Math 181, Exam 2, Fall 2012
Problem 1 Solution

1. Find the sums of the following series.
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Solution:

(a) This series is telescoping. We begin by decomposing the summand using partial frac-

tions. The result is
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The nth partial sum of the series is:
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The sum is then
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(b) This is a sum of two geometric series. We begin by rewriting the series as follows:
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In the first series on the right hand side, we have r = % and a = 1. Since the series
starts at k = 2, the sum is
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In the second series on the right hand side, we have r = % and a = 4. Since the series
starts at k = 2, the sum is

< /1\F 1\? 4 4
4 — e — . 1:

Z e e 1—% e2—¢

k=2 e

Thus, the sum of the series is
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Math 181, Exam 2, Fall 2012
Problem 2 Solution

2. Evaluate each integral or show that it diverges.
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Solution:

(a) The first step we take is to convert the integral into a limit calculation:
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To evaluate the integral we make the substitution v = 2, %du = xdzx. Focusing on
the indefinite integral we have

1 1 1 1
Y = —/ du = - arctan(u) = — arctan(z?)
zt 41 2) w41 2 2

We now evaluate the improper integral as follows:
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(b) Again, the first step is to convert the integral into a limit calculation. Since the

integrand has an infinite discontinuity at x = 0, we replace the lower limit of integration
with a and take the limit as a — 07:
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The integrand decomposes into:




by way of the method of partial fractions. We now evaluate the improper integral as
follows:
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Thus, the integral diverges.
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Math 181, Exam 2, Fall 2012
Problem 3 Solution

3. Find the limits of the following sequences or show that they diverge.
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Solution:

(a) Since —1 <sin(n) <1 for all n we have

2n —1 < 2n — sin(n) < 2n+1
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Thus, lim Lm(n) = — by the Squeeze Theorem.
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(b) We begin be rewriting f(n) as follows:
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Math 181, Exam 2, Fall 2012
Problem 4 Solution

2
4. Approximate the value of the definite integral / dx using
0 2x+1

(a) the Midpoint Rule with N = 2 and

(b) the Trapezoidal Rule with N = 2.
Solution:
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(a) Since N = 2 we have Az = N =g = 1. The interval [0, 2] is partitioned into

the intervals [0,1] and [1,2]. The midpoints of these intervals are 3 and 3. Thus, the
Midpoint estimate of the integral is
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(b) Since N = 2 we have Az = N =g = 1. The interval [0, 2] is partitioned into
the intervals [0, 1] and [1,2]. Thus, the Trapezoidal estimate of the integral is
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Math 181, Exam 2, Fall 2012
Problem 5 Solution

5. Determine whether or not the following infinite series converge. Justify your answers.

Solution:

(a) Let aj = :3;:5 and by = 5. The series Y by is a convergent p-series. Moreover,
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Since 0 < L < oo and »_ by, converges, the series Y a; converges by the Limit Com-
parison Test.

(b) Let ap = W and b, = % The series > by, is a divergent p-series. Moreover,
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using the fact that (Ink)'® < k as k — oo. Since L = oo and Y by, diverges, the series
> ay, diverges by the Limit Comparison Test.
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