Math 181, Exam 1, Spring 2009 Problem 1 Solution

1.

(a) Differentiate the function:

$$F(x) = \int_{\sqrt{x}}^{x^2} e^{t^3} dt$$

(b) Compute the definite integral:

$$\int_{1}^{5} \left(\frac{17}{x} + 3 \right) dx$$

Solution:

(a) Using the Fundamental Theorem of Calculus Part II and the Chain Rule, the derivative of $F(x) = \int_{g(x)}^{h(x)} f(t) dt$ is:

$$F'(x) = \frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt$$
$$= f(h(x)) \cdot \frac{d}{dx} h(x) - f(g(x)) \cdot \frac{d}{dx} g(x)$$

Applying the formula to the given function F(x) we get:

$$F'(x) = \frac{d}{dx} \int_{\sqrt{x}}^{x^2} e^{t^3} dt$$

$$= e^{(x^2)^3} \cdot \frac{d}{dx} (x^2) - e^{(\sqrt{x})^3} \cdot \frac{d}{dx} (\sqrt{x})$$

$$= e^{x^6} \cdot (2x) - e^{x^{3/2}} \cdot \left(\frac{1}{2\sqrt{x}}\right)$$

(b) Using the Fundamental Theorem of Calculus Part I, the value of the integral is:

$$\int_{1}^{5} \left(\frac{17}{x} + 3\right) dx = \left[17 \ln|x| + 3x\right]_{1}^{5}$$

$$= \left[17 \ln|5| + 3(5)\right] - \left[17 \ln|1| + 3(1)\right]$$

$$= 17 \ln 5 + 15 - 0 - 3$$

$$= \boxed{17 \ln 5 + 12}$$

Math 181, Exam 1, Spring 2009 Problem 2 Solution

2. Compute the indefinite integrals:

$$\int x\sqrt{1-x}\,dx \qquad \int \sin(5\pi x)\,dx$$

Solution: The first integral is computed using the *u*-substitution method. Let u = 1 - x. Then $du = -dx \implies -du = dx$ and x = 1 - u. Substituting these into the integral and evaluating we get:

$$\int x\sqrt{1-x} \, dx = \int (1-u)\sqrt{u} \, (-du)$$

$$= \int \left(u^{3/2} - u^{1/2}\right) \, du$$

$$= \frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2} + C$$

$$= \left[\frac{2}{5}(x-1)^{5/2} - \frac{2}{3}(x-1)^{3/2} + C\right]$$

The second integral is computing using the *u*-substitution method. Let $u=5\pi x$. Then $du=5\pi\,dx \ \Rightarrow \ \frac{1}{5\pi}\,du=dx$ and we get:

$$\int \sin(5\pi x) dx = \int \sin u \left(\frac{1}{5\pi} du\right)$$
$$= \frac{1}{5\pi} \int \sin u du$$
$$= -\frac{1}{5\pi} \cos u + C$$
$$= \boxed{-\frac{1}{5\pi} \cos(5\pi x) + C}$$

Math 181, Exam 1, Spring 2009 Problem 3 Solution

3. Compute the indefinite integrals:

$$\int \cos^3 x \, dx \qquad \int \sqrt{2x+1} \, dx$$

Solution: The first integral is computed by rewriting the integral using the Pythagorean Identity $\cos^2 x + \sin^2 x = 1$.

$$\int \cos^3 x \, dx = \int \cos^2 x \cos x \, dx$$
$$= \int (1 - \sin^2 x) \cos x \, dx$$

Now let $u = \sin x$. Then $du = \cos x \, dx$ and we get:

$$\int \cos^3 x \, dx = \int (1 - \sin^2 x) \cos x \, dx$$
$$= \int (1 - u^2) \, du$$
$$= u - \frac{1}{3}u^3 + C$$
$$= \left[\sin x - \frac{1}{3}\sin^3 x + C \right]$$

The second integral is computing using the *u*-substitution method. Let u=2x+1. Then $du=2\,dx \ \Rightarrow \ \frac{1}{2}\,du=dx$ and we get:

$$\int \sqrt{2x+1} \, dx = \int \sqrt{u} \left(\frac{1}{2} \, du\right)$$

$$= \frac{1}{2} \int u^{1/2} \, du$$

$$= \frac{1}{2} \left(\frac{2}{3} u^{3/2}\right) + C$$

$$= \left[\frac{1}{3} (2x+1)^{3/2} + C\right]$$

Math 181, Exam 1, Spring 2009 Problem 4 Solution

4. Consider the function $f(x) = x - x^2$ on the interval [0, 2]. Compute T_2 , M_2 , and S_4 .

Solution: For the estimates T_2 and M_2 , the length of each subinterval of [0,2] is

$$\Delta x = \frac{b-a}{N} = \frac{2-0}{2} = 1$$

The estimate T_2 is:

$$T_2 = \frac{\Delta x}{2} [f(0) + 2f(1) + f(2)]$$

$$= \frac{1}{2} [(0 - 0^2) + 2(1 - 1^2) + (2 - 2^2)]$$

$$= \boxed{-1}$$

The estimate M_2 is:

$$M_2 = \Delta x \left[f\left(\frac{1}{2}\right) + f\left(\frac{3}{2}\right) \right]$$

$$= 1 \cdot \left[\left(\frac{1}{2} - \left(\frac{1}{2}\right)^2\right) + \left(\frac{3}{2} - \left(\frac{3}{2}\right)^2\right) \right]$$

$$= \frac{1}{4} - \frac{3}{4}$$

$$= \left[-\frac{1}{2} \right]$$

We can use the following formula to find S_4 :

$$S_4 = \frac{2}{3}M_2 + \frac{1}{3}T_2$$

where M_2 and T_2 were found in parts (a) and (b). We get:

$$S_4 = \frac{2}{3} \left(-\frac{1}{2} \right) + \frac{1}{3} \left(-1 \right)$$
$$= \boxed{-\frac{2}{3}}$$

Math 181, Exam 1, Spring 2009 Problem 5 Solution

5. The region enclosed by the graphs of the functions y = x and $y = \sqrt{x}$ from x = 0 to x = 1 is rotated about the y-axis. Compute the volume of the resulting solid.

Solution:

We will use the **Shell Method** to compute the volume. The variable of integration is x and the corresponding formula is:

$$V = 2\pi \int_{a}^{b} x \left(\text{top - bottom} \right) dx$$

where the top curve is $y = \sqrt{x}$, the bottom curve is y = x, and the interval is $0 \le x \le 1$. Therefore, the volume is:

$$V = 2\pi \int_0^1 x (\sqrt{x} - x) dx$$

$$= 2\pi \int_0^1 (x^{3/2} - x^2) dx$$

$$= 2\pi \left[\frac{2}{5} x^{5/2} - \frac{1}{3} x^3 \right]_0^1$$

$$= 2\pi \left[\frac{2}{5} - \frac{1}{3} \right]$$

$$= \left[\frac{2\pi}{15} \right]$$