
Math 210, Exam 2, Practice Fall 2009

Problem 1 Solution

1. Let f(x, y) = 3x2 + xy + 2y2. Find the partial derivatives ∂f

∂x
, ∂f

∂y
, at (1, 1), and find the

best linear approximation of f at (1, 1) and use it to estimate f(1.1, 1.2).

Solution: The linearization of f(x, y) = 3x2 + xy + 2y2 about (1, 1) has the form:

L(x, y) = f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1)

The first partial derivatives of f(x, y) are:

fx = 6x+ y

fy = x+ 4y

At the point (1, 1) we have:

f(1, 1) = 3(1)2 + (1)(1) + 2(1)2 = 6

fx(1, 1) = 6(1) + 1 = 7

fy(1, 1) = 1 + 4(1) = 5

Thus, the linearization is:

L(x, y) = 6 + 7(x− 1) + 5(y − 1)

The value of f(1.1, 1.2) is estimated to be the value of L(1.1, 1.2):

f(1.1, 1.2) ≈ L(1.1, 1.2)

f(1.1, 1.2) ≈ 6 + 7(1.1− 1) + 5(1.2− 1)

f(1.1, 1.2) ≈ 7.7
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Math 210, Exam 2, Practice Fall 2009

Problem 2 Solution

2. Find and classify the critical points of the function

f(x, y) = x3
− 3xy + y3.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = x3
− 3xy + y3 are fx = 3x2

− 3y and fy = −3x + 3y2.
These derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to
the system of equations:

fx = 3x2
− 3y = 0 (1)

fy = −3x+ 3y2 = 0 (2)

Solving Equation (1) for y we get:
y = x2 (3)

Substituting this into Equation (2) and solving for x we get:

−3x+ 3y2 = 0

−3x+ 3
(

x2
)

2

= 0

−3x+ 3x4 = 0

3x(x3
− 1) = 0

We observe that the above equation is satisfied if either x = 0 or x3
− 1 = 0 ⇔ x = 1. We

find the corresponding y-values using Equation (3): y = x2.

• If x = 0, then y = 02 = 0.

• If x = 1, then y = 12 = 1.

Thus, the critical points are (0, 0) and (1, 1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 6x, fyy = 6y, fxy = −3
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The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (6x)(6y)− (−3)2

D(x, y) = 36xy − 9

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.

(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) −9 0 Saddle Point

(1, 1) 27 6 Local Minimum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.
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Figure 1: Picture above are level curves of f(x, y). Darker colors correspond to smaller
values of f(x, y). It is apparent that (0, 0) is a saddle point and (1, 1) corresponds to a local
minimum.
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Problem 3 Solution

3. Sketch the region of integration for the integral

∫

4

0

∫

2

√

y

sin
(

x3
)

dx dy. Compute the

integral.

Solution: The region of integration R is sketched below:

x

y

R

x =
√

y

0

1

2

3

4

0 1 2

First, we recognize that sin
(

x3
)

has no simple antiderivative. Therefore, we must change
the order of integration to evaluate the integral. The region R can be described as follows:

R =
{

(x, y) : 0 ≤ y ≤ x2, 0 ≤ x ≤ 2
}

where y = 0 is the bottom curve and y = x2 is the top curve, obtained by solving the
equation x =

√

y for y in terms of x. Therefore, the value of the integral is:

∫

4

0

∫

2

√

y

sin
(

x3
)

dx dy =

∫

2

0

∫

x
2

0

sin
(

x3
)

dy dx

=

∫

2

0

sin
(

x3
)

[

y
]

x
2

0

dx

=

∫

2

0

x2 sin
(

x3
)

dx

=

[

−

1

3
cos

(

x3
)

]2

0

=

[

−

1

3
cos

(

23
)

]

−

[

−

1

3
cos

(

03
)

]

= −

1

3
cos(8) +

1

3

1
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Problem 4 Solution

4. Find the minimum and maximum of the function f(x, y, z) = x+ y − z on the ellipsoid

R =

{

(x, y, z)

∣

∣

∣

∣

x2

4
+

y2

9
+ z2 = 1

}

Solution: We find the minimum and maximum using the method of Lagrange Multi-

pliers. First, we recognize that R is compact which guarantees the existence of absolute
extrema of f . Then, let g(x, y, z) = x2

4
+ y2

9
+ z2 = 1. We look for solutions to the following

system of equations:

fx = λgx, fy = λgy, fz = λgz, g(x, y, z) = 1

which, when applied to our functions f and g, give us:

1 = λ

(

2x

4

)

(1)

1 = λ

(

2y

9

)

(2)

−1 = λ (2z) (3)

x2

4
+

y2

9
+ z2 = 1 (4)

To solve the system of equations, we first solve Equations (1)-(3) for the variables x, y, and
z in terms of λ to get:

x =
4

2λ
, y =

9

2λ
, z = −

1

2λ
(5)

We then plug Equations (5) into Equation (4) and simplify.

x2

4
+

y2

9
+ z2 = 1

( 4

2λ
)2

4
+

( 9

2λ
)2

9
+

(

−

1

2λ

)2

= 1

16

4λ2

4
+

81

4λ2

9
+

1

4λ2
= 1
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At this point we multiply both sides of the equation by 4λ2 to get:

4λ2

(

16

4λ2

4
+

81

4λ2

9
+

1

4λ2

)

= 4λ2(1)

16

4
+

81

9
+ 1 = 4λ2

4 + 9 + 1 = 4λ2

λ2 =
7

2

λ = ±

√

7

2

λ = ±

√

14

2

• When λ =
√

14

2
, Equations (5) give us the first candidate for the location of an extreme

value:

x =
4
√

14

14
, y =

9
√

14

14
, z = −

√

14

14

• When λ = −

√

14

2
, Equations (5) give us the first candidate for the location of an

extreme value:

x = −

4
√

14

14
, y = −

9
√

14

14
, z =

√

14

14

Evaluating f(x, y, z) at these points we find that:

f

(

4
√

14

14
,
9
√

14

14
,−

√

14

14

)

=
√

14

f

(

−

4
√

14

14
,−

9
√

14

14
,

√

14

14

)

= −

√

14

Therefore, the absolute maximum value of f on R is
√

14 and the absolute minimum of f
on R is −

√

14.

Note: The level surfaces f(x, y, z) =
√

14 and f(x, y, z) = −

√

14 are planes tangent to the
ellipsoid at the critical points.
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Math 210, Exam 2, Practice Fall 2009

Problem 5 Solution

5. Find the tangent plane to the surface:

S =
{

(x, y, z) : x2 + y3 − 2z = 1
}

at the point (1, 2, 4).

Solution: Let F (x, y, z) = x2 + y3 − 2z = 1 be the equation for the surface. We use the
following formula for the equation for the tangent plane:

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

because the equation for the surface is given in implicit form. Note that −→n =
−→

∇F (a, b, c) =
〈Fx(a, b, c), Fy(a, b, c), Fz(a, b, c)〉 is a vector normal to the surface F (x, y, z) = C and, thus,
to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of F (x, y, z) = x2 + y3 − 2z are:

Fx = 2x, Fy = 3y2, Fz = −2

Evaluating these derivatives at (1, 2, 4) we get:

Fx(1, 2, 4) = 2(1) = 2

Fy(1, 2, 4) = 3(2)2 = 12

Fz(1, 2, 4) = −2

Thus, the tangent plane equation is:

2(x− 1) + 12(y − 2)− 2(z − 4) = 0
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Problem 6 Solution

6. Let F (x, y, z) = 3x2+y2−4z2. Find the equation of the tangent plane to the level surface
F (x, y, z) = 1 at the point (1,−4, 3).

Solution: We use the following formula for the equation for the tangent plane:

Fx(a, b, c)(x− a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

because the equation for the surface is given in implicit form. Note that −→n =
−→

∇F (a, b, c) =
〈Fx(a, b, c), Fy(a, b, c), Fz(a, b, c)〉 is a vector normal to the surface F (x, y, z) = C and, thus,
to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of F (x, y, z) = 3x2 + y2 − 4z2 are:

Fx = 6x, Fy = 2y, Fz = −8z

Evaluating these derivatives at (1,−4, 3) we get:

Fx(1,−4, 3) = 6(1) = 6

Fy(1,−4, 3) = 2(−4) = −8

Fz(1,−4, 3) = −8(3) = −24

Thus, the tangent plane equation is:

6(x− 1)− 8(y + 4)− 24(z − 3) = 0

1
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Problem 7 Solution

7. Let f(x, y) = 1

3
x3 + y2 − xy. Find all critical points of f(x, y) and classify each as a local

maximum, local minimum, or saddle point.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = 1

3
x3 + y2 − xy are fx = x2

− y and fy = 2y − x. These
derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to the
system of equations:

fx = x2
− y = 0 (1)

fy = 2y − x = 0 (2)

Solving Equation (1) for y we get:
y = x2 (3)

Substituting this into Equation (2) and solving for x we get:

2y − x = 0

2x2
− x = 0

x(2x− 1) = 0

⇐⇒ x = 0 or x =
1

2

We find the corresponding y-values using Equation (3): y = x2.

• If x = 0, then y = 02 = 0.

• If x = 1

2
, then y =

(

1

2

)2

= 1

4
.

Thus, the critical points are (0, 0) and (1
2
, 1

4
) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 2x, fyy = 2, fxy = −1

The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (2x)(2)− (−1)2

D(x, y) = 4x− 1

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.
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(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) −1 0 Saddle Point

(1
2
, 1
4
) 1 1 Local Minimum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

x

y

Figure 1: Picture above are level curves of f(x, y). Darker colors correspond to smaller
values of f(x, y). It is apparent that (0, 0) is a saddle point and (1

2
, 1

4
) corresponds to a local

minimum.
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Problem 8 Solution

8. Find the minimum and maximum of the function f(x, y) = x2
−y subject to the condition

x2 + y2 = 4.

Solution: We find the minimum and maximum using the method of Lagrange Multi-

pliers. First, we recognize that x2 + y2 = 4 is compact which guarantees the existence of
absolute extrema of f . Then, let g(x, y) = x2+y2 = 4. We look for solutions to the following
system of equations:

fx = λgx, fy = λgy, g(x, y) = 4

which, when applied to our functions f and g, give us:

2x = λ (2x) (1)

−1 = λ (2y) (2)

x2 + y2 = 4 (3)

We begin by noting that Equation (1) gives us:

2x = λ(2x)

2x− λ(2x) = 0

2x(1− λ) = 0

From this equation we either have x = 0 or λ = 1. Let’s consider each case separately.

Case 1: Let x = 0. We find the corresponding y-values using Equation (3).

x2 + y2 = 4

02 + y2 = 4

y2 = 4

y = ±2

Thus, the points of interest are (0, 2) and (0,−2).

Case 2: Let λ = 1. Plugging this into Equation (2) we get:

−1 = λ(2y)

−1 = 1(2y)

y = −
1

2

We find the corresponding x-values using Equation (3).

x2 + y2 = 4

x2 +
(

−
1

2

)

2

= 4

x2 + 1

4
= 4

x2 = 15

4

x = ±

√

15

2

Thus, the points of interest are (
√

15

2
,−1

2
) and (−

√

15

2
,−1

2
).

1



We now evaluate f(x, y) = x2
− y at each point of interest obtained by Cases 1 and 2.

f(0, 2) = −2

f(0,−2) = 2

f(
√

15

2
,−1

2
) = 17

4

f(−
√

15

2
,−1

2
) = 17

4

From the values above we observe that f attains an absolute maximum of 17

4
and an absolute

minimum of −2.

-2 -1 0 1 2

-2

-1

0

1

2

x

y

Figure 1: Shown in the figure are the level curves of f(x, y) = x2
−y and the circle x2+y2 = 4

(thick, black curve). Darker colors correspond to smaller values of f(x, y). Notice that (1) the

parabola f(x, y) = x2
−y = 17

4
is tangent to the circle at the points (

√

15

2
,−1

2
) and (−

√

15

2
,−1

2
)

which correspond to the absolute maximum and (2) the parabola f(x, y) = x2
− y = −2 is

tangent to the circle at the point (0, 2) which corresponds to the absolute minimum.
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Problem 9 Solution

9. Use polar coordinates to find the volume of the region bounded by the paraboloid z =
1− x2

− y2 in the first octant x ≥ 0, y ≥ 0, z ≥ 0.

Solution: The volume formula we use is:

V =

∫∫

D

(

1− x2
− y2

)

dA

where D is the projection of the paraboloid onto the first quadrant in the xy-plane. We are
asked to use polar coordinates:

x = r cos θ, y = r sin θ, dA = r dr dθ

1. First, we describe the region D. Since z ≥ 0 and z = 1− x2
− y2 we know that:

1− x2
− y2 ≥ 0

x2 + y2 ≤ 1

Since the projection is in the first quadrant, the region D can be described in rectan-
gular coordinates as:

D = {(x, y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}

or, equivalently, in polar coordinates as:

D =
{

(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤

π

2

}

2. Then, using the polar coordinate equations, the paraboloid z = 1 − x2
− y2 can be

written in polar coordinates as:
z = 1− r2

3. Finally, we compute the volume as follows:

V =

∫∫

D

(

1− x2
− y2

)

dA

=

∫ π/2

0

∫

1

0

(

1− r2
)

r dr dθ

=

∫ π/2

0

[

1

2
r2 −

1

4
r4
]

1

0

dθ

=

∫ π/2

0

1

4
dθ

=

[

1

4
θ

]π/2

0

=
π

8
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Problem 10 Solution

10. Find the minimum and maximum of the function

f(x, y, z) = x2
− y2 + 2z2

on the surface of the sphere defined by the equation x2 + y2 + z2 = 1.

Solution: We find the minimum and maximum using the method of Lagrange Mul-

tipliers. First, we recognize that the sphere is compact and that f(x, y, z) is continu-
ous on the sphere, which guarantees the existence of absolute extrema of f . Then, let
g(x, y, z) = x2 + y2 + z2 = 1. We look for solutions to the following system of equations:

fx = λgx, fy = λgy, fz = λgz, g(x, y, z) = 1

which, when applied to our functions f and g, give us:

2x = λ(2x) (1)

−2y = λ(2y) (2)

4z = λ(2z) (3)

x2 + y2 + z2 = 1 (4)

From Equation (1) we can have either x = 0 or λ = 1.

• If x = 0 then we turn to Equation (2). In this case we either have y = 0 or λ = −1.

– Suppose y = 0. Plugging x = 0 and y = 0 into Equation (4) we get:

x2 + y2 + z2 = 1

02 + 02 + z2 = 1

z2 = 1

z = ±1

Thus, the points of interest are (0, 0, 1) and (0, 0,−1).

– Now suppose λ = −1. Then Equation (3) gives us:

4z = λ(2z)

4z = (−1)(2z)

6z = 0

z = 0

Plugging x = 0 and z = 0 into Equation (4) we get:

x2 + y2 + z2 = 1

02 + y2 + 02 = 1

y2 = 1

y = ±1

Thus, the points of interest are (0, 1, 0) and (0,−1, 0).

1



• If λ = 1 then Equations (2) and (3) give us:

−2y = λ(2y) 4z = λ(2z)

−2y = (1)(2y) 4z = (1)(2z)

−4y = 0 2z = 0

y = 0 z = 0

Plugging y = 0 and z = 0 into Equation (4) we get:

x2 + y2 + z2 = 1

x2 + 02 + 02 = 1

x2 = 1

x = ±1

Thus, the points of interest are (1, 0, 0) and (−1, 0, 0).

Evaluating f(x, y, z) at all points of interest we find that:

f(1, 0, 0) = 1

f(−1, 0, 0) = 1

f(0, 1, 0) = −1

f(0,−1, 0) = −1

f(0, 0, 1) = 2

f(0, 0,−1) = 2

Therefore, the absolute maximum value of f is 2 and the absolute minimum of f is −1.
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Problem 11 Solution

11. Using cylindrical coordinates, compute∫∫∫
W

(
x2 + y2

)1/2
dV

where W is the region within the cylinder x2 + y2 ≤ 4 and 0 ≤ z ≤ y.

Solution: The region W is plotted below.

x

y

z

In cylindrical coordinates, the equations for the cylinder x2 + y2 = 4 and the plane z = y
are:

Cylinder : r = 2

Plane : z = r sin θ

Furthermore, we can write the integrand in cylindrical coordinates as:

f(x, y, z) =
(
x2 + y2

)1/2
f(r, θ, z) = r

The projection of W onto the xy-plane is the half-disk 0 ≤ r ≤ 2, 0 ≤ θ ≤ π. Using the fact
that dV = r dz dr dθ in cylindrical coordinates, the value of the integral is:

1



∫∫∫
W

(
x2 + y2

)1/2
dV =

∫ π

0

∫ 2

0

∫ r sin θ

0

r2 dz dr dθ

=

∫ π

0

∫ 2

0

r2
[
z
]r sin θ
0

dr dθ

=

∫ π

0

∫ 2

0

r3 sin θ dr dθ

=

∫ π

0

sin θ

[
1

4
r4
]2
0

dθ

= 4

∫ π

0

sin θ dθ

= 4
[
− cos θ

]π
0

= 4
[
− cosπ + cos 0

]
= 8

2
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Problem 12 Solution

12. Compute the integral

∫∫∫

B

x2 dV , where B is the unit ball

B =
{

(x, y, z) : x2 + y2 + z2 ≤ 1
}

Solution: Due to the fact that B is a ball of radius 1, we use Spherical Coordinates to
evaluate the integral. In Spherical Coordinates, the equation for the sphere is ρ = 1 and the
integrand is:

f(x, y, z) = x2

f(ρ, φ, θ) = (ρ sinφ cos θ)2

Using the fact that dV = ρ2 sin φ dρ dφ dθ in Spherical Coordinates, the value of the integral
is:

∫∫∫

B

x2 dV =

∫

2π

0

∫ π

0

∫

1

0

(ρ sinφ cos θ)2 ρ2 sinφ dρ dφ dθ

=

∫

2π

0

∫ π

0

∫

1

0

ρ4 sin3 φ cos2 θ dρ dφ dθ

=

∫

2π

0

∫ π

0

sin3 φ cos2 θ

[

1

5
ρ5
]1

0

dφ dθ

=
1

5

∫

2π

0

∫ π

0

sin3 φ cos2 θ dφ dθ

=
1

5

∫

2π

0

cos2 θ

[

1

3
cos3 φ− cosφ

]π

0

dθ

=
1

5

∫

2π

0

cos2 θ

[(

1

3
cos3 π − cosπ

)

−

(

1

3
cos3 0− cos 0

)]

dθ

=
1

5

∫

2π

0

4

3
cos2 θ dθ

=
4

15

[

1

2
θ +

1

4
sin 2θ

]2π

0

=
4

15

[(

1

2
(2π) +

1

4
sin(4π)

)

−

(

1

2
(0) +

1

4
sin(0)

)]

=
4π

15

1
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Problem 13 Solution

13. Find the volume of the region bounded below and above by the surfaces z = x2+ y2 and
z = 2− x2 − y2.

Solution: The region is plotted below.

x

y

z

The volume may be computed using either a double integral or a triple integral. Using a
triple integral, the formula is:

V =

∫∫∫
R

1 dV

Due to the shape of the boundary, we will use Cylindrical Coordinates. The paraboloids can
be written in Cylindrical Coordinates as:

Paraboloid 1 : z = r2

Paraboloid 2 : z = 2− r2

The region R is bounded above by z = 2 − r2 and below by z = r2. The projection of R
onto the xy-plane is the disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. The radius of the disk is obtained by
determining the intersection of the two surfaces:

z = z

r2 = 2− r2

r2 = 1

r = 1

1



Using the fact that dV = r dz dr dθ in Cylindrical Coordinates, the volume is:

V =

∫∫∫
R

1 dV

=

∫ 2π

0

∫ 1

0

∫ 2−r2

r2
r dz dr dθ

=

∫ 2π

0

∫ 1

0

r
[
z
]2−r2
r2

dr dθ

=

∫ 2π

0

∫ 1

0

r
(
2− r2 − r2

)
dr dθ

=

∫ 2π

0

∫ 1

0

(
2r − 2r3

)
dr dθ

=

∫ 2π

0

[
r2 − 1

2
r4
]1
0

dθ

=
1

2

∫ 2π

0

dθ

=
1

2

[
θ
]2π
0

= π

2
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Problem 14 Solution

14. Let f(x, y) = exy and (r, θ) be polar coordinates. Find
∂f

∂r
. Express your answer in terms

of the variables x and y.

Solution: First, the equations for x and y in polar coordinates are defined as:

x = r cos θ, y = r sin θ (1)

Using the Chain Rule, the derivative
∂f

∂r
can be expressed as follows:

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
(2)

The partial derivatives on the right hand side of the above equation are:

∂f

∂x
= yexy

∂x

∂r
= cos θ

∂f

∂y
= xexy

∂y

∂r
= sin θ

Plugging these into Equation (2) and using Equations (1) we get:

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

∂f

∂r
= yexy cos θ + xexy sin θ

∂f

∂r
= exy(y cos θ + x sin θ)

Using the fact that:

cos θ =
x

r
, sin θ =

y

r
, r =

√

x2 + y2

we can write our answer in terms of x and y:

∂f

∂r
= exy(y cos θ + x sin θ)

∂f

∂r
= yexy

(

y ·
x

r
+ x ·

y

r

)

∂f

∂r
= yexy

(

y ·
x

√

x2 + y2
+ x ·

y
√

x2 + y2

)

∂f

∂r
=

2xy
√

x2 + y2
exy

1
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Problem 15 Solution

15. Compute the average value of the function f(x, y) = 2 + x − y on the quarter disk
A = {(x, y) : x ≥ 0, y ≥ 0, x2 + y2 ≤ 1}.

Solution: We use the following formula to compute the average value of f :

f̄ =

∫∫

A
f(x, y) dA

∫∫

A
1 dA

Since the region A is a quarter circle, we use polar coordinates: x = r cos θ, y = r sin θ,
dA = r dr dθ. The region A can then be described as:

A =
{

(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤

π

2

}

and the function f written in polar coordinates is:

f(r, θ) = 2 + r cos θ − r sin θ

The double integral of f over A is then:

∫∫

A

f(x, y) dA =

∫ π/2

0

∫

1

0

(2 + r cos θ − r sin θ) r dr dθ

=

∫ π/2

0

[

r2 +
1

3
r3 cos θ −

1

3
r3 sin θ

]

1

0

dθ

=

∫ π/2

0

(

1 +
1

3
cos θ −

1

3
sin θ

)

dθ

=

[

θ +
1

3
sin θ +

1

3
cos θ

]π/2

0

=

[

π

2
+

1

3
sin

π

2
+

1

3
cos

π

2

]

−

[

0 +
1

3
sin 0 +

1

3
cos 0

]

=
π

2

We recognize that the double integral
∫∫

A
1 dA represents the area of A. Since A is a quarter

circle of radius 1, the area is π
4
. Thus, the average value of f is:

f̄ =

∫∫

A
f(x, y) dA

∫∫

A
1 dA

=
π
2

π
4

= 2

1
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Problem 16 Solution

16. Compute the integral
∫∫

D

x

y + 1
dA

where D is the triangle with vertices (0, 0), (1, 1), and (2, 0).

Solution:

x

y

x = y x = 2− y

0

1

0 1 2
The integral is evaluated as follows:

∫∫

D

x

y + 1
dA =

∫

1

0

∫

2−y

y

x

y + 1
dx dy

=

∫

1

0

1

y + 1

[

x2

2

]2−y

y

=

∫

1

0

1

y + 1

[

(2− y)2

2
−

y2

2

]

dy

=
1

2

∫

1

0

1

y + 1

(

4− 4y + y2 − y2
)

dy

=
1

2

∫

1

0

1

y + 1
(4− 4y) dy

= 2

∫

1

0

1− y

1 + y
dy

= 2

∫

1

0

(

2

1 + y
− 1

)

dy

= 2
[

2 ln(1 + y)− y
]1

0

= 2
[

2 ln(1 + 1)− 1
]

− 2
[

2 ln(1 + 0)− 0
]

= 4 ln(2)− 2

1
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Problem 17 Solution

17. Let f(x, y) = x2
− x + y2, and let D be the bounded region defined by the inequalities

x ≥ 0 and x ≤ 1− y2.

(a) Find and classify the critical points of f(x, y).

(b) Sketch the region D.

(c) Find the absolute maximum and minimum values of f on the region D, and list the
points where these values occur.

Solution: First we note that the domain of f(x, y) is bounded and closed, i.e. compact,
and that f(x, y) is continuous on the domain. Thus, we are guaranteed to have absolute
extrema.

(a) The partial derivatives of f are fx = 2x − 1 and fy = 2y. The critical points of f are
all solutions to the system of equations:

fx = 2x− 1 = 0

fy = 2y = 0

The only solution is x = 1

2
and y = 0, which is an interior point of D. The function

value at the critical point is:

f(1
2
, 0) = −

1

4

(b) The region D (shaded) is plotted below along with level curves of f(x, y).

0 1

2

1

-1

0

1

x

y

1



(c) We must now determine the minimum and maximum values of f on the boundary of
D. To do this, we must consider each part of the boundary separately:

Part I : Let this part be the line segment between (0,−1) and (0, 1). On this part we
have x = 0 and −1 ≤ y ≤ 1. We now use the fact that x = 0 to rewrite f(x, y)
as a function of one variable that we call gI(y).

f(x, y) = x2
− x+ y2

gI(y) = 02 − 0 + y2

gI(y) = y2

The critical points of gI(y) are:

g′
I
(y) = 0

2y = 0

y = 0

Evaluating gI(y) at the critical point y = 0 and at the endpoints of the interval
−1 ≤ y ≤ 1, we find that:

gI(0) = 0, gI(−1) = 1, gI(1) = 1

Note that these correspond to the function values:

f(0, 0) = 0, f(0,−1) = 1, f(0, 1) = 1

Part II : Let this part be the parabola x = 1 − y2 on the interval −1 ≤ y ≤ 1. We now
use the fact that x = 1 − y2 to rewrite f(x, y) as a function of one variable that
we call gII(y).

f(x, y) = x2
− x+ y2

gII(y) =
(

1− y2
)2

−

(

1− y2
)

+ y2

gII(y) = 1− 2y2 + y4 − 1 + y2 + y2

gII(y) = y4

The critical points of gII(y) are:

g′
II
(y) = 0

4y3 = 0

y = 0

Evaluating gII(y) at the critical point y = 0 and at the endpoints of the interval
−1 ≤ y ≤ 1, we find that:

gII(0) = 0, gII(−1) = 1, gII(1) = 1

Note that these correspond to the function values:

f(1, 0) = 0, f(0,−1) = 1, f(0, 1) = 1

2



Finally, after comparing these values of f we find that the absolute maximum of f
is 1 at the points (0,−1) and (0, 1) and that the absolute minimum of f is −

1

4
at

the point (1
2
, 0).

Note: In the figure from part (b) we see that the level curves of f are circles centered at
(1
2
, 0). It is clear that the absolute minimum of f occurs at (1

2
, 0) and that the absolute

maximum of f occurs at (0,−1) and (0, 1), which are points on the largest circle centered
at (1

2
, 0) that contains points in D.

3
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Problem 18 Solution

18. Consider the function F (x, y) = x2e4x−y
2

. Find the direction (unit vector) in which F

has the fastest growth at the point (1, 2).

Solution: The direction in which F has the fastest growth at the point (1, 2) is the direction
of steepest ascent:

û =
1

∣

∣

∣

−→

∇F (1, 2)
∣

∣

∣

−→

∇F (1, 2)

The gradient of F is:

−→

∇F = 〈Fx, Fy〉

−→

∇F =
〈

2xe4x−y
2

+ 4x2e4x−y
2

,−2x2ye4x−y
2

〉

and its value at the point (1, 2) is:

−→

∇F (1, 2) = 〈6,−4〉

Thus, the direction of steepest ascent is:

û =
1

∣

∣

∣

−→

∇F (1, 2)
∣

∣

∣

−→

∇F (1, 2)

=
1

|6,−4|
〈6,−4〉

=
1

√

13
〈3,−2〉

1
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Problem 19 Solution

19. Let −→r (t) = 〈e−t, cos(t)〉 describe movement of a point in the plane, and let f(x, y) =
x2y − ex+y. Use the chain rule to compute the derivative of f(−→r (t)) at time t = 0.

Solution: We use the Chain Rule for Paths formula:

d

dt
f
(

−→r (t)
)

=
−→

∇f ·
−→r ′(t)

where the gradient of f is:

−→

∇f = 〈fx, fy〉 =
〈

2xy − ex+y, x2
− ex+y

〉

and the derivative −→r ′(t) is:
−→r ′(t) =

〈

−e−t,− sin(t)
〉

Taking the dot product of these vectors gives us the derivative of f(−→r (t)).

d

dt
f
(

−→
r (t)

)

=
−→

∇f ·
−→
r ′(t)

d

dt
f
(

−→
r (t)

)

=
〈

2xy − ex+y, x2
− ex+y

〉

·

〈

−e−t,− sin(t)
〉

d

dt
f
(

−→r (t)
)

= −e−t
(

2xy − ex+y
)

− sin(t)
(

x2
− ex+y

)

At t = 0 we know that −→r (0) = 〈1, 1〉 which tells us that x = 1 and y = 1. Therefore,
plugging t = 0, x = 1, and y = 1 into the derivative we find that:

d

dt
f
(

−→r (t)
)

∣

∣

∣

∣

t=0

= −e−0
(

2(1)(1)− e1+1
)

− sin(0)
(

12 − e1+1
)

d

dt
f
(

−→r (t)
)

∣

∣

∣

∣

t=0

= e2 − 2

1
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Problem 20 Solution

20. Let the function f(x, y, z) =
√
x2 + y2 + z2 describe the density in the region A ={

x2 + y2 + z2 ≤ 1,
√
x2 + y2 ≤ z

}
. Use spherical coordinates to compute its mass.

Solution: The region A is plotted below.

x

y

z

The mass of the region is given by the triple integral:

mass =

∫∫∫
A

f(x, y, z) dV

In Spherical Coordinates, the equations for the sphere x2 + y2 + z2 = 1 and the cone
z =

√
x2 + y2 are:

Sphere : ρ = 1

Cone : φ =
π

4

and the density function f(x, y, z) =
√
x2 + y2 + z2 is:

density : f(ρ, φ, θ) = ρ

Using the fact that dV = ρ2 sinφ dρ dφ dθ in Spherical Coordinates, the mass of the region
is:

1



mass =

∫∫∫
A

f(x, y, z) dV

=

∫ 2π

0

∫ π/4

0

∫ 1

0

ρ
(
ρ2 sinφ

)
dρ dφ dθ

=

∫ 2π

0

∫ π/4

0

sinφ

[
1

4
ρ4
]1
0

dφ dθ

=
1

4

∫ 2π

0

∫ π/4

0

sinφ dφ dθ

=
1

4

∫ 2π

0

[
− cosφ

]π/4
0

dθ

=
1

4

∫ 2π

0

[
− cos

π

4
− (− cos 0)

]
dθ

=
1

4

∫ 2π

0

(
−
√
2

2
+ 1

)
dθ

=
1

4

(
1−
√
2

2

)[
θ
]2π
0

=
π

2

(
1−
√
2

2

)

2
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