
Math 180, Exam 2, Study Guide

Problem 1 Solution

1. Let f(x) =
x

x2 + 1
.

• Determine the intervals on which f is increasing and those on which it is decreasing.

• Determine the intervals on which f is concave up and those on which it is concave
down.

• Find the critical points of f and determine if they correspond to local extrema.

• Find the asymptotes of f .

• Determine the global extrema of f .

• Sketch the graph of f .

Solution: First, we extract as much information as we can from f ′(x). We’ll start by
computing f ′(x) using the Quotient Rule.

f ′(x) =
(x2 + 1)(x)′ − (x)(x2 + 1)′

(x2 + 1)2

f ′(x) =
(x2 + 1)(1) − (x)(2x)

(x2 + 1)2

f ′(x) =
1 − x2

(x2 + 1)2

The critical points of f(x) are the values of x for which either f ′(x) does not exist or
f ′(x) = 0. f ′(x) is a rational function but the denominator is never 0 so f ′(x) exists for all
x ∈ R. Therefore, the only critical points are solutions to f ′(x) = 0.

f ′(x) = 0

1 − x2

(x2 + 1)2
= 0

1 − x2 = 0

x = ±1

Thus, x = −1 and x = 1 are the critical points of f .

The domain of f is (−∞,∞). We now split the domain into the three intervals (−∞,−1),
(−1, 1), and (1,∞). We then evaluate f ′(x) at a test point in each interval to determine the
intervals of monotonicity.
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Interval Test Point, c f ′(c) Sign of f ′(c)

(−∞,−1) −2 f ′(−2) = − 3

25
−

(−1, 1) 0 f ′(0) = 1 +

(1,∞) 2 f ′(2) = − 3

25
−

Using the table, we conclude that f is increasing on (−1, 1) because f ′(x) > 0 for all
x ∈ (−1, 1) and f is decreasing on (−∞,−1)∪(1,∞) because f ′(x) < 0 for all x ∈ (−∞,−1)∪
(1,∞). Furthermore, since f ′ changes sign from − to + at x = −1 the First Derivative Test
implies that f(−1) = −1

2
is a local minimum and since f ′ changes sign from + to − at x = 1

the First Derivative Test implies that f(1) = 1

2
is a local maximum.

We then extract as much information as we can from f ′′(x). We’ll start by computing f ′′(x)
using the Quotient and Chain Rules.

f ′′(x) =
(x2 + 1)2(1 − x2)′ − (1 − x2)[(x2 + 1)2]′

(x2 + 1)4

f ′′(x) =
(x2 + 1)2(−2x) − (1 − x2)[2(x2 + 1)(x2 + 1)′]

(x2 + 1)4

f ′′(x) =
−2x(x2 + 1)2 − 2(1 − x2)(x2 + 1)(2x)

(x2 + 1)4

f ′′(x) =
−2x(x2 + 1) − 4x(1 − x2)

(x2 + 1)3

f ′′(x) =
2x3 − 6x

(x2 + 1)3

The possible inflection points of f(x) are the values of x for which either f ′′(x) does not
exist or f ′′(x) = 0. Since f ′′(x) exists for all x ∈ R, the only possible inflection points are
solutions to f ′′(x) = 0.

f ′′(x) = 0

2x3 − 6x

(x2 + 1)3
= 0

2x3 − 6x = 0

2x(x2 − 3) = 0

x = 0, x = ±
√

3

We now split the domain into the four intervals (−∞,−
√

3), (−
√

3, 0), (0,
√

3), and (
√

3,∞).
We then evaluate f ′′(x) at a test point in each interval to determine the intervals of concavity.
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Interval Test Point, c f ′(c) Sign of f ′(c)

(−∞,−
√

3) −2 f ′′(−2) = − 4

125
−

(−
√

3, 0) −1 f ′′(−1) = 1

2
+

(0,
√

3) 1 f ′′(1) = −1

2
−

(
√

3,∞) 2 f ′′(2) = 4

125
+

Using the table, we conclude that f is concave up on (−
√

3, 0)∪ (
√

3,∞) because f ′′(x) > 0
for all x ∈ (−

√
3, 0) ∪ (

√
3,∞) and f is concave down on (−∞,−

√
3) ∪ (0,

√
3) because

f ′′(x) < 0 for all x ∈ (−∞,−
√

3)∪ (0,
√

3). Furthermore, since f ′′ changes sign at x = −
√

3,
x = 0, and x =

√
3, all three points are inflection points.

f(x) does not have a vertical asymptote because it is continuous for all x ∈ R. The horizontal
asymptote is y = 0 because

lim
x→∞

f(x) = lim
x→∞

x

x2 + 1

= lim
x→∞

x

x2

= lim
x→∞

1

x

= 0

The absolute minimum of f(x) is −1

2
at x = −1 and the absolute maximum is 1

2
at

x = 1.

1 3

x

1

2

1

2

y

-

3- 1-
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Math 180, Exam 2, Study Guide

Problem 2 Solution

2. Let f(x) = xex.

i) Find and classify the critical points of f .

ii) Find the global minimum of f over the entire real line.

Solution:

i) The critical points of f(x) are the values of x for which either f ′(x) = 0 or f ′(x) does
not exist. Since f(x) is a product of two infinitely differentiable functions, we know
that f ′(x) exists for all x ∈ R. Therefore, the only critical points are solutions to
f ′(x) = 0.

f ′(x) = 0

(xex)′ = 0

(x)(ex)′ + (ex)(x)′ = 0

xex + ex = 0

ex(x + 1) = 0

x = −1

x = −1 is the only critical point because ex > 0 for all x ∈ R.

We use the First Derivative Test to classify the critical point x = −1. The domain of
f is (−∞,∞). Therefore, we divide the domain into the two intervals (−∞,−1) and
(−1,∞). We then evaluate f ′(x) at a test point in each interval to determine where
f ′(x) is positive and negative.

Interval Test Number, c f ′(c) Sign of f ′(c)

(−∞,−1) −2 −e−2 −

(−1,∞) 0 1 +

Since f changes sign from − to + at x = −1 the First Derivative Test implies that
f(−1) = −e−1 is a local minimum.

ii) From the table in part (a), we conclude that f is decreasing on the interval (−∞,−1)

and increasing on the interval (−1,∞). Therefore, f(−1) = −e−1 is the global min-

imum of f over the entire real line.
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Math 180, Exam 2, Study Guide

Problem 3 Solution

3. Find the minimum and maximum of the function f(x) =
√
6x− x3 over the interval [0, 2].

Solution: The minimum and maximum values of f(x) will occur at a critical point in the
interval [0, 2] or at one of the endpoints. The critical points are the values of x for which
either f ′(x) = 0 or f ′(x) does not exist. The derivative f ′(x) is found using the Chain Rule.

f ′(x) =
[

(

6x− x3
)1/2

]

′

f ′(x) =
1

2

[

(

6x− x3
)

−1/2
]

·
(

6x− x3
)

′

f ′(x) =
1

2

[

(

6x− x3
)

−1/2
]

·
(

6− 3x2
)

f ′(x) =
6− 3x2

2
√
6x− x3

f ′(x) does not exist when the denominator is 0. This will happen when 6x − x3 = 0. The
solutions to this equation are obtained as follows:

6x− x3 = 0

x(6 − x2) = 0

x = 0, x = ±
√
6

The critical point x = 0 is an endpoint of [0, 2]. The critical points x = ±
√
6 both lie outside

[0, 2]. Therefore, there are no critical points in [0, 2] where f ′(x) does not exist.

The only critical points are points where f ′(x) = 0.

f ′(x) = 0

6− 3x2

2
√
6x− x3

= 0

6− 3x2 = 0

x2 = 2

x = ±
√
2

The critical point x = −
√
2 lies outside [0, 2]. Therefore, x =

√
2 is the only critical point

in [0, 2] where f ′(x) = 0.

We now evaluate f(x) at x = 0,
√
2, and 2.

f(0) =
√

6(0)− 03 = 0

f
(√

2
)

=

√

6
(√

2
)

−
(√

2
)

3

= 2
4
√
2

f(2) =
√

6(2)− 23 = 2

1



The minimum value of f(x) on [0, 2] is 0 because it is the smallest of the above values of

f . The maximum is 2
4
√
2 because it is the largest.

1

2

3

1 2

x

y

0
√
2

2
4
√
2
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Math 180, Exam 2, Study Guide

Problem 4 Solution

4. Let f(x) = 3x− x3.

i) On what interval(s) is f increasing?

ii) On what interval(s) is f decreasing?

iii) On what interval(s) is f concave up?

iv) On what interval(s) is f concave down?

v) Sketch the graph of f .

Solution:

i) We begin by finding the critical points of f(x). The critical points of f(x) are the values
of x for which either f ′(x) does not exist or f ′(x) = 0. Since f(x) is a polynomial,
f ′(x) exists for all x ∈ R so the only critical points are solutions to f ′(x) = 0.

f ′(x) = 0
(

3x− x3
)

′

= 0

3− 3x2 = 0

x2 = 1

x = ±1

The domain of f is (−∞,∞). We now split the domain into the three intervals
(−∞,−1), (−1, 1), and (1,∞). We then evaluate f ′(x) at a test point in each in-
terval to determine the intervals of monotonicity.

Interval Test Point, c f ′(c) Sign of f ′(c)

(−∞,−1) −2 f ′(−2) = −9 −

(−1, 1) 0 f ′(0) = 3 +

(1,∞) 2 f ′(2) = −9 −

Using the table we conclude that f is increasing on (−1, 1) because f ′(x) > 0 for all

x ∈ (−1, 1)

ii) From the table above we conclude that f is decreasing on (−∞,−1) ∪ (1,∞) because

f ′(x) < 0 for all x ∈ (−∞,−1) ∪ (1,∞).
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iii) To determine the intervals of concavity we start by finding solutions to the equation
f ′′(x) = 0 and where f ′′(x) does not exist. However, since f(x) is a polynomial we
know that f ′′(x) will exist for all x ∈ R. The solutions to f ′′(x) = 0 are:

f ′′(x) = 0

−6x = 0

x = 0

We now split the domain into the two intervals (−∞, 0) and (0,∞). We then evaluate
f ′′(x) at a test point in each interval to determine the intervals of concavity.

Interval Test Point, c f ′′(c) Sign of f ′′(c)

(−∞, 0) −1 f ′′(−1) = 6 +

(0,∞) 1 f ′′(0) = −6 −

Using the table we conclude that f is concave up on (−∞, 0) because f ′′(x) > 0 for

all x ∈ (−∞, 0).

iv) From the above table we conclude that f is concave down on (0,∞) because f ′′(x) < 0

for all x ∈ (0,∞).

v)

-2 -1 1 2
x

-2

2

y
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Math 180, Exam 2, Study Guide

Problem 5 Solution

5. For a function f(x) we know that f(3) = 2 and that f ′(3) = −3. Give an estimate for
f(2.91).

Solution: We will estimate f(2.91) using L(2.91), the linearization L(x) of the function
f(x) at a = 3 evaluated at x = 2.91. The function L(x) is defined as:

L(x) = f(3) + f ′(3)(x − 3)

Using f(3) = 2 and f ′(3) = −3 we have:

L(x) = 2 − 3(x − 3)

Plugging x = 2.91 into L(x) we get:

L(2.91) = 2 − 3(2.91 − 3)

L(2.91) = 2.27

Therefore, f(2.91) ≈ L(2.91) = 2.27 .
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Math 180, Exam 2, Study Guide

Problem 6 Solution

6. Let f(x) =
x2 + 1

x + 1
. Find the best linear approximation of f around the point x = 0 and

use it in order to estimate f(0.2). Would this be an underestimate or an overestimate?

Solution: The linearization L(x) of f(x) at x = 0 is defined as:

L(x) = f(0) + f ′(0)(x − 0)

The derivative f ′(x) is found using the Quotient Rule:

f ′(x) =

(

x2 + 1

x + 1

)

′

=
(x + 1)(x2 + 1)′ − (x2 + 1)(x + 1)′

(x + 1)2

=
(x + 1)(2x) − (x2 + 1)(1)

(x + 1)2

=
x2 + 2x − 1

(x + 1)2

At x = 0, the values of f ′ and f are:

f ′(0) =
02 + 2(0) − 1

(0 + 1)2
= −1

f(0) =
02 + 1

0 + 1
= 1

The linearization L(x) is then:

L(x) = 1 − x

Since f(0.2) ≈ L(0.2) we find that:

f(0.2) ≈ L(0.2)

≈ 1 − 0.2

≈ 0.8

The actual value of f(0.2) is:

f(0.2) =
0.22 + 1

0.2 + 1
=

1.04

1.2
=

13

15
>

12

15
= 0.8

So L(0.2) = 0.8 is an underestimate.
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Math 180, Exam 2, Study Guide

Problem 7 Solution

7. A rectangular farm of total area 20,000 sq. feet is to be fenced on three sides. Find the
dimensions that are going to give the minimum cost.

Solution: We begin by letting x be the length of one side, y be the lengths of the remaining
two fenced sides, and C > 0 be the cost of the fence per unit length. The function we seek
to minimize is the cost of the fencing:

Function : Cost = C(x + 2y) (1)

The constraint in this problem is that the area of the garden is 20,000 square meters.

Constraint : xy = 20, 000 (2)

Solving the constraint equation (2) for y we get:

y =
20, 000

x
(3)

Plugging this into the function (1) and simplifying we get:

Cost = C

[

x + 2

(

20, 000

x

)]

f(x) = C

(

x +
40, 000

x

)

We want to find the absolute minimum of f(x) on the interval (0,∞). We choose this
interval because x must be nonnegative (x represents a length) and non-zero (if x were 0,
then the area would be 0 but it must be 20, 000).

The absolute minimum of f(x) will occur either at a critical point of f(x) in (0,∞) or it will
not exist because the interval is open. The critical points of f(x) are solutions to f ′(x) = 0.

f ′(x) = 0

C

(

x +
40, 000

x

)

′

= 0

C

(

1 −
40, 000

x2

)

= 0

x2 = 40, 000

x = ±200

However, since x = −200 is outside (0,∞), the only critical point is x = 200. Plugging this
into f(x) we get:

f(200) = C

(

200 +
40, 000

200

)

= 400C

1



Taking the limits of f(x) as x approaches the endpoints we get:

lim
x→0+

f(x) = lim
x→0+

C

(

x +
40, 000

x

)

= C (0 + ∞) = ∞

lim
x→∞

f(x) = lim
x→∞

C

(

x +
40, 000

x

)

= C (∞ + 0) = ∞

both of which are larger than 400C. We conclude that the cost is an absolute minimum at

x = 200 and that the resulting cost is 400C. The last step is to find the corresponding
value for y by plugging x = 200 into equation (3).

y =
20, 000

x
=

20, 000

200
= 100

2



Math 180, Exam 2, Study Guide

Problem 8 Solution

8. Let f(x) = 3x5 − x3.

• Find the critical points of f .

• Determine the intervals on which f is increasing and the ones on which it is decreasing.

• Determine the intervals on which f is concave up and the ones on which it is concave
down.

• Determine the inflection points of f .

• Sketch the graph of f .

Solution:

• The critical points of f(x) are the values of x for which either f ′(x) does not exist or
f ′(x) = 0. Since f(x) is a polynomial, f ′(x) exists for all x ∈ R so the only critical
points are solutions to f ′(x) = 0.

f ′(x) = 0
(

3x5 − x3
)

′

= 0

15x4 − 3x2 = 0

3x2(5x2 − 1) = 0

x = 0, x = ±
1√
5

Therefore, the critical points of f are x = 0,± 1
√

5
.

• The domain of f is (−∞,∞). We now split the domain into the four intervals
(−∞,− 1

√

5
), (− 1

√

5
, 0), (0, 1

√

5
), and ( 1

√

5
,∞). We then evaluate f ′(x) at a test point

in each interval to determine the intervals of monotonicity.

Interval Test Point, c f ′(c) Sign of f ′(c)

(−∞,− 1
√

5
) −1 f ′(−1) = 12 +

(− 1
√

5
, 0) −1

5
f ′(−1

5
) = − 12

125
−

(0, 1
√

5
) 1

5
f ′(1

5
) = − 12

125
−

( 1
√

5
,∞) 1 f ′(1) = 12 +

1



Using the table we conclude that f is increasing on (−∞,− 1
√

5
) ∪ ( 1

√

5
,∞) because

f ′(x) > 0 for all x ∈ (−∞,− 1
√

5
) ∪ ( 1

√

5
,∞) and f is decreasing on (− 1

√

5
, 0) ∪ (0, 1

√

5
)

because f ′(x) < 0 for all x ∈ (− 1
√

5
, 0) ∪ (0, 1

√

5
).

• To determine the intervals of concavity we start by finding solutions to the equation
f ′′(x) = 0 and where f ′′(x) does not exist. However, since f(x) is a polynomial we
know that f ′′(x) will exist for all x ∈ R. The solutions to f ′′(x) = 0 are:

f ′′(x) = 0
(

15x4 − 3x2
)

′

= 0

60x3 − 6x = 0

6x(10x2 − 1) = 0

x = 0, x = ±
1√
10

We now split the domain into the four intervals (−∞,− 1
√

10
), (− 1

√

10
, 0), (0, 1

√

10
), and

( 1
√

10
,∞). We then evaluate f ′′(x) at a test point in each interval to determine the

intervals of concavity.

Interval Test Point, c f ′(c) Sign of f ′(c)

(−∞,− 1
√

10
) −1 f ′′(−1) = −54 −

(− 1
√

10
, 0) − 1

10
f ′′(− 1

10
) = 27

50
+

(0, 1
√

10
) 1

10
f ′′( 1

10
) = −27

50
−

( 1
√

10
,∞) 1 f ′′(1) = 54 +

Using the table we conclude that f is concave up on (− 1
√

10
, 0) ∪ ( 1

√

10
,∞) because

f ′′(x) > 0 for all x ∈ (− 1
√

10
, 0)∪( 1

√

10
,∞) and that f is concave down on (−∞,− 1

√

10
)∪

(0, 1
√

10
) because f ′′(x) < 0 for all x ∈ (−∞,− 1

√

10
) ∪ (0, 1

√

10
).

• An inflection point of f(x) is a point where f ′′(x) changes sign. From the above table

we conclude that x = 0,± 1
√

10
are inflection points.
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Problem 9 Solution

9. A rectangle has its left lower corner at (0, 0) and its upper right corner on the graph of

f(x) = x2 +
1

x2

i) Express its area as a function of x.

ii) Determine x for which the area is a minimum.

iii) Can the area of such a rectangle be as large as we please?

Solution:

i) The dimensions of the rectangle are x and y. Therefore, the area of the rectangle has
the equation:

Area = xy (1)

We are asked to write the area as a function of x alone. Therefore, we must find an
equation that relates x to y so that we can eliminate y from the area equation. This
equation is

y = x2 +
1

x2
(2)

because (x, y) must lie on this curve. Plugging this into the area equation we get:

Area = x

(

x2 +
1

x2

)

g(x) = x3 +
1

x

ii) We seek the value of x that minimizes g(x). The interval in the problem is (0,∞)
because the domain of f(x) is (−∞, 0)∪(0,∞) but (x, y) must be in the first quadrant.

The absolute minimum of f(x) will occur either at a critical point of f(x) in (0,∞) or
it will not exist because the interval is open. The critical points of f(x) are solutions
to f ′(x) = 0.

f ′(x) = 0
(

x3 +
1

x

)

′

= 0

3x2 −
1

x2
= 0

3x4 − 1 = 0

x = ±
1
4
√

3

1



However, since x = − 1
4
√

3
is outside (0,∞), the only critical point is x = 1

4
√

3
. Plugging

this into g(x) we get:

f

(

1
4
√

3

)

=

(

1
4
√

3

)3

+
1
1
4
√

3

=
1

4
√

27
+

4
√

3

Taking the limits of f(x) as x approaches the endpoints we get:

lim
x→0+

f(x) = lim
x→0+

(

x3 +
1

x

)

= 0 + ∞ = ∞

lim
x→∞

f(x) = lim
x→∞

(

x3 +
1

x

)

= ∞ + 0 = ∞

both of which are larger than 1
4
√

27
+ 4

√
3. We conclude that the area is an absolute

minimum at x = 1
4
√

3
and that the resulting area is 1

4
√

27
+ 4

√
3.

iii) We can make the rectangle as large as we please by taking x → 0+ or x → ∞.
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Problem 10 Solution

10. A box has square base of side x and constant surface area equal to 12 m2.

i) Express its volume as a function of x.

ii) Find the maximum volume of such a box.

Solution:

i) We begin by letting x be the length of one side of the base and y be the height of the
box. The volume then has the equation:

Volume = x2y (1)

We are asked to write the volume as a function of width, x. Therefore, we must find
an equation that relates x to y so that we can eliminate y from the volume equation.

The constraint in the problem is that the total surface area is 12. This gives us the
equation

2x2 + 4xy = 12 (2)

Solving this equation for y we get

2x2 + 4xy = 12

x2 + 2xy = 6

y =
6 − x2

2x
(3)

We then plug this into the volume equation (1) to write the volume in terms of x only.

Volume = x2y

Volume = x2

(

6 − x2

2x

)

f(x) = 3x −
1

2
x3 (4)

ii) We seek the value of x that maximizes f(x). The interval in the problem is (0,
√

6].
We know that x > 0 because x must be positive and nonzero (otherwise, the surface
area would be 0 and it must be 12). It is possible that y = 0 in which case the surface
area constraint would give us 2x2 + 4x(0) = 12 ⇒ x2 = 6 ⇒ x =

√
6.

1



The absolute maximum of f(x) will occur either at a critical point of f(x) in (0,
√

6],
at x =

√
6, or it will not exist. The critical points of f(x) are solutions to f ′(x) = 0.

f ′(x) = 0
(

3x −
1

2
x3

)

′

= 0

3 −
3

2
x2 = 0

x2 = 2

x = ±
√

2

However, since x = −
√

2 is outside (0,
√

6], the only critical point is x =
√

2. Plugging
this into f(x) we get:

f
(√

2
)

= 3
(√

2
)

−
1

2

(√
2
)3

= 2
√

2

Evaluating f(x) at x =
√

6 and taking the limit of f(x) as x approaches x = 0 we get:

lim
x→0+

f(x) = lim
x→0+

(

3x −
1

2
x3

)

= 0

f
(√

6
)

= 3
(√

6
)

−
1

2

(√
6
)3

= 0

both of which are smaller than 2
√

2. We conclude that the volume is an absolute

maximum at x =
√

2 and that the resulting volume is 2
√

2 m3 .

2
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Problem 11 Solution

11. Use the Newton approximation method in order to find x2 as an estimate for the positive
root of the equation x2 − 5 = 0 when x0 = 5.

Solution: The Newton’s method formula to compute x1 is

x1 = x0 −
f(x0)

f ′(x0)

where f(x) = x2 − 5. The derivative f ′(x) is f ′(x) = 2x. Plugging x0 = 5 into the formula
we get:

x1 = x0 −
x2

0
− 5

2x0

x1 = 5 −
52 − 5

2(5)

x1 = 5 −
20

10
x1 = 3

The Newton’s method formula to compute x2 is

x2 = x1 −
f(x1)

f ′(x1)

Plugging x1 = 3 into the formula we get:

x2 = x1 −
x2

1
− 5

2x1

x2 = 3 −
32 − 5

2(3)

x2 = 3 −
4

6

x2 =
7

3

1
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Problem 12 Solution

12. Use L’Hôpital’s Rule in order to compute the following limits:

lim
x→0

ln(3x + 1)

ln(5x + 1)
lim

x→0+
x ln x lim

x→0

e3x − 1

tanx

lim
x→4

(

1√
x − 2

−
4

x − 4

)

lim
x→+∞

ex

x + ln x

Solution: Upon substituting x = 0 into the function ln(3x+1)

ln(5x+1)
we get

ln(3(0) + 1)

ln(5(0) + 1)
=

0

0

which is indeterminate. We resolve the indeterminacy using L’Hôpital’s Rule.

lim
x→0

ln(3x + 1)

ln(5x + 1)
L
′
H

= lim
x→0

(ln(3x + 1))′

(ln(5x + 1))′

= lim
x→0

1

3x+1
· 3

1

5x+1
· 5

= lim
x→0

3

5
·
5x + 1

3x + 1

=
3

5
·
5(0) + 1

3(0) + 1

=
3

5

As x → 0+ we find that x ln x → 0 · (−∞) which is indeterminate. However, it is not of the
form 0

0
or ∞

∞
which is required to use L’Hôpital’s Rule. To get the limit into one of the two

required forms, we rewrite x ln x as follows:

x ln x =
ln x

1

x

As x → 0+, we find that ln x

1/x
→ −∞

∞
. We can now use L’Hôpital’s Rule.

lim
x→0+

x ln x = lim
x→0+

ln x
1

x

L′H
= lim

x→0+

(ln x)′

( 1

x
)′

= lim
x→0+

1

x

− 1

x
2

= lim
x→0+

−x

= 0

1



Upon substituting x = 0 into the function e
3x

−1

tan x
we get

e3(0) − 1

tan 0
=

0

0

which is indeterminate. We resolve the indeterminacy using L’Hôpital’s Rule.

lim
x→0

e3x − 1

tan x

L
′
H

= lim
x→0

(e3x − 1)′

(tan x)′

= lim
x→0

3e3x

sec2 x

= lim
x→0

3e3x cos2 x

= 3e3(0) cos2 0

= 3

Upon substituting x = 4 into the function 1
√

x−2
− 4

x−4
we get

1√
4 − 2

−
4

4 − 4
= ∞−∞

which is indeterminate. In order to use L’Hôpital’s Rule we need the limit to be of the form
0

0
or ∞

∞
. To get the limit into one of these forms, we rewrite the function as follows:

1√
x − 2

−
4

x − 4
=

x − 4 − 4(
√

x − 2)

(
√

x − 2)(x − 4)

=
x − 4

√
x + 4

(
√

x − 2)(x − 4)

=
(
√

x − 2)(
√

x − 2)

(
√

x − 2)(x − 4)

=

√
x − 2

x − 4

Upon substituting x = 4 into the
√

x−2

x−4
we get

√
4 − 2

4 − 4
=

0

0

2



which is now of the indeterminate form 0

0
. We can now use L’Hôpital’s Rule.

lim
x→4

(

1√
x − 2

−
4

x − 4

)

= lim
x→4

√
x − 2

x − 4

L′H
= lim

x→4

(
√

x − 2)′

(x − 4)′

= lim
x→4

1

2
√

x

1

=
1

2
√

4

=
1

4

As x → +∞, we find that e
x

x+lnx
→ ∞

∞
which is indeterminate. We resolve the indeterminacy

using L’Hôpital’s Rule.

lim
x→+∞

ex

x + ln x

L
′
H

= lim
x→+∞

(ex)′

(x + ln x)′

= lim
x→+∞

ex

1 + 1

x

=
+∞
1 + 0

= +∞

3
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Problem 13 Solution

13. Compute the following indefinite integrals:

∫

(

x2 − 5x + 6
)

dx

∫

3
√

x
(

x2 −
√

x
)

dx

∫

e3x dx

Solution: Using the linearity and power rules, the first integral is:

∫

(

x2 − 5x + 6
)

dx =

∫

x2 dx − 5

∫

x dx + 6

∫

dx

=
1

3
x3 − 5

(

1

2
x2

)

+ 6(x) + C

=
1

3
x3 −

5

2
x2 + 6x + C

Using some algebra and the linearity and power rules, the second integral is:

∫

3
√

x
(

x2 −
√

x
)

dx =

∫

x1/3
(

x2 − x1/2
)

dx

=

∫

(

x7/3 − x5/6
)

dx

=
3

10
x10/3 −

6

11
x11/6 + C

Using the rule

∫

ekx dx =
1

k
ekx + C, the third integral is:

∫

e3x dx =
1

3
e3x + C

1
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Problem 14 Solution

14. Consider the function f(x) = x2 − x on [0, 2]. Compute L4 and R4.

Solution: For each estimate, the value of ∆x is:

∆x =
b − a

N
=

2 − 0

4
=

1

2

The L4 estimate is:

L4 = ∆x

[

f(0) + f

(

1

2

)

+ f(1) + f

(

3

2

)]

=
1

2

[

(

02 − 0
)

+

(

(

1

2

)2

−
1

2

)

+
(

12 − 1
)

+

(

(

3

2

)2

−
3

2

)]

=
1

2

[

0 −
1

4
+ 0 +

3

4

]

=
1

4

The R4 estimate is:

R4 = ∆x

[

f

(

1

2

)

+ f(1) + f

(

3

2

)

+ f(2)

]

=
1

2

[(

(

1

2

)2

−
1

2

)

+
(

12 − 1
)

+

(

(

3

2

)2

−
3

2

)

+
(

22 − 2
)

]

=
1

2

[

−
1

4
+ 0 +

3

4
+ 2

]

=
5

4

1
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Problem 15 Solution

15. Use the Fundamental Theorem of Calculus in order to compute the following integrals:

∫

2

0

(

x2 + x + 1
)

dx

∫

4

1

√
x dx

∫

π

0

sin(2x) dx

Solution: The first integral has the value:

∫

2

0

(

x2 + x + 1
)

dx =

[

1

3
x3 +

1

2
x2 + x

]2

0

=

[

1

3
23 +

1

2
22 + 2

]

−
[

1

3
03 +

1

2
02 + 0

]

=

[

8

3
+ 2 + 2

]

− [0 + 0 + 0]

=
20

3

The second integral has the value:

∫

4

1

√
x dx =

∫

4

1

x1/2 dx

=

[

2

3
x3/2

]4

1

=
2

3
43/2 −

2

3
13/2

=
16

3
−

2

3

=
14

3

The third integral has the value:

∫

π

0

sin(2x) dx =

[

−
1

2
cos(2x)

]

π

0

=

[

−
1

2
cos(2π)

]

−
[

−
1

2
cos(2(0))

]

=

[

−
1

2

]

−
[

−
1

2

]

= 0

1
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