Math 180, Exam 1, Spring 2010
Problem 1 Solution

1. Evaluate the following limits, or show that they do not exist.

r—9
(a) lim !

o 22 —=3x+42
(b) i —5—7—

lin
() i s

Solution:
r—9
-3

(a) When substituting z = 9 into the function f(x) = we find that
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which is indeterminate. We can resolve the indeterminacy by multiplying f(x) by the

“conjugate” of the denominator divided by itself.
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(b) When substituting = 1 into the function f(z) = % we find that
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which is indeterminate. We can resolve the indeterminacy by factoring.
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(c) When substituting x = —1 into the function f(x) we find that
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which is indeterminate. We can resolve the indeterminacy by writing the function as
a piecewise-defined function.
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In order for the limit to exist, the one-sided limits must be the same. However,
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Therefore, the limit does not exist.
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Problem 2 Solution

2. Find the derivatives of the following functions using the basic rules. Leave your answers
in an unsimplified form so that it is clear what method you used.

(a) z%cosx
(b) (2% — 3z + 14)"

.772+(3I
2

(c)

xe —er

Solution:

(a) Use the Product Rule.

(2% cosx) = 2*(cosz)' + (z*) cosx

=| —2?sinz + 2x cosx

(b) Use the Chain Rule.

[(2* — 32 + 14)"?) = 12(2* — 32 + 14)"(2? — 32 + 14)’

=|12(2* — 3z + 14)" (22 — 3)

(c) Use the Quotient Rule.
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Problem 3 Solution
: . X 1
3. For the function f(x) = — compute
x

(a) The average rate of change from z = 3 to z = 5.

(b) The instantaneous rate of change at z = 4.

Solution:

(a) The average rate of change formula is:

average ROC = f(b) = f(a)
b—a
i 1
Using f(z) = = b=1>5, and a = 3 we have:
1 1
T a 1
average ROC = % = 1

(b) The instantaneous rate of change at x =4 is f’(4). The derivative f'(x) is:

fle)=—

x2

At z = 4 we have:

instantaneous ROC = f/(4) = 5= "1
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4. Use the Intermediate Value Theorem in order to show that the equation
CLA _ 21
has at least one real solution.

Solution: Let f(z) = 2* —2%. First we recognize that f(z) is continuous everywhere. Next,
we must find an interval [a,b] such that f(a) and f(b) have opposite signs. Let’s choose
a=—1and b=0.

f= (-1t -2 =
f0)=0"—2"=—1

Since f(—1) > 0 and f(0) < 0, the Intermediate Value Theorem tells us that f(c) = 0 for
some c in the interval [—1,0].

N | =

Figure 1: Graph of f(z) = z* — 2% on the interval [—1,0].
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5. Find and classify the points of discontinuity of the function

24+ Tr+12
x3—9x

Solution: We start by factoring the numerator and denominator.

?+Tex+12  (z+4)(z+3)
3 -9z  x(r—3)(x+3)

As x — 07, we find that:
2
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Therefore, x = 0 is an infinite discontinuity.
As x — 3%, we find that:
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Therefore, x = 3 is an infinite discontinuity.
The limit at x = —3 is:
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However, f(—3) does not exist. Using our textbook’s definitions, x = —3 cannot be cate-
gorized as a removable, jump, or infinite discontinuity. Therefore, x = —3 falls under the

“other” category.
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6. Find all points where the tangent line to y = 2® — 62 + 12 has slope —1.
Solution: The derivative 3’ is
y = (2° — 62 +12)' = 32 — 6.

To determine the points where the slope of the tangent line is —1, we set the derivative equal
to —1 and solve for .

y =-1
32 —6=—1
3z2 =5
5
2—_
T3
5
= 4+ s
v 3
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