
Math 210, Exam 2, Fall 2010

Problem 1 Solution

1. Let f(x, y) = 1

3
x3 + y2 − xy. Find all critical points of f(x, y) and classify each as a local

maximum, local minimum, or saddle point.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = 1

3
x3 + y2 − xy are fx = x2

− y and fy = 2y − x. These
derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to the
system of equations:

fx = x2
− y = 0 (1)

fy = 2y − x = 0 (2)

Solving Equation (1) for y we get:
y = x2 (3)

Substituting this into Equation (2) and solving for x we get:

2y − x = 0

2
(

x2
)

− x = 0

x(2x− 1) = 0

⇐⇒ x = 0 or x =
1

2

We find the corresponding y-values using Equation (3): y = x2.

• If x = 0, then y = 02 = 0.

• If x = 1

2
, then y = (1

2
)2 = 1

4
.

Thus, the critical points are (0, 0) and (1
2
, 1

4
) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 2x, fyy = 2, fxy = −1

The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (2x)(2)− (−1)2

D(x, y) = 4x− 1

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.
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(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) −1 0 Saddle Point

(1
2
, 1
4
) 1 1 Local Minimum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.
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Figure 1: Pictured above are level curves of f(x, y). Darker colors correspond to smaller
values of f(x, y). It is apparent that (0, 0) is a saddle point and (1

2
, 1

4
) corresponds to a local

minimum.
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Math 210, Exam 2, Fall 2010

Problem 2 Solution

2. Find the minimum and maximum of the function f(x, y, z) = x − y − z on the ellipsoid

R =

{

(x, y, z)

∣

∣

∣

∣

x2

4
+

y2

9
+

z2

3
= 1

}

.

Solution: We find the minimum and maximum using the method of Lagrange Multi-

pliers. First, we recognize that R is compact which guarantees the existence of absolute
extrema of f . Then, let g(x, y, z) = x2

4
+ y2

9
+ z2

3
= 1. We look for solutions to the following

system of equations:

fx = λgx, fy = λgy, fz = λgz, g(x, y, z) = 1

which, when applied to our functions f and g, give us:

1 = λ

(

2x

4

)

(1)

−1 = λ

(

2y

9

)

(2)

−1 = λ

(

2z

3

)

(3)

x2

4
+

y2

9
+

z2

3
= 1 (4)

To solve the system of equations, we first solve Equations (1)-(3) for the variables x, y, and
z in terms of λ to get:

x =
4

2λ
, y = −

9

2λ
, z = −

3

2λ
(5)

We then plug Equations (5) into Equation (4) and simplify.

x2

4
+

y2

9
+

z2

3
= 1

( 4

2λ
)2

4
+

(− 9

2λ
)2

9
+

−( 3

2λ
)2

3
= 1

16

4λ2

4
+

81

4λ2

9
+

9

4λ2

3
= 1

At this point we multiply both sides of the equation by 4λ2 to get:

4λ2

(

16

4λ2

4
+

81

4λ2

9
+

9

4λ2

3

)

= 4λ2(1)

16

4
+

81

9
+

9

3
= 4λ2

4 + 9 + 3 = 4λ2

λ2 = 4

λ = ±2
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• When λ = 2, Equations (5) give us the first candidate for the location of an extreme
value:

x = 1, y = −
9

4
, z = −

3

4

• When λ = −2, Equations (5) give us the second candidate for the location of an
extreme value:

x = −1, y =
9

4
, z =

3

4

Evaluating f(x, y, z) at these points we find that:

f

(

1,−
9

4
,−

3

4

)

= 1−

(

−
9

4

)

−

(

−
3

4

)

= 4

f

(

−1,
9

4
,
3

4

)

= −1−

(

9

4

)

−

(

3

4

)

= −4

Therefore, the absolute maximum value of f on R is 4 and the absolute minimum of f on R

is −4.

Note: The level surfaces f(x, y, z) = 4 and f(x, y, z) = −4 are planes tangent to the ellipsoid
at the critical points.
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Math 210, Exam 2, Fall 2010

Problem 3 Solution

3. Consider the double integral:

∫

4

0

∫

y
2

0

x3

4−
√

x
dx dy.

(a) Sketch the region of integration.

(b) Change the order of integration.

(c) Evaluate the integral from part (b).

Solution:

(a)
x

y

R y =
√

x

y = 4

0

1

2

3

4

0 4 8 12 16

(b) From the figure we see that the region R is bounded above by y = 4 and below by
y =

√

x (obtained by solving x = y2 for y in terms of x). The projection of R onto the
x-axis is the interval 0 ≤ x ≤ 16. Upon changing the order of integration we get the
double integral:

∫

16

0

∫

4

√

x

x3

4−
√

x
dy dx

(c) The integral from part (b) is evaluated as follows:
∫

16

0

∫

4

√

x

x3

4−
√

x
dy dx =

∫

16

0

x3

4−
√

x

[

y
]4

√

x

dx

=

∫

16

0

x3

4−
√

x

(

4−
√

x
)

dx

=

∫

16

0

x3 dx

=

[

1

4
x4

]16

0

=
1

4
(16)4

= 16384

1



Math 210, Exam 2, Fall 2010

Problem 4 Solution

4. For the vector field
−→

F = 〈yx2, y2〉, find the value of

∫

C

−→

F · d−→s where C is the portion of

the parabola y = x2 from (0, 0) to (1, 1).

Solution: We evaluate the vector line integral using the formula:

∫

C

−→

F · d−→s =

∫

b

a

−→

F ·
−→
r ′(t) dt

A parameterization of C is −→r (t) = 〈t, t2〉, 0 ≤ t ≤ 1. The derivative is −→r ′(t) = 〈1, 2t〉. Using

the fact that x = t and y = t2 from the parameterization, the vector field
−→
F written in terms

of t is:
−→
F =

〈

yx2, y2
〉

=
〈

(t2)(t)2, (t2)2
〉

=
〈

t4, t4
〉

Thus, the value of the line integral is:

∫

C

−→
F · d−→s =

∫

b

a

−→
F ·

−→r ′(t) dt

=

∫

1

0

〈

t4, t4
〉

· 〈1, 2t〉 dt

=

∫

1

0

(

t4 + 2t5
)

dt

=

[

1

5
t5 +

1

3
t6
]1

0

=

[

1

5
(1)5 +

1

3
(1)6

]

−

[

1

5
(0)5 +

1

3
(0)6

]

=
8

15
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Math 210, Exam 2, Fall 2010

Problem 5 Solution

5. Consider the vector field
−→
F = 〈ax2y + 8xy2 − 4, bx2y − 2x3

− 1〉 where a and b are con-
stants.

(a) Find the values of a and b for which
−→

F is conservative.

(b) For the values of a and b from part (a), find a potential function ϕ(x, y) such that
−→
F =

−→
∇ϕ.

Solution:

(a) In order for the vector field
−→
F = 〈f(x, y), g(x, y)〉 to be conservative, it must be the

case that:
∂f

∂y
=

∂g

∂x

Using f(x, y) = ax2y + 8xy2 − 4 and g(x, y) = bx2y − 2x3
− 1 we get:

∂f

∂y
=

∂g

∂x

ax2 + 16xy = 2bxy − 6x2

ax2 + 6x2 = 2bxy − 16xy

(a + 6)x2 = (2b− 16)xy

In order for the above equation to be satisfied for all pairs (x, y), it must be the case

that a + 6 = 0 and 2b− 16 = 0 which give us a = −6 and b = 8 .

(b) If
−→

F =
−→
∇ϕ, then it must be the case that:

∂ϕ

∂x
= f(x, y) (1)

∂ϕ

∂y
= g(x, y) (2)

Using f(x, y) = −6x2y + 8xy2 − 4 and integrating both sides of Equation (1) with
respect to x we get:

∂ϕ

∂x
= f(x, y)

∂ϕ

∂x
= −6x2y + 8xy2 − 4

∫

∂ϕ

∂x
dx =

∫

(

−6x2y + 8xy2 − 4
)

dx

ϕ(x, y) = −2x3y + 4x2y2 − 4x+ h(y) (3)
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We obtain the function h(y) using Equation (2). Using g(x, y) = 8x2y − 2x3
− 1 we

get the equation:

∂ϕ

∂y
= g(x, y)

∂ϕ

∂y
= 8x2y − 2x3

− 1

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying
we get:

∂

∂y

(

−2x3y + 4x2y2 − 4x+ h(y)
)

= 8x2y − 2x3
− 1

−2x3 + 8x2y + h′(y) = 8x2y − 2x3
− 1

h′(y) = −1

Now integrate both sides with respect to y to get:

∫

h′(y) dy =

∫

−1 dy

h(y) = −y + C

Letting C = 0, we find that a potential function for
−→

F is:

ϕ(x, y) = −2x3y + 4x2y2 − 4x− y
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Math 210, Exam 2, Fall 2010

Problem 6 Solution

6. Compute the surface area of the part of the paraboloid z = 4 − x2
− y2 that lies in the

region {(x, y, z) | z ≥ 3, x ≥ 0}.

Solution: The formula for surface area we will use is:

S =

∫∫

S

dS =

∫∫

R

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
dA

where the function −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉 with domain R is a parameterization

of the surface S and the vectors
−→
t u = ∂

−→

r

∂u
and

−→
t v =

∂
−→

r

∂v
are the tangent vectors.

We begin by finding a parameterization of the paraboloid. Let x = u cos(v) and y = u sin(v),
where we define u to be nonnegative. Then,

z = 4− x2
− y2

z = 4− (u cos(v))2 − (u sin(v))2

z = 4− u2 cos2(v)− u2 sin2(v)

z = 4− u2

Thus, we have −→r (u, v) = 〈u cos(v), u sin(v), 4− u2
〉. To find the domainR, we must interpret

the inequalities z ≥ 0 and x ≥ 0 in terms of the new variables u and v. From the first
inequality we find that:

z ≥ 0

4− u2
≥ 0

u2
≤ 4

0 ≤ u ≤ 2

noting that, by definition, u must be nonnegative. From the second inequality we find that:

x ≥ 0

u cos(v) ≥ 0

cos(v) ≥ 0

−
π

2
≤ v ≤

π

2

noting that cos(v) ≥ 0 implies that v is an angle in either Quadrant I or IV. Therefore, a
parameterization of S is:

−→r (u, v) =
〈

u cos(v), u sin(v), 4− u2
〉

,

R =
{

(u, v)
∣

∣

∣
0 ≤ u ≤ 2, −

π

2
≤ v ≤

π

2

}
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The tangent vectors
−→
t u and

−→
t v are then:

−→
t u =

∂−→r

∂u
= 〈cos(v), sin(v),−2u〉

−→
t v =

∂−→r

∂v
= 〈−u sin(v), u cos(v), 0〉

The cross product of these vectors is:

−→
t u ×

−→
t v =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

cos(v) sin(v) −2u
−u sin(v) u cos(v) 0

∣

∣

∣

∣

∣

∣

= 2u2 cos(v) ı̂+ 2u2 sin(v) ̂+ u k̂

=
〈

2u2 cos(v), 2u2 sin(v), u
〉

The magnitude of the cross product is:

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
=

√

(2u2 cos(v))2 + (2u2 sin(v))2 + u2

=
√

4u4 cos2(v) + 4u4 sin2(v) + u2

=
√

4u4 + u2

= u
√

4u2 + 1

We can now compute the surface area.

S =

∫∫

R

∣

∣

∣

−→
t u ×

−→
t v

∣

∣

∣
dA

=

∫

2

0

∫ π/2

−π/2

u
√

4u2 + 1 dv du

=

∫

2

0

u
√

4u2 + 1
[

v
]π/2

−π/2
du

=

∫

2

0

u
√

4u2 + 1
[π

2
−

(

−
π

2

)]

du

=

∫

2

0

πu
√

4u2 + 1 du

=
[ π

12

(

4u2 + 1
)3/2

]2

0

=
[ π

12

(

4(2)2 + 1
)3/2

]

−

[ π

12

(

4(0)2 + 1
)3/2

]

=
π

12
(17)3/2 −

π

12
(1)3/2

=
π

12

(

17
√

17− 1
)
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