
Math 181, Exam 1, Fall 2011

Problem 1 Solution

1. Compute the indefinite integral

Z
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Solution: The integral can be solved by rewriting it using the Pythagorean Identity cos
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Now let u = sin x. Then du = cosx dx and we get:
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Problem 2 Solution

2. Find the volume of the solid obtained by rotating about the x-axis the region enclosed by

the graphs of y = x

2
and y = 6� x.

Solution: The region being rotated about the x-axis is shown below.
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We find the volume using the Washer method. The formula we will use is:
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dx

where the top curve is y = 6� x and the bottom curve is y = x

2
. The limits of integration

are the x-coordinates of the points of intersection of the two graphs. To find the limits of

integration, we set the y’s equal to each other and solve for x.
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The volume is then:
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Problem 3 Solution

3. Compute the indefinite integral: Z
x

3
ln x dx

Solution: We will evaluate the integral using Integration by Parts. Let u = ln x and v

0
= x

3
.

Then u

0
=

1

x

and v =

1

4

x

4
. Using the Integration by Parts formula:
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we get:
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Problem 4 Solution

4. Compute the indefinite integral:

Z
dx

x

2 � 3x+ 2

Solution: We will evaluate the integral using Partial Fraction Decomposition. First, we

factor the denominator and then decompose the rational function into a sum of simpler

rational functions.
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Next, we multiply the above equation by (x+ 1)(x+ 2) to get:

1 = A(x+ 2) + B(x+ 1)

Then we plug in two di↵erent values for x to create a system of two equations in two

unknowns (A,B). We select x = �1 and x = �2 for simplicity.

x = �1 : A(�1 + 2) +B(�1 + 1) = 1 ) A = 1

x = �2 : A(�2 + 2) +B(�2 + 1) = 1 ) B = �1

Finally, we plug these values for A and B back into the decomposition and integrate.
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Problem 5 Solution

5. Find the area of the region enclosed by the curves y

2
= x and y = x� 2.

Solution:
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The formula we will use to compute the area of the region is:

Area =

Z d

c

(right� left) dx

where the limits of integration are the y-coordinates of the points of intersection of the two

curves. These are found by setting the x’s equal to each other and solving for y.
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From the graph we see that the right curve is x = y + 2 and the left curve is x = y

2
.
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Therefore, the area is:
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