Math 180, Exam 1, Practice Fall 2009
Problem 1 Solution

1. Evaluate the following limits, or show they do not exist.

(a) lim 2cosx

2 4
(b) lim !
=2 1+ 2

. 2—+x =95
(¢) im ————
z—9 r—9

Solution:

(a) The function f(x) = 2cosx is continuous at x = 7. In fact, f(z) is continuous at all
x in the interval (—oo, 00). Therefore, we can evaluate the limit using substitution.

lim 2cosx = 2cosm =| —2

r—T

LL’2

) —4
(b) The function f(z) = P

x # —2. Therefore, we can evaluate the limit using substitution.
2 -4 224
1' = =
o2 42 242 0]

2z —5
(c) When substituting x = 9 into the function f(x) = 7% we find that

is continuous at z = 2. In fact, f(z) is continuous at all

2-Vr—5 2-v9-5 0

r—9 9-—-9 0

which is indeterminate. We can resolve the indeterminacy by multiplying f(x) by the



“conjugate” of the numerator divided by itself.

2—+Vx -5 2—vx—=5 24++Vx—-5

Iy T T o s
4 — (z—5)

= lim
29 (z — 9)(2+ vz — 5)
= lim —(z—9)
29 (z— 9)(2+ vz —5)
, —1
_olc{%2+\/:c——5

—1
2449 -5
1
T4

We evaluated the limit above by substituting = 9 into the function

is possible because the function is continuous at x = 9.
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Problem 2 Solution

2. Determine the location and type (removable, jump, infinite, or other) of all discontinuities
2
x°—3r+ 2

of the function 5
2 — 1

Solution: We start by factoring the numerator and denominator.

x2—3x+2: (x—=2)(z—1)

2?2 —1 (x+1)(x—1)
As x — —17, we find that:
2 2 — (-1
im % 3r+2 m (x —2)(x—1)
r——11 1’2 -1 r——11 (ZL’ + ].)(ZL’ — ].)
} T —2
= lim
r——1+ x+ 1
= —00
Therefore, x = —1 is an infinite discontinuity.
The limit at z =1 is:
2 - 2 —2)(x—1
lim 3r+2 i (x —2)(x —1)
r—1 :[,’2 — ]_ rz—1 (:L’ —I— 1)([[' — 1)
. =2
= lim
=1+ 1
o 1-=2
C1+1
1
2

However, f(1) does not exist. Using our textbook’s definitions, x = 1 cannot be categorized
as a removable, jump, or infinite discontinuity. Therefore, x = 1 falls under the “other”
category.
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3. Find the equation of the tangent line to y = 2% — 22% + 2 at x = 1.
Solution: The derivative y is found using the Power Rule.

y = (2° —22° +2) =327 — 4z
At = 1 the values of y and ¢ are:

y()=1>-2(1)>+2=1
y'(1) =3(1)* —4(1) = —1

We now know that the point (1, 1) is on the tangent line and that the slope of the tangent
line is —1. Therefore, an equation for the tangent line in point-slope form is:

y—1=—(x—-1)
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4. Determine the value of ¢ so that the function

fz) = 3cx+1 ifx<l1
T bat4c ifx>1

is continuous on R.

Solution: The functions 3cx + 1 and 5z + ¢ are continuous for all z. In order for f(z) to
be continuous on R, we must select ¢ so that f(x) is continuous at x = 1. To do this, we
must compute the one-sided limits at z = 1.

lim f(z)= lim (3cx+1)=3c¢(l)+1=3c+1

rz—1— rz—1—
lir% flz) = 1i1r{1+ (52 +¢)=5(1)*+c=5+c

In order to have continuity at = 1, the one-sided limits must be equal there. Thus, we
need:

3c+1=5+¢
2c =4
c=2

For this value of ¢ we have lini f(x) = 7. Furthermore, we have f(1) = 5(1)? +2 = 7. Thus,

since lim1 f(x) = f(1) we know that f(z) is continuous at x = 1.
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5. Use the Intermediate Value Theorem in order to show that the equation
2’ —x4+1=0
has at least one real solution.

Solution: Let f(z) = 2° — x + 1. First we recognize that f(z) is continuous everywhere
because it is a polynomial. Next, we must find an interval [a, b] such that f(a) and f(b) have
opposite signs. Let’s choose a = —2 and b = —1.

F(=2) = (=2 = (-2) + 1= =29
F=1) = (1P = (- +1=1

Since f(—2) < 0 and f(—1) > 0, the Intermediate Value Theorem tells us that f(c) = 0 for
some c in the interval [-2, —1].

Y

| — [
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_29,

Figure 1: Graph of f(z) = 2° — z + 1 on the interval [—2, —1].
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6. Use the 6 — ¢ definition of the limit to prove that lin% 3r—1=8.
Tr—

Solution: To show that lir% 3rx — 1 =28 we must find a 6 > 0 such that |3z — 1) — 8| < ¢
whenever |x — 3| < § for a given € > 0.

Let’s work with the inequality |(3xz — 1) — 8| < e.

(32— 1) — 8 < ¢

|3x —9| < e
lz—3|<e
£

— 3 < =

o3 < S

Therefore, we choose § = %
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1

(a) Write the derivative, f’(3), as the limit of the difference quotient.

(b) Evaluate this limit to find f'(3).

Solution:

(a) There are two possible difference quotients we can use to evaluate f’(3). One is:

1 1
_ f(h+3)—fB) .. (h+3)+1 3+1
/ o _
For=m =~ h -
The other is:
1 1
@) - fB) a4l 341
! = pum—
f(3)—9161i1% r—3 iﬁ% r—3
(b) Evaluating the first limit above we have:
1 B 1
oy o (BE3)+1 341 4(h+4)
f1(3) = Jim h A(h + 4)
. 4—(h+4)
:]_ —_—
o 4h(h+ 4)
_1'm_7h
_h1—>04h(h—|—4)
= lim =
~ he0 4(h 1 4)
-1
40+ 4)
B 1
| 16




Evaluating the second limit we have:

: B 4(x+1)
! :1 $+1 3+1.
f1(3) = lim p—

= lim
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8. Find the derivatives of the following functions using the basic rules. Leave your answers
in an unsimplified form so that your method is obvious.

(a) f(z)=ad+a7t =23

Solution:

(a) Use the Power Rule.

(b) Use the Product Rule.

(c¢) Use the Quotient Rule.
1+ 2%)(3z) — (3z)(1 + z?)’
(14 22)2

3(1+ 2%) — (3z)(2x)
(1+ 22)2

h'(z) = (
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9. The table below shows values of the functions f(z), g(x), and h(x) for x near 0. Based
on the data is h = f’ or is h = ¢’? Explain your answer by citing some feature of the data.

x | -02|-01] 0 | 01 | 02
() || 0.494 | 0.498 [ 0.500 | 0.498 | 0.494
g(x) || 0.460 | 0.480 | 0.500 | 0.519 | 0.539
h(z) || 0.059 | 0.029 | 0 | —0.029 | —0.059

~~

Solution: To estimate the derivative f’(0) we use the formula:

fx) - f(2)

r— 2

f'x) =
Choosing x = 0.1 we get the estimate:

_ [(0.1) = f(0) _ 0.498 — 0500

/
7(0) 0.1-0 0.1 0.0
Choosing x = —0.1 we get the estimate:
f(=0.1) — f(0)  0.498 — 0.500
"(0) ~ = =0.02
110) —-0.1-0 —-0.1 0.0
The average of these two estimates is:
—0.02 4+ 0.02
average estimate of f'(0) = w =0

Noting that h(0) = 0, it appears as though h = f’.

To confirm, we estimate ¢’(0) using the same technique. We find that

0.1) — g(0)  0.519 — 0.500
/(0) ~ 9L - =0.19
9O~ =510 0.1

—0.1) — g(0)  0.480 — 0.500

/(0) ~ L - ~02
AC iy gy 0.1

1 2

average estimate of ¢’(0) = % =0.195

which is decidedly different from A(0) = 0 in comparison.
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10. Suppose that f(2) =3, f'(2) = —1, g(2) = 5, and ¢'(2) = —2. Find the derivative of the
product f(z)g(x) at z = 2.
Solution: Using the Product Rule we have:
[f(@)g(2)] = f(2)d'(z) + f'(z)g(x)
At o = 2, the value of the derivative [f(z)g(x)] is:
[f@)g(2)]'| = F(2)g'(2) + ['(2)9(2)
= (3)(=2)+ (-1)(5)

=|-11
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