Math 181, Exam 2, Fall 2011
Problem 1 Solution

1. Compute the arc length of the graph of f(x) =+1/9 — 22 over [0, 3].

Solution: The arc length can be easily found by recognizing that the graph of the function
is a quarter circle of radius 3. Knowing that the arc length of a circle is 27r, the arc length

of y = f(z) is
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One can also resort to finding arc length via the formula
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The arc length is then
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This integral may be solved using the trigonometric substitution x = 3sinf, dx = 3 cos  df.
Then v9 — 22 = 3cosf and we get
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2. Determine the limit of the sequence a, = ——————.
n?2—n+1

Solution: We begin by multiplying the function by = divided by itself.
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Using the limit laws for quotients, sums, and differences we find that
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where we note that lim — = 0 forp>0and lim " =0 for 0 <r < 1.
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3. Determine whether the improper integral converges, and if so, evaluate it:
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Solution:

(a) We evaluate the first integral by turning it into a limit calculation.
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We use Integration by Parts to compute the integral. Let ©u = x and v' = e~
u' =1 and v = —e~*. Using the Integration by Parts formula we get:
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We now take the limit of the above function as R — +oo.
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(b) We begin by letting u = # — 1. Then du = dx and the limits of integration become

u=1—1=0and u=2—1=1. Furthermore, since u = z — 1 we have x = u + 1.
Making these substitutions we get
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The first integral is proper and evaluates to 1. However, the second integral is improper

1
1
and diverges because it is a p-integral of the form / - du where p > 1. Therefore,
0 U

the given integral diverges.
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4. State whether the given series is convergent or not. If convergent find its sum.

1
(a) Z 2271,
n=1
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Solution:
(a) We recognize the given series as a geometric series. In order to find its sum we must

first rewrite the series.
SLosies()
4n 4
n=1 n=1

22n -
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This is a convergent geometric series because || = |;| < 1. We can now use the
formula:
—+00 c
g ™ =M.
1—r

n=M
where M =1,c=1,and r = i. The sum of the series is then:

g(i)n:(i)ld—f %

(b) We recognize the given series as a geometric series. In order to find its sum we must
first rewrite the series.
o n oo 3 n
>5-2(5)
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This is a divergent geometric series because |r| = [3| > 1.
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5. Find the values of x for which the following series converges:

> 3nn
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Solution: We determine the radius of convergence using the Ratio Test.
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In order to achieve convergence, it must be the case that p = 3|x| < 1. Therefore, |z| <
We must now check the endpoints. Plugging x = % into the given power series we get:
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which is a divergent p-series (p =1 < 1). Plugging in = = —1 we get:
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i.e. the alternating harmonic series, which converges by the Leibniz Test. Thus, the interval
of convergence is:
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