Math 181, Exam 2, Study Guide 3 Problem 1 Solution

1. Compute the improper integral: $\int_0^{+\infty} x e^{-x} dx$.

Solution: We evaluate the integral by turning it into a limit calculation.

$$\int_0^{+\infty} x e^{-x} \, dx = \lim_{R \to +\infty} \int_0^R x e^{-x} \, dx$$

We use Integration by Parts to compute the integral. Let u = x and $v' = e^{-x}$. Then u' = 1 and $v = -e^{-x}$. Using the Integration by Parts formula we get:

$$\int_{a}^{b} uv' \, dx = \left[uv \right]_{a}^{b} - \int_{a}^{b} u'v \, dx$$

$$\int_{0}^{R} xe^{-x} \, dx = \left[-xe^{-x} \right]_{0}^{R} - \int_{0}^{R} \left(-e^{-x} \right) \, dx$$

$$= \left[-xe^{-x} \right]_{0}^{R} + \int_{0}^{R} e^{-x} \, dx$$

$$= \left[-xe^{-x} \right]_{0}^{R} + \left[-e^{-x} \right]_{0}^{R}$$

$$= \left[-Re^{-R} + 0e^{-0} \right] + \left[-e^{-R} + e^{-0} \right]$$

$$= -\frac{R}{e^{R}} - \frac{1}{e^{R}} + 1$$

We now take the limit of the above function as $R \to +\infty$.

$$\int_{0}^{+\infty} xe^{-x} dx = \lim_{R \to +\infty} \int_{0}^{R} xe^{-x} dx$$
$$= \lim_{R \to +\infty} \left(-\frac{R}{e^{R}} - \frac{1}{e^{R}} + 1 \right)$$
$$= -\lim_{R \to +\infty} \frac{R}{e^{R}} - \lim_{R \to +\infty} \frac{1}{e^{R}} + 1$$
$$= -\lim_{R \to +\infty} \frac{R}{e^{R}} - 0 + 1$$
$$\stackrel{\text{L'H}}{=} -\lim_{R \to +\infty} \frac{(R)'}{(e^{R})'} - 0 + 1$$
$$= -\lim_{R \to +\infty} \frac{1}{e^{R}} - 0 + 1$$
$$= -0 - 0 + 1$$
$$= 1$$

Math 181, Exam 2, Study Guide 3 Problem 2 Solution

2. Compute the improper integral: $\int_0^{+\infty} \frac{dx}{x^2 + 1}.$

Solution: We evaluate the integral by turning it into a limit calculation.

$$\int_{0}^{+\infty} \frac{dx}{x^{2}+1} = \lim_{R \to +\infty} \int_{0}^{R} \frac{dx}{x^{2}+1}$$

The integral has a simple antiderivative so its value is:

$$\int_0^R \frac{dx}{x^2 + 1} = \left[\arctan x\right]_0^R$$
$$= \arctan R - \arctan 0$$
$$= \arctan R$$

We now take the limit of the above function as $R \to +\infty$.

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 1} = \lim_{R \to +\infty} \int_{0}^{R} \frac{dx}{x^{2} + 1}$$
$$= \lim_{R \to +\infty} \arctan R$$
$$= \boxed{\frac{\pi}{2}}$$

Math 181, Exam 2, Study Guide 3 Problem 3 Solution

3. Determine whether the improper integral $\int_0^{+\infty} \frac{x^2 + 2x + 5}{x^3 + x + 1}$ converges or not.

Solution: We will show that the integral diverges using the Comparison Test. First, we rewrite the integral as:

$$\int_0^{+\infty} \frac{x^2 + 2x + 5}{x^3 + x + 1} \, dx = \int_0^1 \frac{x^2 + 2x + 5}{x^3 + x + 1} \, dx + \int_1^{+\infty} \frac{x^2 + 2x + 5}{x^3 + x + 1} \, dx$$

The first integral on the right hand side is a proper integral so it converges. We will focus on the second integral now. We guess that it diverges so we let $f(x) = \frac{x^2+2x+5}{x^3+x+1}$. We must choose a function g(x) such that:

(1)
$$\int_{1}^{+\infty} g(x) dx$$
 diverges and (2) $0 \le g(x) \le f(x)$ for $x \ge 1$

We choose the function g(x) by using the fact that $0 \le x^2 \le x^2 + 2x + 5$ and $0 \le x^3 + x + 1 \le x^3 + x^3 + x^3$ for $x \ge 1$. Then we get:

$$0 \le \frac{x^2}{x^3 + x^3 + x^3} \le \frac{x^2 + 2x + 5}{x^3 + x + 1}$$
$$0 \le \frac{x^2}{3x^3} \le \frac{x^2 + 2x + 5}{x^3 + x + 1}$$
$$0 \le \frac{1}{3x} \le \frac{x^2 + 2x + 5}{x^3 + x + 1}$$

So we choose $g(x) = \frac{1}{3x}$ so that $0 \le g(x) \le f(x)$ for $x \ge 1$. Furthermore, we know that:

$$\int_{1}^{+\infty} g(x) \, dx = \int_{1}^{+\infty} \frac{1}{3x} \, dx = \frac{1}{3} \int_{1}^{+\infty} \frac{1}{x} \, dx$$

diverges because this is a *p*-integral with $p = 1 \leq 1$. Thus, the integral $\int_{1}^{+\infty} \frac{x^2+2x+5}{x^3+x+1} dx$ diverges by the Comparison Test. Since this integral diverges we know that $\int_{0}^{+\infty} \frac{x^2+2x+5}{x^3+x+1} dx$ also **diverges**.

Math 181, Exam 2, Study Guide 3 Problem 4 Solution

4. Determine whether the improper integral $\int_0^1 \frac{e^x}{\sqrt{x}} dx$ converges or not.

Solution: We will show that the integral converges using the Comparison Test. Let $g(x) = \frac{e^x}{\sqrt{x}}$. We must choose a function f(x) such that:

(1)
$$\int_0^1 f(x) dx$$
 converges and (2) $0 \le g(x) \le f(x)$ for $0 < x \le 1$

We choose $f(x) = \frac{e}{\sqrt{x}}$. This choice of f(x) satisfies the inequality:

$$0 \le g(x) \le f(x)$$
$$0 \le \frac{e^x}{\sqrt{x}} \le \frac{e}{\sqrt{x}}$$

for $0 < x \le 1$ because $e^x \le e$ for these values of x. Furthermore, the integral $\int_0^1 f(x) dx = \int_0^1 \frac{e}{\sqrt{x}} dx = e \int_0^1 \frac{1}{\sqrt{x}} dx$ converges because it is a *p*-integral with $p = \frac{1}{2} < 1$. Therefore, the integral $\int_0^1 g(x) dx = \int_0^1 \frac{e^x}{\sqrt{x}}$ converges by the Comparison Test.

Math 181, Exam 2, Study Guide 3 Problem 5 Solution

5. Determine whether the improper integral $\int_{1}^{+\infty} \frac{dx}{\sqrt{x^3 + x + 1}}$ converges or not.

Solution: We will show that the integral converges using the Comparison Test. Let $g(x) = \frac{1}{\sqrt{x^3+x+1}}$. We must choose a function f(x) such that:

(1)
$$\int_{1}^{+\infty} f(x) dx$$
 converges and (2) $0 \le g(x) \le f(x)$ for $x \ge 1$

We choose $f(x) = \frac{1}{\sqrt{x^3}} = \frac{1}{x^{3/2}}$. This choice of f(x) satisfies the inequality:

$$0 \le g(x) \le f(x)$$

$$0 \le \frac{1}{\sqrt{x^3 + x + 1}} \le \frac{1}{\sqrt{x^3}} = \frac{1}{x^{3/2}}$$

for $x \ge 1$ using the argument that the denominator of g(x) is greater than the denominator of f(x) for these values of x. Furthermore, the integral $\int_{1}^{+\infty} f(x) dx = \int_{1}^{+\infty} \frac{1}{x^{3/2}} dx$ converges because it is a *p*-integral with $p = \frac{3}{2} > 1$. Therefore, the integral $\int_{1}^{+\infty} g(x) dx = \int_{1}^{+\infty} \frac{1}{\sqrt{x^3 + x + 1}} dx$ converges by the Comparison Test.

Math 181, Exam 2, Study Guide 3 Problem 6 Solution

6. Compute the arclength of the graph of the function $f(x) = x^{3/2}$ from x = 0 to x = 1.

Solution: The arclength is:

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + \left(\frac{3}{2}x^{1/2}\right)^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + \frac{9}{4}x} dx$$

We now use the *u*-substitution $u = 1 + \frac{9}{4}x$. Then $\frac{4}{9}du = dx$, the lower limit of integration changes from 0 to 1, and the upper limit of integration changes from 1 to $\frac{13}{4}$.

$$L = \int_{0}^{1} \sqrt{1 + \frac{9}{4}x} \, dx$$

= $\frac{4}{9} \int_{1}^{13/4} \sqrt{u} \, du$
= $\frac{4}{9} \left[\frac{2}{3}u^{3/2}\right]_{1}^{13/4}$
= $\frac{4}{9} \left[\frac{2}{3}\left(\frac{13}{4}\right)^{3/2} - \frac{2}{3}(1)^{3/2}\right]$
= $\left[\frac{8}{27} \left[\left(\frac{13}{4}\right)^{3/2} - 1\right]\right]$

Math 181, Exam 2, Study Guide 3 Problem 7 Solution

7. Compute the arclength of the graph of the function $f(x) = x^{1/2} - \frac{1}{3}x^{3/2}$ on the interval [1,4].

Solution: The arclength is:

$$\begin{split} L &= \int_{a}^{b} \sqrt{1 + f'(x)^{2}} \, dx \\ &= \int_{1}^{4} \sqrt{1 + \left(\frac{1}{2}x^{-1/2} - \frac{1}{2}x^{1/2}\right)^{2}} \, dx \\ &= \int_{1}^{4} \sqrt{1 + \frac{1}{4}x^{-1} - \frac{1}{2} + \frac{1}{4}x} \, dx \\ &= \int_{1}^{4} \sqrt{\frac{1}{4}x^{-1} + \frac{1}{2} + \frac{1}{4}x} \, dx \\ &= \int_{1}^{4} \sqrt{\left(\frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2}\right)^{2}} \, dx \\ &= \int_{1}^{4} \left(\frac{1}{2}x^{-1/2} + \frac{1}{2}x^{1/2}\right) \, dx \\ &= \frac{1}{2} \int_{1}^{4} \left(x^{-1/2} + x^{1/2}\right) \, dx \\ &= \frac{1}{2} \left[2\sqrt{x} + \frac{2}{3}x^{3/2}\right]_{1}^{4} \\ &= \frac{1}{2} \left[\left(2\sqrt{4} + \frac{2}{3}(4)^{3/2}\right) - \left(2\sqrt{1} + \frac{2}{3}(1)^{3/2}\right)\right] \\ &= \frac{1}{2} \left[\left(4 + \frac{16}{3}\right) - \left(2 + \frac{2}{3}\right)\right] \\ &= \left[\frac{10}{3}\right] \end{split}$$

Math 181, Exam 2, Study Guide 3 Problem 8 Solution

8. Compute the surface area of the surface obtained by rotating the curve $y = x^3$ on [0, 1] about the x-axis.

Solution: The surface area formula is:

Surface Area =
$$2\pi \int_{a}^{b} f(x)\sqrt{1+f'(x)^2} \, dx$$

Using $a = 0, b = 1, f(x) = x^3$, and $f'(x) = 3x^2$ we get:

Surface Area =
$$2\pi \int_0^1 x^3 \sqrt{1 + (3x^2)^2} dx$$

= $2\pi \int_0^1 x^3 \sqrt{1 + 9x^4} dx$

To evaluate the integral we use the *u*-substitution $u = 1 + 9x^4$. Then $\frac{1}{36} du = x^3 dx$, the lower limit of integration changes from 0 to 1, and the upper limit changes from 1 to 10. Making these substitutions we get:

Surface Area =
$$\frac{2\pi}{36} \int_{1}^{10} \sqrt{u} \, du$$

= $\frac{\pi}{18} \left[\frac{2}{3} u^{3/2} \right]_{1}^{10}$
= $\frac{\pi}{18} \left[\frac{2}{3} (10)^{3/2} - \frac{2}{3} (1)^{3/2} \right]$
= $\left[\frac{\pi}{27} \left[(10)^{3/2} - 1 \right] \right]$

Math 181, Exam 2, Study Guide 3 Problem 9 Solution

9. Find the center of mass of the constant density lamina lying below the semicircle $y^2 + x^2 = 1$ with $y \ge 0$ and above the x-axis.

Solution: The coordinates of the center of mass are given by the formulas:

$$x_{CM} = \frac{M_y}{M}, \qquad y_{CM} = \frac{M_x}{M}$$

Using symmetry, we know that $M_y = 0$ so we get $x_{CM} = 0$. The mass of the lamina is:

$$M = \rho A = \rho \cdot \frac{1}{2}\pi (1)^2 = \frac{1}{2}\rho\pi$$

The value of M_x is:

$$M_{x} = \frac{1}{2}\rho \int_{a}^{b} f(x)^{2} dx$$

$$= \frac{1}{2}\rho \int_{-1}^{1} \left(\sqrt{1-x^{2}}\right)^{2} dx$$

$$= \frac{1}{2}\rho \int_{-1}^{1} (1-x^{2}) dx$$

$$= \frac{1}{2}\rho \left[x - \frac{1}{3}x^{3}\right]_{-1}^{1}$$

$$= \frac{1}{2}\rho \left[\left(1 - \frac{1}{3}(1)^{3}\right) - \left(-1 - \frac{1}{3}(-1)^{3}\right)\right]$$

$$= \frac{1}{2}\rho \left[\frac{2}{3} - \left(-\frac{2}{3}\right)\right]$$

$$= \frac{2}{3}\rho$$

The center of mass coordinates are then:

$$x_{CM} = \frac{M_y}{M} = \boxed{0}$$
$$y_{CM} = \frac{M_x}{M} = \frac{\frac{2}{3}\rho}{\frac{1}{2}\rho\pi} = \boxed{\frac{4}{3\pi}}$$

Math 181, Exam 2, Study Guide 3 Problem 10 Solution

10. Compute the 2nd Taylor polynomial of the function $x^3 - 3x^2 + 5x + 3$ centered at the point a = 1.

Solution: The 2nd degree Taylor polynomial $T_2(x)$ of f(x) centered at a = 1 has the formula:

$$T_2(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2$$

The derivatives of f(x) and their values at x = 1 are:

k
 f^(k)(x)
 f^(k)(1)

 0

$$x^3 - 3x^2 + 5x + 3$$
 $1^3 - 3(1)^2 + 5(1) - 2 = 6$

 1
 $3x^2 - 6x + 5$
 $3(1)^2 - 6(1) + 5 = 2$

 2
 $6x - 6$
 $6(1) - 6 = 0$

The function $T_2(x)$ is then:

$$T_{2}(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^{2}$$
$$T_{2}(x) = 6 + 2(x-1) + \frac{0}{2!}(x-1)^{2}$$
$$T_{2}(x) = 6 + 2(x-1)$$

Math 181, Exam 2, Study Guide 3 Problem 11 Solution

11. Compute the 3rd Taylor polynomial of the function $f(x) = \ln x$ centered at a = 1.

Solution: The 3rd degree Maclaurin polynomial $T_3(x)$ of f(x) has the formula:

$$T_3(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3$$

The derivatives of f(x) and their values at x = 1 are:

The function $T_3(x)$ is then:

$$T_{3}(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^{2} + \frac{f'''(1)}{3!}(x-1)^{3}$$
$$T_{3}(x) = 0 + (x-1) - \frac{1}{2!}(x-1)^{2} + \frac{2}{3!}(x-1)^{3}$$
$$T_{3}(x) = (x-1) - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3}$$

Math 181, Exam 2, Study Guide 3 Problem 12 Solution

12. Compute the 6th Maclaurin polynomial of the function $f(x) = \cos x$.

Solution: The 6th degree Maclaurin polynomial $T_3(x)$ of f(x) has the formula:

$$T_6(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5 + \frac{f^{(6)}(0)}{6!}x^6$$

The derivatives of f(x) and their values at x = 0 are:

k	$f^{(k)}(x)$	$f^{(k)}(0)$
0	$\cos x$	$\cos 0 = 1$
1	$-\sin x$	$-\sin 0 = 0$
2	$-\cos x$	$-\cos 0 = -1$
3	$\sin x$	$\sin 0 = 0$
4	$\cos x$	$\cos 0 = 1$
5	$-\sin x$	$-\sin 0 = 0$
6	$-\cos x$	$-\cos 0 = -1$

The function $T_3(x)$ is then:

$$T_{6}(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3} + \frac{f^{(4)}(0)}{4!}x^{4} + \frac{f^{(5)}(0)}{5!}x^{5} + \frac{f^{(6)}(0)}{6!}x^{6}$$

$$T_{6}(x) = 1 + 0 \cdot x - \frac{1}{2!}x^{2} + \frac{0}{3!}x^{3} + \frac{1}{4!}x^{4} + \frac{0}{5!}x^{5} - \frac{1}{6!}x^{6}$$

$$T_{6}(x) = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \frac{1}{6!}x^{6}$$

Math 181, Exam 2, Study Guide 3 Problem 13 Solution

13. Give an upper bound for the error $|\cos 1 - T_4(1)|$ where $T_4(x)$ is the 4th Maclaurin polynomial of the function $\cos x$.

Solution: The error bound is given by the formula:

$$\operatorname{Error} \le K \frac{|x-a|^{n+1}}{(n+1)!}$$

where x = 1, a = 0, n = 4, and K satisfies the inequality $|f^{(5)}(u)| \le K$ for all $u \in [0, 1]$. One can show that $f^{(5)}(x) = -\sin x$. We conclude that $|f''(u)| = |-\sin u| \le 1$ for all $u \in [0, 1]$. So we choose K = 1 and the error bound is:

Error
$$\leq 1 \cdot \frac{|1-0|^5}{5!} = \boxed{\frac{1}{120}}$$

Math 181, Exam 2, Study Guide 3 Problem 14 Solution

14. Compute the sum of the series $\frac{1}{3} - \frac{2}{9} + \frac{4}{27} - \frac{8}{81} + \cdots$

Solution: We recognize the given series as a geometric series. In order to find its sum we must first rewrite the series.

$$\frac{1}{3} - \frac{2}{9} + \frac{4}{27} - \frac{8}{81} + \dots = \frac{2^0}{3^1} - \frac{2^1}{3^2} + \frac{2^2}{3^3} - \frac{2^3}{3^4} + \dots$$
$$= \sum_{n=0}^{+\infty} \frac{(-1)^n 2^n}{3^{n+1}}$$
$$= \sum_{n=0}^{-1} \frac{1}{3} \left(-\frac{2}{3}\right)^n$$

The series converges because $|r| = |-\frac{2}{3}| < 1$. We can now use the formula:

$$\sum_{n=0}^{+\infty} cr^n = \frac{c}{1-r}$$

where $c = \frac{1}{3}$ and $r = -\frac{2}{3}$. The sum of the series is:

$$\sum_{n=0}^{+\infty} \frac{1}{3} \left(-\frac{2}{3} \right)^n = \frac{\frac{1}{3}}{1 - (-\frac{2}{3})} = \boxed{\frac{1}{5}}$$

Math 181, Exam 2, Study Guide 3 Problem 15 Solution

15. Compute the sum of the series: $\sum_{n=1}^{+\infty} \frac{2}{n(n+2)}.$

Solution: We recognize the given series as a telescoping series. Our goal is to construct a formula for the Nth partial sum, S_N , and find its limit as $N \to \infty$.

We begin by decomposing f(n) into a sum of simpler fractions.

$$\frac{2}{n(n+2)} = \frac{A}{n} + \frac{B}{n+2}$$
$$2 = A(n+2) + Bn$$

We now plug in n = 0 and n = -2 to find the values of A and B.

$$n = 0: 2 = A(0+2) + B(0) \Rightarrow A = 1$$

$$n = -2: 2 = A(-2+2) + B(-2) \Rightarrow B = -1$$

Thus, we can rewrite the series as:

$$\sum_{n=1}^{+\infty} \frac{2}{n(n+2)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2}\right)$$

A formula for S_N is:

$$S_{N} = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+2}\right)$$

$$S_{N} = \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \cdots$$

$$+ \left(\frac{1}{N-3} - \frac{1}{N-1}\right) + \left(\frac{1}{N-2} - \frac{1}{N}\right) + \left(\frac{1}{N-1} - \frac{1}{N+1}\right) + \left(\frac{1}{N} - \frac{1}{N+2}\right)$$

$$S_{N} = 1 + \frac{1}{2} - \frac{1}{N+1} - \frac{1}{N+2}$$

Taking the limit as $N \to \infty$ we get:

$$\sum_{n=1}^{+\infty} \frac{2}{n(n+2)} = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2}\right)$$
$$= \lim_{N \to \infty} S_N$$
$$= \lim_{N \to \infty} \left(1 + \frac{1}{2} - \frac{1}{N+1} - \frac{1}{N+2}\right)$$
$$= 1 + \frac{1}{2} - 0 - 0$$
$$= \boxed{\frac{3}{2}}$$

Math 181, Exam 2, Study Guide 3 Problem 16 Solution

16. Determine whether the series $\sum_{n=1}^{+\infty} \frac{n^2 + 1}{n^3 + n + 1}$ converges or not.

Solution: We use the Comparison Test to determine whether the first series converges or not. We guess that the series diverges. Let $b_n = \frac{n^2+1}{n^3+n+1}$. We must choose a series $\sum a_n$ such that (1) $0 \le a_n \le b_n$ for $n \ge 1$ and (2) $\sum_{n=1}^{+\infty} a_n$ diverges. We notice that:

$$0 \le \frac{n^2}{n^3 + n^3 + n^3} = \frac{1}{3n} \le \frac{n^2 + 1}{n^3 + n + 1}$$

for $n \ge 1$. So we choose $a_n = \frac{1}{3n}$. Since the series $\sum_{n=1}^{+\infty} \frac{1}{3n} = \frac{1}{3} \sum_{n=1}^{+\infty} \frac{1}{n}$ diverges because it is a *p*-series with $p = 1 \le 1$, the series $\sum_{n=1}^{+\infty} \frac{n^2+1}{n^3+n+1}$ diverges by the Comparison Test.

Math 181, Exam 2, Study Guide 3 Problem 17 Solution

17. Determine whether the series $\sum_{n=1}^{+\infty} \frac{\ln n}{n^2}$ converges or not.

Solution: We use the Comparison Test to determine whether the first series converges or not. We guess that the series converges. Let $a_n = \frac{\ln n}{n^2}$. We must choose a series $\sum b_n$ such that (1) $0 \le a_n \le b_n$ for $n \ge 1$ and (2) $\sum_{n=1}^{+\infty} b_n$ converges. We notice that:

$$0 \le \frac{\ln n}{n^2} \le \frac{\sqrt{n}}{n^2} = \frac{1}{n^{3/2}}$$

for $n \ge 1$. So we choose $b_n = \frac{1}{n^{3/2}}$. Since the series $\sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$ converges because it is a *p*-series with $p = \frac{3}{2} > 1$, the series $\sum_{n=1}^{+\infty} \frac{\ln n}{n^2}$ converges by the Comparison Test.

Math 181, Exam 2, Study Guide 3 Problem 18 Solution

18. Determine whether the series $\sum_{n=2}^{+\infty} \frac{1}{n^2 + \cos(\pi n)}$ converges or not.

Solution: We use the Comparison Test to determine whether the first series converges or not. We guess that the series converges. Let $a_n = \frac{1}{n^2 + \cos(\pi n)}$. We must choose a series $\sum b_n$ such that (1) $0 \le a_n \le b_n$ for $n \ge 2$ and (2) $\sum_{n=2}^{+\infty} b_n$ converges. We notice that:

$$0 \le \frac{1}{n^2 + \cos(\pi n)} \le \frac{1}{n^{3/2}}$$

for $n \ge 2$. So we choose $b_n = \frac{1}{n^{3/2}}$. Since the series $\sum_{n=2}^{+\infty} \frac{1}{n^{3/2}}$ converges because it is a *p*-series with $p = \frac{3}{2} > 1$, the series $\sum_{n=2}^{+\infty} \frac{\ln n}{n^2}$ converges by the Comparison Test.

Math 181, Exam 2, Study Guide 3 Problem 19 Solution

19. Determine whether the series $\sum_{n=2}^{+\infty} \frac{\sin n}{n^2}$ converges or not.

Solution: The series does not consist of all positive terms so we first check for absolute convergence by considering the series of absolute values:

$$\sum_{n=2}^{+\infty} \left| \frac{\sin n}{n^2} \right|$$

We notice that:

$$0 \le \left|\frac{\sin n}{n^2}\right| \le \frac{1}{n^2}$$

for $n \ge 2$. Furthermore, $\sum_{n=2}^{+\infty} \frac{1}{n^2}$ converges because it is a *p*-series with p = 2 > 1. Therefore, the series $\sum_{n=2}^{+\infty} \frac{\sin n}{n^2}$ is absolutely convergent which means that it **converges**.

Math 181, Exam 2, Study Guide 3 Problem 20 Solution

20. Determine whether the series $\sum_{n=1}^{+\infty} \frac{\cos(\pi n)}{\sqrt{n}}$ converges or not.

Solution: The series can be rewritten as:

$$\sum_{n=1}^{+\infty} \frac{\cos(\pi n)}{\sqrt{n}} = \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}$$

The series alternating so we check for convergence using the Leibniz Test. Let $a_n = \frac{1}{\sqrt{n}}$. We know that a_n is decreasing for $n \ge 1$ and that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

Therefore, the series $\sum_{n=1}^{+\infty} \frac{\cos(\pi n)}{\sqrt{n}}$ converges by the Leibniz Test.

Math 181, Exam 2, Study Guide 3 Problem 21 Solution

21. Determine whether the series $\sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!}$ converges or not.

Solution: We use the Ratio Test to determine whether or not the series converges.

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \\
= \lim_{n \to \infty} \frac{((n+1)!)^2}{(2(n+1))!} \cdot \frac{(2n)!}{(n!)^2} \\
= \lim_{n \to \infty} \frac{(n+1)!(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{n!n!} \\
= \lim_{n \to \infty} \frac{(n+1)n!(n+1)n!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{n!n!} \\
= \lim_{n \to \infty} \frac{(n+1)(n+1)}{(2n+2)(2n+1)} \\
= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{4n^2 + 6n + 2} \\
= \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{2n^2}}{4 + \frac{3}{2n} + \frac{1}{2n^2}} \\
= \frac{1}{4}$$

Since $\rho = \frac{1}{4} < 1$, the series **converges** by the Ratio Test.

Math 181, Exam 2, Study Guide 3 Problem 22 Solution

22. Determine whether the series $\sum_{n=1}^{+\infty} \frac{3^n}{n^4}$ converges or not.

Solution: We use the Ratio Test to determine whether or not the series converges.

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
$$= \lim_{n \to \infty} \frac{3^{n+1}}{(n+1)^4} \cdot \frac{n^4}{3^n}$$
$$= \lim_{n \to \infty} \frac{3^n 3^1}{3^n} \cdot \frac{(n+1)^4}{n^4}$$
$$= \lim_{n \to \infty} 3\left(\frac{n+1}{n}\right)^4$$
$$= 3\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^4$$
$$= 3$$

Since $\rho = 3 > 1$, the series **diverges** by the Ratio Test.

Math 181, Exam 2, Study Guide 3 Problem 23 Solution

23. Determine whether the series $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n \ln n}$

Solution: The series is alternating so we first check for absolute convergence by considering the series of absolute values:

$$\sum_{n=2}^{+\infty} \left| \frac{(-1)^n}{n \ln n} \right| = \sum_{n=2}^{+\infty} \frac{1}{n \ln n}$$

We use the Integral Test to determine whether or not this series converges. Let $f(x) = \frac{1}{x \ln x}$. The function f(x) is decreasing for $x \ge 2$. We must now determine whether or not the following integral converges:

$$\int_{2}^{\infty} \frac{1}{x \ln x} \, dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x \ln x} \, dx$$

Let $u = \ln x$. Then $du = \frac{1}{x} dx$ and we get:

$$\int_{2}^{\infty} \frac{1}{x \ln x} dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x \ln x} dx$$
$$= \lim_{R \to \infty} \int_{\ln 2}^{\ln R} \frac{1}{u} du$$
$$= \lim_{R \to \infty} \left[\ln u \right]_{\ln 2}^{\ln R}$$
$$= \lim_{R \to \infty} \left[\ln(\ln R) - \ln(\ln 2) \right]$$
$$= \infty$$

Since the integral diverges, the series of absolute values diverges by the Integral Test and the series $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n \ln n}$ is not absolutely convergent.

We now check for conditional convergence using the Leibniz Test. Let $a_n = \frac{1}{n \ln n}$. Then a_n is decreasing for $n \ge 2$ and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n \ln n} = 0$$

Therefore, the series $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n \ln n}$ is conditionally convergent.

Math 181, Exam 2, Study Guide 3 Problem 24 Solution

24. Determine whether the series $\sum_{n=1}^{+\infty} \frac{(-1)^n n^2}{2^n}$ is absolutely convergent, conditionally con-

vergent, or divergent.

Solution: The series is alternating so we first check for absolute convergence by considering the series of absolute values:

$$\sum_{n=1}^{+\infty} \left| \frac{(-1)^n n^2}{2^n} \right| = \sum_{n=1}^{+\infty} \frac{n^2}{2^n}$$

We use the Ratio Test to determine whether the series converges or not.

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
$$= \lim_{n \to \infty} \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2}$$
$$= \lim_{n \to \infty} \frac{1}{2} \left(\frac{n+1}{n}\right)^2$$
$$= \lim_{n \to \infty} \frac{1}{2} \left(1 + \frac{1}{n}\right)^2$$
$$= \frac{1}{2}$$

Since $\rho = \frac{1}{2} < 1$, the series converges by the Ratio Test. Therefore, the series **converges** absolutely.