Math 181, Exam 2, Spring 2009 Problem 1 Solution

1. Compute the integrals:

$$\int \arctan x \, dx \qquad \int \frac{dx}{x^3 + x}$$

Solution: We will evaluate the first integral using Integration by Parts. Let $u = \arctan x$ and v' = 1. Then $u' = \frac{1}{x^2 + 1}$ and v = x. Using the Integration by Parts formula:

$$\int uv' \, dx = uv - \int u'v \, dx$$

we get:

$$\int \arctan x \, dx = x \arctan x - \int \frac{1}{x^2 + 1} x \, dx.$$

Use the substitution $w = x^2 + 1$ to evaluate the integral on the right hand side. Then $dw = 2x dx \implies \frac{1}{2} dw = x dx$ and we get:

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \int \frac{1}{w} \, dw$$
$$= x \arctan x - \frac{1}{2} \ln|w| + C$$
$$= x \arctan x - \frac{1}{2} \ln(x^2 + 1) + C$$

Note that the absolute value signs aren't needed because $x^2 + 1 > 0$ for all x.

We will evaluate the second integral using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$\frac{1}{x^3 + x} = \frac{1}{x(x^2 + 1)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

Next, we multiply the above equation by $x(x^2 + 1)$ to get:

$$1 = A(x^2 + 1) + (Bx + C)x$$

Then we plug in three different values for x to create a system of three equations in three unknowns (A, B, C). We select x = 0, x = 1, and x = -1 for simplicity.

$$x = 0: A(0^{2} + 1) + (B(0) + C)(0) = 1 \Rightarrow A = 1$$

$$x = 1: (1)(1^{2} + 1) + (B(1) + C)(1) = 1 \Rightarrow B + C = -1$$

$$x = -1: (1)((-1)^{2} + 1) + (B(-1) + C)(-1) = 1 \Rightarrow B - C = -1$$

The solution to this system is A = 1, B = -1 and C = 0. Finally, we plug these values for A, B, and C back into the decomposition and integrate.

$$\int \frac{dx}{x^3 + x} = \int \left(\frac{1}{x} + \frac{-x + 0}{x^2 + 1}\right) dx$$

$$= \int \frac{1}{x} dx - \int \frac{x}{x^2 + 1} dx$$

$$= \left[\ln|x| - \frac{1}{2}\ln(x^2 + 1) + C\right]$$

We solved the integral $\int \frac{x}{x^2+1} dx$ in the first part of the problem above.

Math 181, Exam 2, Spring 2009 Problem 2 Solution

2. Compute the integrals:

$$\int \frac{dx}{(1-x^2)^{3/2}} \qquad \int \frac{x \, dx}{(x-1)^3}$$

Solution: We evaluate the first integral using the trigonometric substitution $x = \sin \theta$. Then $dx = \cos \theta \, d\theta$ and we get:

$$\int \frac{dx}{(1-x^2)^{3/2}} = \int \frac{\cos\theta \, d\theta}{(1-\sin^2\theta)^{3/2}}$$

$$= \int \frac{\cos\theta}{(\cos^2\theta)^{3/2}} \, d\theta$$

$$= \int \frac{\cos\theta}{\cos^3\theta} \, d\theta$$

$$= \int \frac{1}{\cos^2\theta} \, d\theta$$

$$= \int \sec^2\theta \, d\theta$$

$$= \tan\theta + C$$

Since $x = \sin \theta$ we know that $\cos \theta = \sqrt{1 - x^2}$ after using the Pythagorean Identity $\sin^2 \theta + \cos^2 \theta = 1$. We can now rewrite $\tan \theta$ in terms of x.

$$\int \frac{dx}{(1-x^2)^{3/2}} = \tan \theta + C$$

$$= \frac{\sin \theta}{\cos \theta} + C$$

$$= \left[\frac{x}{\sqrt{1-x^2}} + C\right]$$

To evaluate the second integral we use the u-substitution method. Let u = x - 1. Then

du = dx and x = u + 1 and we get:

$$\int \frac{x \, dx}{(x-1)^3} = \int \frac{(u+1) \, du}{u^3}$$

$$= \int \left(\frac{u}{u^3} + \frac{1}{u^3}\right) \, du$$

$$= \int \left(u^{-2} + u^{-3}\right) \, du$$

$$= -u^{-1} - \frac{1}{2}u^{-2} + C$$

$$= -\frac{1}{u} - \frac{1}{2u^2} + C$$

$$= \left[-\frac{1}{x-1} - \frac{1}{2(x-1)^2} + C\right]$$

Math 181, Exam 2, Spring 2009 Problem 3 Solution

3. Compute the improper integral:

$$\int_{\ln 2}^{+\infty} x e^{-x} \, dx$$

Solution: We evaluate the integral by turning it into a limit calculation.

$$\int_{\ln 2}^{+\infty} x e^{-x} dx = \lim_{R \to +\infty} \int_{\ln 2}^{R} x e^{-x} dx$$

We use Integration by Parts to compute the integral. Let u = x and $v' = e^{-x}$. Then u' = 1 and $v = -e^{-x}$. Using the Integration by Parts formula we get:

$$\int_{a}^{b} uv' \, dx = \left[uv \right]_{a}^{b} - \int_{a}^{b} u'v \, dx$$

$$\int_{\ln 2}^{R} x e^{-x} \, dx = \left[-xe^{-x} \right]_{\ln 2}^{R} - \int_{\ln 2}^{R} \left(-e^{-x} \right) \, dx$$

$$= \left[-xe^{-x} \right]_{\ln 2}^{R} + \int_{\ln 2}^{R} e^{-x} \, dx$$

$$= \left[-xe^{-x} \right]_{\ln 2}^{R} + \left[-e^{-x} \right]_{\ln 2}^{R}$$

$$= \left[-Re^{-R} + (\ln 2)e^{-\ln 2} \right] + \left[-e^{-R} + e^{-\ln 2} \right]$$

$$= -\frac{R}{e^{R}} + \frac{\ln 2}{e^{\ln 2}} - \frac{1}{e^{R}} + \frac{1}{e^{\ln 2}}$$

$$= -\frac{R}{e^{R}} + \frac{\ln 2}{2} - \frac{1}{e^{R}} + \frac{1}{2}$$

We now take the limit of the above function as $R \to +\infty$.

$$\int_{\ln 2}^{+\infty} x e^{-x} \, dx = \lim_{R \to +\infty} \int_{\ln 2}^{R} x e^{-x} \, dx$$

$$= \lim_{R \to +\infty} \left(-\frac{R}{e^R} + \frac{\ln 2}{2} - \frac{1}{e^R} + \frac{1}{2} \right)$$

$$= -\lim_{R \to +\infty} \frac{R}{e^R} + \frac{\ln 2}{2} - \lim_{R \to +\infty} \frac{1}{e^R} + \frac{1}{2}$$

$$= -\lim_{R \to +\infty} \frac{R}{e^R} + \frac{\ln 2}{2} - 0 + \frac{1}{2}$$

$$\stackrel{L'H}{=} -\lim_{R \to +\infty} \frac{(R)'}{(e^R)'} + \frac{\ln 2}{2} - 0 + \frac{1}{2}$$

$$= -\lim_{R \to +\infty} \frac{1}{e^R} + \frac{\ln 2}{2} - 0 + \frac{1}{2}$$

$$= -0 + \frac{\ln 2}{2} - 0 + \frac{1}{2}$$

$$= \left[\frac{\ln 2}{2} + \frac{1}{2} \right]$$

Math 181, Exam 2, Spring 2009 Problem 4 Solution

4. Compute the arclength of the graph of $y = 2x^{3/2}$ from x = 0 to x = 1.

Solution: The arclength is:

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + (3x^{1/2})^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + 9x} dx$$

We now use the *u*-substitution u = 1 + 9x. Then $\frac{1}{9} du = dx$, the lower limit of integration changes from 0 to 1, and the upper limit of integration changes from 1 to 10.

$$L = \int_0^1 \sqrt{1 + 9x} \, dx$$

$$= \frac{1}{9} \int_1^{10} \sqrt{u} \, du$$

$$= \frac{1}{9} \left[\frac{2}{3} u^{3/2} \right]_1^{10}$$

$$= \frac{1}{9} \left[\frac{2}{3} (10)^{3/2} - \frac{2}{3} (1)^{3/2} \right]$$

$$= \left[\frac{2}{27} \left[10^{3/2} - 1 \right] \right]$$

Math 181, Exam 2, Spring 2009 Problem 5 Solution

5. Find the 3rd Maclaurin polynomial of the function $f(x) = 2\sin(3x)$.

Solution: The 3rd degree Maclaurin polynomial $T_3(x)$ of f(x) has the formula:

$$T_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

The derivatives of f(x) and their values at x = 0 are:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	$2\sin(3x)$	$2\sin(3\cdot 0) = 0$
1	$6\cos(3x)$	$6\cos(3\cdot 0) = 6$
2	$-18\sin(3x)$	$-18\sin(3\cdot 0) = 0$
3	$-54\cos(3x)$	$-54\cos(3\cdot 0) = -54$

The function $T_3(x)$ is then:

$$T_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

$$T_3(x) = 0 + 6x + \frac{0}{2!}x^2 - \frac{54}{3!}x^3$$

$$T_3(x) = 6x - 9x^3$$