Math 210, Exam 2, Spring 2010
Problem 1 Solution

1. Find and classify the critical points of the function

fla,y) =2+ 3zy — y°.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fu(a,b) = fy(a,b) =0, or
(2) one (or both) of f, or f, does not exist at (a,b).

The partial derivatives of f(z,y) = 2 + 3zy — y* are f, = 32? + 3y and f, = 3z — 3y°.
These derivatives exist for all (z,y) in R?. Thus, the critical points of f are the solutions to
the system of equations:

fr=32"+3y=0 (1)
fy=3r-37=0 (2)

Solving Equation (1) for y we get:
y=—2" (3)

Substituting this into Equation (2) and solving for = we get:

3z —3y2 =0

3r — 3 (—2%)* =0
3z — 327 =0
3z(1—2%) =0

We observe that the above equation is satisfied if either x =0 or 2> —1 =0 < x=1. We

find the corresponding y-values using Equation (3): y = —z?2.

o If 2 =0, then y = —0% = 0.

o Ifx =1, theny=—(1)?=—1.

Thus, the critical points are| (0,0) |and | (1, —1) |

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

frz = 6, fyy:_6ya fmyzg



The discriminant function D(z,y) is then:

D(xay) = fmcfyy - 3y
D(z,y) = (62)(~6y) — (3)°
D(z,y) = —36zy — 9

The values of D(z,y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.

(a,b) | D(a,b) | fez(a,b) | Conclusion

(0,0) -9 0 Saddle Point
(1,-1) 27 6 Local Minimum

Recall that (a,b) is a saddle point if D(a,b) < 0 and that (a,b) corresponds to a local
minimum of f if D(a,b) > 0 and f,.(a,b) > 0.
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Figure 1: Pictured above are level curves of f(z,y). Darker colors correspond to smaller
values of f(x,y). It is apparent that (0,0) is a saddle point and (1, —1) corresponds to a
local minimum.
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2. Sketch the region of integration and compute / / e d dy.
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The integral is evaluated as follows:
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where A is the region inside the sphere 2% + y? + 22 = 2, inside the cylinder 2% +y? = 1, and
above the zy-plane.

3. Compute

Solution: The region A is plotted below.

We use Cylindrical Coordinates to evaluate the triple integral. The equations for the sphere
and cylinder are then:

Sphere: r?+22=2 = z=+v2—12
Cylinder: =1 = r=1

The surface that bounds A from below is z = 0 (the zy-plane) and the surface that bounds
A from above is z = /2 — 12 (the sphere). The projection of the region A onto the xy-plane
is the disk 0 < r < 1, 0 < 6 < 27. Using the fact that dV = rdzdrdf in Cylindrical
Coordinates, the value of the triple integral is:
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4. Compute the integral of the field ﬁ(:r,y) = (z +y)1+ 0] along the curve ?(9) =
cosf1+sind].

Solution: By definition, the line integral of a vector field ﬁ along a curve C with parame-
terization @ (0) = (2(0),y(0)), a < 0 < b is given by the formula:

/CF-?ds:/ab?-?’(e)de

From the given parameterization € (#) = cos 01+ sin 0 we have:
T'(0) = —sinfi+ cosfj

and, using the fact that z(f) = cos and y(0) = sin 0, the function F can be rewritten as:
F=(c4y)i+0j
F = (cosf +sin6)i+0j

Assuming an interval 0 < # < 27, the value of the line integral is then:
b
/?E%:/ . T(0)do
C a

2T
:/ ((cos@ +sinf) 14+ 0j) - (—sinfi+ cosf]) db
0

21

(cosf + sin0)(—sin ) do

2

(—sinf cos — sin®6) d

S— S—

o, 1,1 o

= {5 cos” ) — 59 + 1 8111(29)] )

o, 1 1 1 o, 1.1

= {5 cos” (2) 5(27r) + Zs1n(47r)} [2 cos” 0 2(O) + 4sm(O)
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5. Find the minimum and maximum of the function f(z,y) = x+ y? subject to the condition
22% + % = 1.

Solution: We find the minimum and maximum using the method of Lagrange Multi-
pliers. First, we recognize that 222 + y? = 1 is compact which guarantees the existence
of absolute extrema of f. Then, let g(z,y) = 222 + y* = 1. We look for solutions to the
following system of equations:

f:c :)\g:(:a fy:)\gy, g(I,y): 1

which, when applied to our functions f and g, give us:

1= )\(4x) (1)
2y = A (2y) (2)
207 +y* =1 (3)
We begin by noting that Equation (2) gives us:
2y = A(2y)
2y — A(2y) =0
2y(1—X) =0

From this equation we either have y = 0 or A = 1. Let’s consider each case separately.

Case 1: Let y = 0. We find the corresponding z-values using Equation (3).

207 +y* =1
22° +0° =1
2 _ 1
=3
_ 1

Thus, the points of interest are (%, 0) and (—%, 0).

Case 2: Let A = 1. Plugging this into Equation (1) we get:

1 = A\(4x)
1 =1(4x)

1
We find the corresponding y-values using Equation (3).

20° +y? =1
2

2(3)" +y2=1

1 2 __

§+y =1

y' =1

_ 7
y—i\/;



Thus, the points of interest are ( ) and (3, —/%).
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We now evaluate f(z,y) = x + y? at each point of interest obtained by Cases 1 and 2.

(500 =7
f(_%v()) - _%

fGf3) =3
IG =8 =58

From the values above we observe that f attains an absolute maximum of % and an absolute

. . 1
minimum of 7
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Figure 1: Shown in the figure are the level curves of f(z,y) = z + y* and the ellipse
22% + y* = 1 (thick, black curve). Darker colors correspond to smaller values of f(x,v).
Notice that (1) the parabola f(z,y) = = + y? = % is tangent to the ellipse at the points

(1, \/g) and (3, —\/g) which correspond to the absolute maximum and (2) the parabola

flz,y) =x+y* = —% is tangent to the ellipse at the point (—%, 0) which corresponds to

the absolute minimum.
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6. For the vector field ﬁ(UL y) = (z+y)1+ (z—vy)J, find a function p(z,y) with grad ¢ = ?
or use the partial derivative test to show that such a function does not exist.

Solution: In order for the vector field F = (f(x,y),9(z,y)) to have a potential function
o(z,y) such that grad p = ﬁ, it must be the case that:

of _ 99
dy  Ox
Using f(z,y) =z +y and g(x,y) = = — y we get:
of 9g
Yo, Yo
oy T Ox

which verifies the existence of a potential function for the given vector field.

If gradyp = ﬁ, then it must be the case that:

Iy
i 1
5 = (©:Y) (1)
Iy
L 2
9 9(z,y) (2)
Using f(x,y) = x + y and integrating both sides of Equation (1) with respect to x we get:
g
I
/g—idx:/(aﬂry) dx
1
plz,y) = 52° + 2y + h(y) (3)
We obtain the function h(y) using Equation (2). Using g(z,y) = x — y we get the equation:
i
3y 9(z,y)
8_@ P l’ —
oy Y

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we
get:

a (1,
8—y(§at +xy+h(y)) =x—y
z+h(y)=z-y
W (y) = -y



Now integrate both sides with respect to y to get:

/h'(y) dy:/—ydy

1
h(y) = —592 +C

Letting C' = 0, we find that a potential function for ﬁ is:

1 1,

oz, y) = 5562 +ry =y
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