v−(η),�Z̄′

v

)
.

Since, P-a.s.,

�T

(
	T (x)

) = �T

(
X̆T (x)

) = �T

(
X̆T −(x)

) = YT (x) = x for all x ∈ R, T < ∞,

it follows that, P-a.s., �t(η) = 	−1
t (η) for all η ∈ R. Furthermore, {Y̆t (η)}t≥0 solves an SDE

of the form (6-2) in Bichteler, Gravereaux and Jacod [6] with their coefficients satisfying the
assumptions of Lemma 10-29 therein. Finally, by Lemma 10-29-c in Bichteler, Gravereaux and
Jacod [6], with n = 2 and q = 1,

sup
0<t≤T

sup
η∈K

E

[∣∣∣∣di	−1
t (η)

dηi

∣∣∣∣k
]

= sup
0<t≤T

sup
η∈K

E

[∣∣∣∣di�t (η)

dηi

∣∣∣∣k
]

= sup
0<t≤T

sup
η∈K

E

[∣∣∣∣diY̆t (η)

dηi

∣∣∣∣k
]

< ∞

for i = 1,2. �

Proof of Lemma A.2. For simplicity, we write �̃(ζ ) = �̃(ζ ; z) and only show the case k = 1
(the other cases can similarly be proved). Using the same ideas as in the proof of Proposition I.2
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in Léandre [18], one can show that∫
�̃(ζ )pt (η; ε,∅, ζ )dζ = E

(
Ht(η)

)
,

where

Ht(η) := �̃
(
	−1

t (η)
)d	−1

t

dη
(η).

Denoting J̄t (η) := d	−1
t (η)/dη, note that

H ′
t (η) = �̃′(	−1

t (η)
)
J̄t (η)2 + �̃

(
	−1

t (η)
)
J̄ ′

t (η),

and, using (C.1) and that �̃ ∈ C∞
b , it follows that supη∈K E|H ′

t (η)|2 < ∞. In particular,

lim
h→0

E

(
Ht(η + h) − Ht(η)

h

)
= E

(
lim
h→0

Ht(η + h) − Ht(η)

h

)
= EH ′

t (η), (C.6)

since the set of random variables {[Ht(η + h) − Ht(η)]/h: |h| < 1} is uniformly integrable.
Indeed,

sup
|h|≤1

E

(
Ht(η + h) − Ht(η)

h

)2

= sup
|h|≤1

E

(∫ 1

0
H ′

t (η + hβ)dβ

)2

≤ sup
|h|≤1

β∈[0,1]

E
(
H ′

t (η + hβ)
)2

,

which is finite in light of (C.1). Then, (C.6) can be written as

d

dη

∫
�̃(ζ )pt (η; ε,∅, ζ )dζ = E

(
�̃′(	−1

t (η)
)(

J̄t (η)
)2) + E

(
�̃

(
	−1

t (η)
)
J̄ ′

t (η)
)
.

It is now clear that (A.4) will hold true in light of (C.1).
We now show the last assertion of the lemma. First note that, from the non-negativity of �̃ and

pt , (A.4) implies that there exist a constant t0 > 0 small enough such that for any t < t0,

sup
z∈R

sup
η∈K

∫ ∣∣�̃(ζ )pt (η; ε,∅, ζ )
∣∣dζ < ∞,

and, thus, �̃(ζ )pt (η; ε,∅, ζ ) is uniformly integrable with respect to ζ . The latter fact together
with (A.4) implies that∣∣∣∣ ∂k

∂ηk

∫
�̃(ζ )

∂pt

∂η
(η; ε,∅, ζ )dζ

∣∣∣∣ =
∣∣∣∣ ∂k+1

∂ηk+1

∫
�̃(ζ )pt (η, ε,∅, ζ )dζ

∣∣∣∣ < C

for some C > 0 and any t < t0, z ∈ R and η ∈ K . Then, (A.4) is also true with ∂pt/∂η in place
of pt inside the integral of (A.4). �
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Lemma C.2. Assume the conditions (C1)–(C4) of Section 2 are satisfied and let Dε and Iε be
the operators defined in (3.4). Define the following operators:

D̃εg(y) := v(y)g′′(y) + (
2v′(y) − b(y)

)
g′(y) + (

v′′(y) − b′(y)
)
g(y),

Ĩεg(y) :=
∫ (

g
(
γ̄ (y, ζ )

)
∂yγ̄ (y, ζ ) − (

1 + ∂yγ (y, ζ )
)
g(y) − g′(y)γ (y, ζ )

)
h̄ε(ζ )dζ ,

H̃εg(y) :=
∫ (∫ y

γ̄ (y,ζ )

g(η)dη − g(y)γ (y, ζ )

)
h̄ε(ζ )dζ ,

where hereafter γ̄ (u, ζ ) denotes the inverse of the mapping y → u := y + γ (y, ζ ) for a fixed ζ

and whose existence is guaranteed from condition (C4). Then, the following assertions hold:

1. D̃εg is well defined and uniformly bounded for any g ∈ C2
b and, furthermore, for any f ∈

C2
b with compact support,∫

g(y)Dεf (y)dy =
∫

f (y)D̃εg(y)dy. (C.7)

2. Ĩεg is well defined and uniformly bounded for any g ∈ C1
b and, additionally, if g is inte-

grable, then, for any f ∈ C1
b with compact support,∫
g(y)Iεf (y)dy =

∫
f (y)Ĩεg(y)dy. (C.8)

3. For any g ∈ C1
b and f ∈ C1

b such that f ′ and f ′′ are integrable,∫
g(y)Iεf (y)dy =

∫
f ′(y)H̃εg(y)dy. (C.9)

Proof. The dual relationships essentially follow from a combination of integration by parts and
change of variables. Let us show (C.9). First, we show that Iεf (y) is integrable and, thus, the
left-hand side of equation (C.9) is well defined. To this end, we write Iεf (y) as

Iεf (y) =
∫ ∫ 1

0

(
f ′′(y + γ (y, ζβ)

)(
∂ζ γ (y, ζβ)

)2 + f ′(y + γ (y, ζβ)
)
∂2
ζ γ (y, ζβ)

− f ′(y)∂2
ζ γ (y, ζβ)

)
(1 − β)dβh̄ε(ζ )ζ 2 dζ.

Since γ ∈ C
≥1
b , it is now evident that

∫ |Iεf (y)|dy < ∞ provided that
∫ |f (k)(y +

γ (y, ζβ))|dy < ∞ for k = 1,2. To verify the latter fact, note that, by changing variables from y

to w := γ̃ (y, ζβ) = y + γ (y, ζβ),∫ ∣∣f (k)
(
y + γ (y, ζβ)

)∣∣dy =
∫ ∣∣f (k)(w)

∣∣ 1

|1 + (∂yγ )(γ̄ (w,βζ ), ζβ)| dw < ∞,

due to (2.4).
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Once we have show that Iεf (y) is integrable, we now prove the equality in equation (C.9).
Let us first note that∫

g(y)Iεf (y)dy

(C.10)

= lim
δ→0

∫
g(y)

∫
|ζ |≥δ

(
f

(
y + γ (y, ζ )

) − f (y) − f ′(y)γ (y, ζ )
)
h̄ε(ζ )dζ dy.

For each δ > 0, fix

Aδ =
∫

g(y)

∫
|ζ |≥δ

(
f

(
y + γ (y, ζ )

) − f (y)
)
h̄ε(ζ )dζ dy,

and note that

Aδ =
∫ ∫

|ζ |≥δ

∫ 1

0
g(y)f ′(y + γ (y, ζβ)

)
(∂ζ γ )(y, ζβ)dβh̄ε(ζ )ζ dζ dy.

Changing variable from y to w := γ̃ (y, ζβ) = y + γ (y, ζβ) and applying Fubini, we get

Aδ =
∫

f ′(w)

∫
|ζ |≥δ

∫ 1

0
g
(
γ̄ (w, ζβ)

) (∂ζ γ )(γ̄ (w,βζ ), ζβ)

1 + (∂yγ )(γ̄ (w,βζ ), ζβ)
dβζ h̄ε(ζ )dζ dw.

From the identity

∂ζ

∫ w

γ̄ (w,ζ )

g(η)dη = −g
(
γ̄ (w, ζ )

)
∂ζ γ̄ (w, ζ ) = g

(
γ̄ (w, ζ )

) (∂ζ γ )(γ̄ (w, ζ ), ζ )

1 + (∂yγ )(γ̄ (w, ζ ), ζ )
,

we can then write

Aδ =
∫

f ′(w)

∫
|ζ |≥δ

∫ w

γ̄ (w,ζ )

g(η)dηh̄ε(ζ )dζ dw.

Plugging the previous formula in (C.10), we get∫
g(y)Iεf (y)dy = lim

δ→0

∫
f ′(y)

∫
|ζ |≥δ

(∫ y

γ̄ (y,ζ )

g(η)dη − γ (y, ζ )g(y)

)
h̄ε(ζ )dζ dy.

Let

Bδ(y) :=
∫

|ζ |≥δ

C(y, ζ )h̄ε(ζ )dζ with C(y, ζ ) :=
∫ y

γ̄ (y,ζ )

g(η)dη − γ (y, ζ )g(y),

and note that, for g ∈ C1
b ,

∂2
ζ C(y, ζ ) = −g′(γ̄ (y, ζ )

)(
∂ζ γ̄ (y, ζ )

)2 − g
(
γ̄ (y, ζ )

)
∂2
ζ γ̄ (y, ζ ) − g(y)∂2

ζ γ (y, ζ ), (C.11)
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is bounded in light of Lemma 2.1(4). Then, writing

∫
f ′(y)Bδ(y)dy =

∫
f ′(y)

∫
|ζ |≥δ

∫ 1

0
∂2
ζ C(y, ζβ)(1 − β)dβζ 2h̄ε(ζ )dζ dy,

it is clear that, when f ′ is integrable,

lim
δ→0

∫
f ′(y)Bδ(y)dy =

∫
f ′(y) lim

δ→0
Bδ(y)dy

=
∫

f ′(y)

∫ (∫ y

γ̄ (y,ζ )

g(η)dη − γ (y, ζ )g(y)

)
h̄ε(ζ )dζ dy,

which implies (C.9). �

Proof of Lemma B.1. By conditioning on the times of the jumps, which are necessarily dis-
tributed as the order statistics of n independent uniform [0, t] random variables, we have

P
(
Xt(x) ≥ x + y|Nε

t = n
) = n!

tn

∫
�

P
(
Xt

(
ε, {s1, . . . , sn}, x

) ≥ x + y
)

dsn · · · ds1,

where � := {(s1, . . . , sn): 0 < s1 < s2 < · · · < sn < t}. Hence, conditioning on Fs−
n

,

P
(
Xt

(
ε, {s1, . . . , sn}, x

) ≥ x + y
) = E

[
P
(
Xt

(
ε, {s1, . . . , sn}, x

) ≥ x + y|Fs−
n

)]
= E

[
Gt−sn

(
Xsn

(
ε, {s1, . . . , sn−1}, x

);x, y
)]

,

where Gt(z;x, y) = P(Xt (ε,∅, z + γ (z, J )) ≥ x + y). In terms of the densities pt (·; ε,∅, ζ )

and �̃(·; z) of Xt(ε,∅, ζ ) and z + γ (z, J ), respectively, we have that

Gt(z;x, y) =
∫ ∫ ∞

x+y

pt (η; ε,∅, ζ )dη�̃(ζ ; z)dζ

=
∫ ∞

x+y

∫
pt(η; ε,∅, ζ )�̃(ζ ; z)dζ dη.

From Lemma A.2, we know that there exists ε small enough such that, for any δ > 0, there exists
B := B(ε, δ) < ∞ and t0 := t0(ε, δ) > 0 for which

sup
z∈R

sup
η∈[x+y−δ,x+y+δ]

∫
pt(η; ε,∅, ζ )�̃(ζ ; z)dζ ≤ B (C.12)

for all 0 < t < t0. The uniform bound (C.12) allows us to interchange the differentiation and the
other relevant operations (integration, expectation, etc.) so that

G(n)
t (x, y) := ∂yP

(
Xt(x) ≥ x + y|Nε

t = n
)
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can be written as

G(n)
t (x, y) = n!

tn

∫
�

∂yP
(
Xt

(
ε, {s1, . . . , sn}, x

) ≥ x + y
)

dsn · · · ds1

= n!
tn

∫
�

E
[
∂yGt−sn

(
Xsn

(
ε, {s1, . . . , sn−1}, x

);x, y
)]

dsn · · · ds1

= n!
tn

∫
�

E

[∫
pt−sn(x + y; ε,∅, ζ )�̃

(
ζ ;Xsn

(
ε, {s1, . . . , sn−1}, x

))
dζ

]
dsn · · · ds1

and also, for any 0 < t < t0, ∣∣∂yP
(
Xt(x) ≥ x + y|Nε

t = n
)∣∣ ≤ B.

Using this bound,

∣∣∂y R̄t (x, y)
∣∣ ≤ e−λεt

∞∑
n=3

∣∣∂yP
(
Xt(x) ≥ x + y|Nε

t = n
)∣∣ (λεt)

n

n!

≤ Be−λεt

∞∑
n=3

(λεt)
n

n! ≤ Bλ3
εt

3.

The proof is then complete. �

Proof of Lemma 6.1. By conditioning on the times of the jumps, which are necessarily dis-
tributed as the order statistics of n independent uniform [0, t] random variables, we have

P
(|Xt − x| ≥ logy|Nε

t = n
) = n!

tn

∫
�

P
(∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ ≥ logy

)
dsn · · · ds1,

where � := {(s1, . . . , sn): 0 < s1 < s2 < · · · < sn < t}. Hence, we only need to bound

sup
n∈N,t∈[0,1]

1

n!
∫ ∞

0
P
(∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ ≥ logy

)
dy

uniformly. By conditioning again,

P
(∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ ≥ logy

)
= E

[
P
(∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ ≥ logy|Fs−

n

)]
≤ E

[
P
[∣∣Xt−sn(ε,∅, z) − x

∣∣ + ∣∣γ (z, J )
∣∣ ≥ logy

]|z=Xsn (ε,{s1,...,sn−1},x)

]
.

Recall the condition (C5), we have for some constant M > 0 and all λ ≤ 3

sup
x

Eeλ|γ (x,J )| sup
x

≤ C

∫
e|3γ (x,z)|h(z)dz ≤ M < ∞.
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Now fix any positive constant A and t ≤ 1, we have

Ee|Xt (ε,{s1,...,sn},x)−x| =
∫ A

0
P
{∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ > logy

}
dy

+
∫ ∞

A

P
{∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ > logy

}
dy

≤ A + 2Me(1/2)λ2
1k(1+exp(λ1ε))

1

Aα

1

α

(
Eeλ1|Xsn (ε,{s1,...,sn−1},x)−x|).

Above, we used (3.2) for the last inequality with λ = λ1 = 1 + α, where 0 < α < 2 is to be
chosen later. Now we iterate the above procedure by taking λi = (1 + α)i, i = 1,2, . . . , n, at
each step, and choose λn = (1 + α)n = e. We conclude that there exists a large enough constant
C independent of n and t such that∫ ∞

0
P
{∣∣Xt

(
ε, {s1, . . . , sn}, x

) − x
∣∣ > logy

}
dy ≤ Cn

(
1

α

)n

.

In what follows, we only need to show Cn(1/α)n/n! → 0 as n → ∞. Recall that α = e1/n − 1.

We have

log

[
Cn

(
1

α

)n]
∼ n

(
C + log

1

n

)
as n → ∞.

On the other hand, we know logn! ∼ n2/2 as n → ∞. The proof is then complete. �
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