Math 210, Exam 1, Fall 2005
Problem 1 Solution

1. Consider the triangle with vertices
A=(1,-3,-2), B=(2,0,—-4), C=(6,—-2,-5).

(a) Find the area of this triangle.

(b) Determine whether or not it is a right triangle.

Solution:
(a) The area of the triangle is half the magnitude of the cross product of f@ =(1,3,-2)
and B? = (4, -2, —1), which represents the area of the parallelogram spanned by the

)
two vectors. The cross product of these two vector is computed as follows:

T = AB x BC
i j k
W=|1 3 -2
4 -2 -1
Lo =2 |1 =2 |13
N —1‘J4—1'+k4—2

T =1[(3)(-1) = (~2)(-2)] =3 [()(~1) = () (=2)] + k[(1)(=2) — (4)(3)]

o =-7i—-7j— 14k
o= (-7,-7,—14)

Thus, the area of the triangle is:

O
A= %\/(—7)2 + (=7)2 + (—14)2
A:%\/29—4
7V/6
A==

(b) We note that the dot product of AB and BC is:
AB-BC = (1,3,-2) - (4,-2, —1)
AB - BC = (1)(4) + (3)(=2) + (-2)(-1)

AB-BC =0

Since the dot product is 0, we know that the vectors 1@ and ﬁ are orthogonal.
Thus, triangle ABC' is a right triangle.
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2. Find an equation for the plane which contains the point (2, —1,5) and the line

r+1 y—4

= =z-1
4 2

Solution: To find an equation for the plane we need two more points that lie in the plane,
which we obtain from the equations for the line. The point (z,y,2) = (—1,4,1) is on the

line because
-1+1 4-4

4 2
The point (z,y, z) = (3,6, 2) is also on the line because

=1-1=0

3+1 — 6-4 —9_1=1
4 2
Let A = (2,—1 5) B =(-1,4,1), and C = (3,6,2). In order to find an equation for the
plane containing A, B, and C’ we need a vector ﬁ> perpendicular to it. We let o be the

cross product of 1@ —3,5,—4) and B? (4,2, 1) because these vectors lie in the plane.

:,ﬁxﬁ

i j k
o=|-3 35 —4

4 2 1

|5 —4] | -3 4| -]-35

H=il 1‘_3 4 1‘“‘ 42‘
o =1[(5)(1) — (2)(—49)] =3 [(=3)(1) — () (—4)] + Kk [(—3)(2) — (4)(5)]
o =131—13j— 26k
o = (13, —13, —26)

Using A = (2,—1,5) as a point in the plane, we have:

13(z —2) —13(y +1) — 26(z — 5) = 0

as an equation for the plane containing the given point and line.



Math 210, Exam 1, Fall 2005
Problem 3 Solution

3. For the position function T (¢) = (t, 12,3, find the velocity ¥ (¢), the speed v(t), and the
acceleration a (t).

Solution: The velocity, acceleration, and speed functions are:

V(t) = T(t) = (1,2t,3t%)
At) = V'(t) = (0,2,6t)

= /12 4 (2t)% + (3t2)2
= V1 + 42 + 9t
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4. Sketch the level sets for the function f(z,y) = 42 + 4y* + 2 which correspond to the
function values 2, 4, and 10.

Solution: The level sets of f(x,y) = 42® +4y?+ 2 are the curves obtained by setting f(z,y)

to a constant C.
_C=2

C=42>+4° +2 = 2249 1

VO -2

These curves are circles centered at (0,0) with radius
Y

2aw

S

Note that C' = 10 is the green circle with radius \/5, C = 4 is the blue circle with radius %2,

and C' = 0 is the origin (because the radius is 0).

2
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5. Evaluate the following limit, or show it does not exist:

lim _r
(z,9)—(0,0) 12 + Y2

T
Solution: The function f(x,y) = 27y is not continuous at (0,0) as the point is not in
x

+ 2
the domain of f. If the limit exists, the value of the limit should be independent of the path
taken to (0,0). Let’s choose Path 1 to be the path y = 0, x — 0". The limit along this path
is:
xy . x(0) 0

lim —F— = lim = lim — =0
(@y)—=(0,0) T2 +y2 250+t 22402 250+ 22

Let’s choose Path 2 to be the path y = z, x — 07. The limit along this path is:

Ty , z(x) o1

=1 — _—

lim = R
(@y) =00 22+ Y%  emot 22+ ()2 amo0t 222 2

Thus, since we get two different limits along two different paths to (0, 0), the limit does not
exist.
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6. For the function f(z,y) = e* cos(y), find the partial derivatives f,, fu,, and fy,.

Solution: The first partial derivatives of f(z,y) are

fr = 2€* cos(y)
fy = —e*sin(y)

The second partial derivative f, is

fyy = (fy)y
. 8 2 _:
fyy a_y (—6 Sln(y))
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7. Points A, B and C are marked on the curve shown below. At which of these points is the
curvature greatest?

Solution: Curvature is defined as the rate of change of the unit tangent vector ? with
respect to arclength s.
4T

ds

By inspection it appears that ?, which is parallel to the line tangent to the curve, is changing
most rapidly at point B.
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