Math 181, Final Exam, Fall 2008 Problem 1 Solution

1. Evaluate:

(a)
$$\int x^2 \cos(x^3) dx$$
 (b) $\int \frac{dx}{x^2 - 5x + 4}$ (c) $\int \frac{dx}{4x^2 + 1}$ (d) $\int \sin^5 x dx$

Solution:

(a) We solve the integral using the *u*-substitution method. Let $u = x^3$ and $\frac{1}{3} du = x^2 dx$. Then we have:

$$\int x^2 \cos(x^3) dx = \frac{1}{3} \int \cos u du$$
$$= \frac{1}{3} \sin u + C$$
$$= \boxed{\frac{1}{3} \sin(x^3) + C}$$

(b) We will evaluate the integral using Partial Fraction Decomposition. First, we factor the denominator and then decompose the rational function into a sum of simpler rational functions.

$$\frac{1}{x^2 - 5x + 4} = \frac{1}{(x - 1)(x - 4)} = \frac{A}{x - 1} + \frac{B}{x - 4}$$

Next, we multiply the above equation by (x-1)(x-4) to get:

$$1 = A(x - 4) + B(x - 1)$$

Then we plug in two different values for x to create a system of two equations in two unknowns (A, B). We select x = 1 and x = 4 for simplicity.

$$x = 1: A(1-4) + B(1-1) = 1 \Rightarrow A = -\frac{1}{3}$$

 $x = 4: A(4-4) + B(4-1) = 1 \Rightarrow B = \frac{1}{3}$

Finally, we plug these values for A and B back into the decomposition and integrate.

$$\int \frac{1}{x^2 - 5x + 4} dx = \int \left(\frac{A}{x - 1} + \frac{B}{x - 4}\right) dx$$

$$= \int \left(\frac{-\frac{1}{3}}{x - 1} + \frac{\frac{1}{3}}{x - 4}\right) dx$$

$$= \left[-\frac{1}{3} \ln|x - 1| + \frac{1}{3} \ln|x - 4| + C\right]$$

1

(c) We solve the integral using the *u*-substitution method. Let $\frac{1}{2}u = x$ and $\frac{1}{2}du = dx$. Then we have:

$$\int \frac{dx}{4x^2 + 1} = \frac{1}{2} \int \frac{du}{u^2 + 1}$$
$$= \frac{1}{2} \arctan u + C$$
$$= \boxed{\frac{1}{2} \arctan(2x) + C}$$

(d) We first rewrite the integral as follows:

$$\int \sin^5 x \, dx = \int \sin^4 x \sin x \, dx$$
$$= \int (\sin^2 x)^2 \sin x \, dx$$
$$= \int (1 - \cos^2 x)^2 \sin x \, dx$$

Now let $u = \cos x$. Then $-du = \sin x \, dx$ and we have:

$$\int \sin^5 x \, dx = \int (1 - \cos^2 x)^2 \sin x \, dx$$

$$= -\int (1 - u^2)^2 \, du$$

$$= -\int (1 - 2u^2 + u^4) \, du$$

$$= -\left(u - \frac{2}{3}u^3 + \frac{1}{5}u^5\right) + C$$

$$= \boxed{-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C}$$

Math 181, Final Exam, Fall 2008 Problem 2 Solution

2. Differentiate the function

$$F(x) = \int_2^{x^2} \sin(t^2) dt$$

Solution: Using the Fundamental Theorem of Calculus Part II and the Chain Rule, the derivative of $F(x) = \int_a^{u(x)} f(t) dt$ is:

$$F'(x) = \frac{d}{dx} \int_{a}^{u(x)} f(t) dt$$
$$= f(u(x)) \cdot \frac{d}{dx} u(x)$$

Applying the formula to the given function F(x) we get:

$$F'(x) = \frac{d}{dx} \int_2^{x^2} \sin(t^2) dt$$
$$= \sin((x^2)^2) \cdot \frac{d}{dx}(x^2)$$
$$= \boxed{\sin(x^4) \cdot (2x)}$$

Math 181, Final Exam, Fall 2008 Problem 3 Solution

- 3. Estimate the value of $\int_0^2 \frac{dx}{x+1}$ using: Estimate the value of the integral using:
 - (a) the Midpoint method with N=2
 - (b) the Trapezoidal Rule with N=2

Write your answers as a single, reduced fraction.

Solution:

(a) The length of each subinterval of [0, 2] is:

$$\Delta x = \frac{b-a}{N} = \frac{2-0}{2} = 1$$

The estimate M_2 is:

$$M_2 = \Delta x \left[f\left(\frac{1}{2}\right) + f\left(\frac{3}{2}\right) \right]$$
$$= 1 \cdot \left[\frac{1}{\frac{1}{2} + 1} + \frac{1}{\frac{3}{2} + 1} \right]$$
$$= \frac{2}{3} + \frac{2}{5}$$
$$= \boxed{\frac{16}{15}}$$

(b) The length of each subinterval of [0,2] is $\Delta x=1$ just as in part (a). The estimate T_2 is:

$$T_2 = \frac{\Delta x}{2} \left[f(0) + 2f(1) + f(2) \right]$$

$$= \frac{1}{2} \left[\frac{1}{0+1} + 2 \cdot \frac{1}{1+1} + \frac{1}{2+1} \right]$$

$$= \frac{1}{2} \left[1 + 1 + \frac{1}{3} \right]$$

$$= \boxed{\frac{7}{6}}$$

Math 181, Final Exam, Fall 2008 Problem 4 Solution

4. Evaluate each improper integral:

(a)
$$\int_0^{+\infty} x e^{-x} dx$$
 (b) $\int_1^2 \frac{dx}{\sqrt{x-1}}$

Solution:

(a) We evaluate the first integral by turning it into a limit calculation.

$$\int_0^{+\infty} xe^{-x} dx = \lim_{R \to +\infty} \int_0^R xe^{-x} dx$$

We use Integration by Parts to compute the integral. Let u = x and $v' = e^{-x}$. Then u' = 1 and $v = -e^{-x}$. Using the Integration by Parts formula we get:

$$\int_{a}^{b} uv' \, dx = \left[uv \right]_{a}^{b} - \int_{a}^{b} u'v \, dx$$

$$\int_{0}^{R} xe^{-x} \, dx = \left[-xe^{-x} \right]_{0}^{R} - \int_{0}^{R} \left(-e^{-x} \right) \, dx$$

$$= \left[-xe^{-x} \right]_{0}^{R} + \int_{0}^{R} e^{-x} \, dx$$

$$= \left[-xe^{-x} \right]_{0}^{R} + \left[-e^{-x} \right]_{0}^{R}$$

$$= \left[-Re^{-R} + 0e^{-0} \right] + \left[-e^{-R} + e^{-0} \right]$$

$$= -\frac{R}{e^{R}} - \frac{1}{e^{R}} + 1$$

We now take the limit of the above function as $R \to +\infty$.

$$\int_{0}^{+\infty} xe^{-x} dx = \lim_{R \to +\infty} \int_{0}^{R} xe^{-x} dx$$

$$= \lim_{R \to +\infty} \left(-\frac{R}{e^{R}} - \frac{1}{e^{R}} + 1 \right)$$

$$= -\lim_{R \to +\infty} \frac{R}{e^{R}} - \lim_{R \to +\infty} \frac{1}{e^{R}} + 1$$

$$= -\lim_{R \to +\infty} \frac{R}{e^{R}} - 0 + 1$$

$$\stackrel{\text{L'H}}{=} -\lim_{R \to +\infty} \frac{(R)'}{(e^{R})'} - 0 + 1$$

$$= -\lim_{R \to +\infty} \frac{1}{e^{R}} - 0 + 1$$

$$= -0 - 0 + 1$$

$$= \boxed{1}$$

(b) For the second integral, we first use the substitution u = x - 1, du = dx. The limits of integration become u = 1 - 1 = 0 and u = 2 - 1 = 1. Making the substitutions we get:

$$\int_{1}^{2} \frac{dx}{\sqrt{x-1}} = \int_{0}^{1} \frac{du}{\sqrt{u}}$$

which is a convergent p-integral because $p = \frac{1}{2} < 1$. The value of the integral is:

$$\int_0^1 \frac{du}{\sqrt{u}} = \frac{1}{1 - \frac{1}{2}} = \boxed{2}$$

Math 181, Final Exam, Fall 2008 Problem 5 Solution

5. Write an integral that represents the length of the curve $y=x^2$ on the interval $0 \le x \le 1$. Do not attempt to evaluate the integral.

Solution: The arclength is:

$$L = \int_{a}^{b} \sqrt{1 + (y')^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + (2x)^{2}} dx$$
$$= \int_{0}^{1} \sqrt{1 + 4x^{2}} dx$$

Math 181, Final Exam, Fall 2008 Problem 6 Solution

- 6. Consider the region bounded by the curves $y = x^2$, y = 2 x, and x = 0 for $x \ge 0$.
 - (a) Sketch the region.
 - (b) Find the volume of the solid obtained by rotating the region about the y-axis.

Solution: We find the volume using the Shell method. The formula we will use is:

$$V = 2\pi \int_{a}^{b} x \left(\text{top - bottom} \right) dx$$

where the top curve is y = 2 - x and the bottom curve is $y = x^2$. The lower limit is a = 0. The upper limit is the x-coordinate of the point of intersection in the first quadrant. To find the upper limit, we set the y's equal to each other and solve for x.

$$y = y$$

$$x^{2} = 2 - x$$

$$x^{2} + x - 2 = 0$$

$$(x+2)(x-1) = 0$$

$$x = -2, x = 1$$

Therefore, the upper limit of integration is b = 1.

The volume is then:

$$V = 2\pi \int_0^1 x (\text{top - bottom}) dx$$

$$= 2\pi \int_0^1 x [(2-x) - (x^2)] dx$$

$$= 2\pi \int_0^1 (2x - x^2 - x^3) dx$$

$$= 2\pi \left[x^2 - \frac{x^3}{3} - \frac{x^4}{4} \right]_0^1$$

$$= 2\pi \left[1 - \frac{1}{3} - \frac{1}{4} \right]$$

$$= \left[\frac{5\pi}{6} \right]$$

Math 181, Final Exam, Fall 2008 Problem 7 Solution

7. Determine whether the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{3^n + 2^n}{5^n}$$
 (b) $\sum_{n=0}^{\infty} \frac{n^2}{2^n}$

(b)
$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}$$

Solution:

(a) The first series can be rewritten as the sum of two convergent geometric series:

$$\sum_{n=0}^{\infty} \frac{3^n + 2^n}{5^n} = \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n + \sum_{n=0}^{\infty} \left(\frac{2}{5}\right)^n$$

$$= \frac{1}{1 - \frac{3}{5}} + \frac{1}{1 - \frac{2}{5}}$$

$$= \frac{5}{2} + \frac{5}{3}$$

$$= \left[\frac{25}{6}\right]$$

The sum exists so the series converges.

(b) We use the Ratio Test to determine whether or not the second series converges.

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

$$= \lim_{n \to \infty} \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2}$$

$$= \lim_{n \to \infty} \frac{1}{2} \left(\frac{n+1}{n}\right)^2$$

$$= \lim_{n \to \infty} \frac{1}{2} \left(1 + \frac{1}{n}\right)^2$$

$$= \frac{1}{2}$$

1

Since $\rho = \frac{1}{2} < 1$, the series $\sum_{n=0}^{+\infty} \frac{n^2}{2^n}$ converges by the Ratio Test.