Math 181, Exam 2, Fall 2009 Problem 1 Solution

1. Compute the integral: $\int_0^{+\infty} xe^{-x^2} dx.$

Solution: We evaluate the integral by turning it into a limit calculation.

$$\int_{0}^{+\infty} x e^{-x^{2}} dx = \lim_{R \to +\infty} \int_{0}^{R} x e^{-x^{2}} dx$$

We use the *u*-substitution to compute the integral. Let $u=-x^2$ and $-\frac{1}{2}du=x\,dx$. The indefinite integral is then:

$$\int xe^{-x^2} dx = -\frac{1}{2} \int e^u du = -\frac{1}{2} e^u = -\frac{1}{2} e^{-x^2}$$

The definite integral from 0 to R is:

$$\int_0^R x e^{-x^2} dx = \left[-\frac{1}{2} e^{-x^2} \right]_0^R$$
$$= -\frac{1}{2} e^{-R^2} + \frac{1}{2} e^{-0^2}$$
$$= -\frac{1}{2e^{R^2}} + \frac{1}{2}$$

Taking the limit as $R \to +\infty$ we get:

$$\int_0^{+\infty} xe^{-x^2} dx = \lim_{R \to +\infty} \int_0^R xe^{-x^2} dx$$
$$= \lim_{R \to +\infty} \left(-\frac{1}{2e^{R^2}} + \frac{1}{2} \right)$$
$$= -0 + \frac{1}{2}$$
$$= \boxed{\frac{1}{2}}$$

Math 181, Exam 2, Fall 2009 Problem 2 Solution

2. Determine whether the integral $\int_1^{+\infty} \frac{x \, dx}{\sqrt{x^5 + x + 1}} \, dx$ converges or not.

Solution: We use the Comparison Test to show that the integral converges. Let $g(x) = \frac{x}{\sqrt{x^5 + x + 1}}$. We must find a function f(x) such that:

(1)
$$\int_{1}^{+\infty} f(x) dx$$
 converges and (2) $0 \le g(x) \le f(x)$ for $x \ge 1$.

We choose $f(x) = \frac{x}{\sqrt{x^5}} = \frac{x}{x^{5/2}} = \frac{1}{x^{3/2}}$. This choice of f(x) satisfies the inequality

$$0 \le g(x) \le f(x) \\ 0 \le \frac{x}{\sqrt{x^5 + x + 1}} \le \frac{x}{\sqrt{x^5}} = \frac{1}{x^{3/2}}$$

for $x \ge 1$ using the argument that the denominator of g(x) is larger than the denominator of f(x) for these values of x. Furthermore, the integral $\int_1^{+\infty} f(x) \, dx = \int_1^{+\infty} \frac{1}{x^{3/2}} \, dx$ converges because it is a p-integral with $p = \frac{3}{2} > 1$. Therefore, the integral $\int_1^{+\infty} g(x) \, dx = \int_1^{+\infty} \frac{x \, dx}{\sqrt{x^5 + x + 1}}$ converges by the Comparison Test.

Math 181, Exam 2, Fall 2009 Problem 3a Solution

3a. Find the length of the graph of the function $f(x) = e^{x/2} + e^{-x/2} + 2$ from x = 0 to $x = \ln 2$.

Solution: The arclength is:

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$$

$$= \int_{0}^{\ln 2} \sqrt{1 + \left(\frac{1}{2}e^{x/2} - \frac{1}{2}e^{-x/2}\right)^{2}} dx$$

$$= \int_{0}^{\ln 2} \sqrt{1 + \frac{1}{4}e^{x} - \frac{1}{2} + \frac{1}{4}e^{-x}} dx$$

$$= \int_{0}^{\ln 2} \sqrt{\frac{1}{4}e^{x} + \frac{1}{2} + \frac{1}{4}e^{-x}} dx$$

$$= \int_{0}^{\ln 2} \sqrt{\left(\frac{1}{2}e^{x/2} + \frac{1}{2}e^{-x/2}\right)^{2}} dx$$

$$= \int_{0}^{\ln 2} \left(\frac{1}{2}e^{x/2} + \frac{1}{2}e^{-x/2}\right) dx$$

$$= \frac{1}{2} \int_{0}^{\ln 2} \left(e^{x/2} + e^{-x/2}\right) dx$$

$$= \frac{1}{2} \left[2e^{x/2} - 2e^{-x/2}\right]_{0}^{\ln 2}$$

$$= \left[e^{x/2} - e^{-x/2}\right]_{0}^{\ln 2}$$

$$= \left[e^{\ln 2/2} - e^{-\ln 2/2}\right] - \left[e^{0/2} - e^{-0/2}\right]$$

$$= \left[\sqrt{2} - \frac{1}{\sqrt{2}}\right] - \left[1 - 1\right]$$

$$= \sqrt{2} - \frac{1}{\sqrt{2}}$$

Math 181, Exam 2, Fall 2009 Problem 3b Solution

3b. Find the centroid, (\bar{x}, \bar{y}) , of the region above the x-axis $(y \ge 0)$, below the graph of $y = 4 - x^2$, and to the right of the y-axis $(x \ge 0)$.

Solution: The coordinates of the centroid are given by the formulas:

$$\bar{x} = \frac{M_y}{M}, \qquad \bar{y} = \frac{M_x}{M}$$

where

$$M_x = \frac{1}{2} \int_a^b f(x)^2 dx$$
 $M_y = \int_a^b x f(x) dx$ $M = \int_a^b f(x) dx$

In the formulas, we use a = 0, b = 2, and $f(x) = 4 - x^2$ to get:

$$M_{x} = \frac{1}{2} \int_{0}^{2} (4 - x^{2})^{2} dx \qquad M_{y} = \int_{0}^{2} x (4 - x^{2}) dx \qquad M = \int_{0}^{2} (4 - x^{2}) dx$$

$$= \frac{1}{2} \int_{0}^{2} (16 - 8x^{2} + x^{4}) dx \qquad = \int_{0}^{2} (4x - x^{3}) dx \qquad = \left[4x - \frac{1}{3}x^{3}\right]_{0}^{2}$$

$$= \frac{1}{2} \left[16x - \frac{8}{3}x^{3} + \frac{1}{5}x^{5}\right]_{0}^{2} \qquad = \left[2x^{2} - \frac{1}{4}x^{4}\right]_{0}^{2} \qquad = \frac{16}{3}$$

$$= \frac{128}{15} \qquad = 4$$

Therefore, the centroid has coordinates:

$$\bar{x} = \frac{M_y}{M} = \frac{4}{\frac{16}{3}} = \boxed{\frac{3}{4}}$$

$$\bar{y} = \frac{M_x}{M} = \frac{\frac{128}{15}}{\frac{16}{3}} = \boxed{\frac{8}{5}}$$

Math 181, Exam 2, Fall 2009 Problem 4 Solution

4. Find the 3rd Taylor polynomial of the function $f(x) = x^3 + 2x^2 + x - 2$ centered at a = 1.

Solution: The 3rd degree Taylor polynomial $T_3(x)$ of f(x) centered at a=1 has the formula:

$$T_3(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3$$

The derivatives of f(x) and their values at x = 1 are:

k	$f^{(k)}(x)$	$f^{(k)}(1)$
0		$1^3 + 2(1)^2 + 1 - 2 = 2$
1	$3x^2 + 4x + 1$	$3(1)^2 + 4(1) + 1 = 8$
2	6x+4	6(1) + 4 = 10
3	6	6

The function $T_3(x)$ is then:

$$T_3(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3$$

$$T_3(x) = 2 + 8(x-1) + \frac{10}{2!}(x-1)^2 + \frac{6}{3!}(x-1)^3$$

$$T_3(x) = 2 + 8(x-1) + 5(x-1)^2 + (x-1)^3$$

Math 181, Exam 2, Fall 2009 Problem 5 Solution

5. Compute the sum of the series: $\sum_{n=1}^{+\infty} \frac{(-1)^n 3^{n-1}}{4^{n+3}}.$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$\sum_{n=1}^{+\infty} \frac{(-1)^n 3^{n-1}}{4^{n+3}} = \sum_{n=1}^{+\infty} \frac{(-1)^n 3^n 3^{-1}}{4^n 4^3} = \sum_{n=1}^{+\infty} \frac{3^{-1}}{4^3} \cdot \frac{(-1)^n 3^n}{4^n} = \sum_{n=1}^{+\infty} \frac{1}{192} \left(-\frac{3}{4} \right)^n$$

This is a convergent geometric series because $|r|=|-\frac{3}{4}|<1$. We can now use the formula:

$$\sum_{n=M}^{+\infty} cr^n = r^M \cdot \frac{c}{1-r}$$

where $M=1,\,c=\frac{1}{192},$ and $r=-\frac{3}{4}.$ The sum of the series is then:

$$\sum_{n=1}^{+\infty} \frac{1}{192} \left(-\frac{3}{4} \right)^n = \left(-\frac{3}{4} \right)^1 \cdot \frac{\frac{1}{192}}{1 - \left(-\frac{3}{4} \right)} = \boxed{-\frac{1}{448}}$$

Math 181, Exam 2, Fall 2009 Problem 6 Solution

6. Determine whether the following series converge or not:

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n^2 + 1}}, \qquad \sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^2}, \qquad \sum_{n=1}^{+\infty} n3^{-n}$$

Solution: The first series is alternating so we use the Leibniz Test determine whether or not it converges. Let $a_n = f(n) = \frac{1}{\sqrt{n^2+1}}$. The function f(n) is decreasing for $n \ge 1$ and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} = 0$$

Therefore, the series $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$ converges by the Leibniz Test.

We use the Integral Test to determine whether or not the second series converges. Let $f(x) = \frac{1}{x(\ln x)^2}$. The function f(x) is decreasing for $x \ge 2$. We must now determine whether or not the following integral converges:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(\ln x)^{2}} dx$$

Let $u = \ln x$. Then $du = \frac{1}{x} dx$ and we get:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(\ln x)^{2}} dx$$

$$= \lim_{R \to \infty} \int_{\ln 2}^{\ln R} \frac{1}{u^{2}} du$$

$$= \lim_{R \to \infty} \left[-\frac{1}{u} \right]_{\ln 2}^{\ln R}$$

$$= \lim_{R \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{\ln R} \right)$$

$$= \frac{1}{\ln 2}$$

Since the integral converges, the series $\sum_{n=2}^{+\infty} \frac{1}{n(\ln n)^2}$ converges by the Integral Test.

The third series can be rewritten as:

$$\sum_{n=1}^{+\infty} n3^{-n} = \sum_{n=1}^{+\infty} \frac{n}{3^n}$$

1

We use the Ratio Test to determine whether or not this series converges.

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

$$= \lim_{n \to \infty} \frac{n+1}{3^{n+1}} \cdot \frac{3^n}{n}$$

$$= \lim_{n \to \infty} \frac{1}{3} \left(\frac{n+1}{n} \right)$$

$$= \lim_{n \to \infty} \frac{1}{3} \left(1 + \frac{1}{n} \right)$$

$$= \frac{1}{3}$$

Since $\rho = \frac{1}{3} < 1$, the series $\sum_{n=1}^{+\infty} n3^{-n}$ converges by the Ratio Test.