
Math 210, Exam 2, Spring 2010

Problem 1 Solution

1. Find and classify the critical points of the function

f(x, y) = x3 + 3xy − y3.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = x3 + 3xy − y3 are fx = 3x2 + 3y and fy = 3x − 3y2.
These derivatives exist for all (x, y) in R

2. Thus, the critical points of f are the solutions to
the system of equations:

fx = 3x2 + 3y = 0 (1)

fy = 3x− 3y2 = 0 (2)

Solving Equation (1) for y we get:
y = −x2 (3)

Substituting this into Equation (2) and solving for x we get:

3x− 3y2 = 0

3x− 3
(

−x2
)2

= 0

3x− 3x4 = 0

3x(1− x3) = 0

We observe that the above equation is satisfied if either x = 0 or x3
− 1 = 0 ⇔ x = 1. We

find the corresponding y-values using Equation (3): y = −x2.

• If x = 0, then y = −02 = 0.

• If x = 1, then y = −(1)2 = −1.

Thus, the critical points are (0, 0) and (1,−1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = 6x, fyy = −6y, fxy = 3
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The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (6x)(−6y)− (3)2

D(x, y) = −36xy − 9

The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.

(a, b) D(a, b) fxx(a, b) Conclusion

(0, 0) −9 0 Saddle Point

(1,−1) 27 6 Local Minimum

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
minimum of f if D(a, b) > 0 and fxx(a, b) > 0.
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Figure 1: Pictured above are level curves of f(x, y). Darker colors correspond to smaller
values of f(x, y). It is apparent that (0, 0) is a saddle point and (1,−1) corresponds to a
local minimum.
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Problem 2 Solution

2. Sketch the region of integration and compute

∫

1

0

∫

y

0

e−y
2

dx dy.

Solution:

x

y

R x = y
x = 0

0

1

0 1

The integral is evaluated as follows:

∫

1

0

∫

y

0

e−y
2

dx dy =

∫

2

0

[

xe−y
2

]

y

0

dy

=

∫

2

0

ye−y
2

dy

=

[

−
1

2
e−y

2

]1

0

=

[

−
1

2
e−1

]

−

[

−
1

2
e0
]

=
1

2
−

1

2
e−1
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Problem 3 Solution

3. Compute ∫∫∫
A

z dV

where A is the region inside the sphere x2+ y2+ z2 = 2, inside the cylinder x2+ y2 = 1, and
above the xy-plane.

Solution: The region A is plotted below.

x

y

z

We use Cylindrical Coordinates to evaluate the triple integral. The equations for the sphere
and cylinder are then:

Sphere : r2 + z2 = 2 ⇒ z =
√
2− r2

Cylinder : r2 = 1 ⇒ r = 1

The surface that bounds A from below is z = 0 (the xy-plane) and the surface that bounds
A from above is z =

√
2− r2 (the sphere). The projection of the region A onto the xy-plane

is the disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Using the fact that dV = r dz dr dθ in Cylindrical
Coordinates, the value of the triple integral is:
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∫∫∫
A

z dV =

∫ 2π

0

∫ 1

0

∫ √2−r2
0

zr dz dr dθ

=

∫ 2π

0

∫ 1

0

r

[
1

2
z2
]√2−r2
0

dr dθ

=
1

2

∫ 2π

0

∫ 1

0

r
(
2− r2

)
dr dθ

=
1

2

∫ 2π

0

[
r2 − 1

4
r4
]1
0

dθ

=
1

2

∫ 2π

0

3

4
dθ

=
3

8

[
θ
]2π
0

=
3π

4

2



Math 210, Exam 2, Spring 2010

Problem 4 Solution

4. Compute the integral of the field
−→
F (x, y) = (x + y) ı̂ + 0 ̂ along the curve −→c (θ) =

cos θ ı̂+ sin θ ̂.

Solution: By definition, the line integral of a vector field
−→

F along a curve C with parame-
terization −→c (θ) = 〈x(θ), y(θ)〉 , a ≤ θ ≤ b is given by the formula:

∫

C

−→
F ·

−→
T ds =

∫

b

a

−→
F ·

−→c ′(θ) dθ

From the given parameterization −→
c (θ) = cos θ ı̂+ sin θ ̂ we have:

−→
c ′(θ) = − sin θ ı̂+ cos θ ̂

and, using the fact that x(θ) = cos θ and y(θ) = sin θ, the function
−→
F can be rewritten as:

−→
F = (x+ y) ı̂+ 0 ̂
−→
F = (cos θ + sin θ) ı̂+ 0 ̂

Assuming an interval 0 ≤ θ ≤ 2π, the value of the line integral is then:

∫

C

−→
F ·

−→
T ds =

∫

b

a

−→
F ·

−→c ′(θ) dθ

=

∫

2π

0

((cos θ + sin θ) ı̂ + 0 ̂) · (− sin θ ı̂ + cos θ ̂) dθ

=

∫

2π

0

(cos θ + sin θ)(− sin θ) dθ

=

∫

2π

0

(− sin θ cos θ − sin2 θ) dθ

=

[

1

2
cos2 θ −

1

2
θ +

1

4
sin(2θ)

]2π

0

=

[

1

2
cos2(2π)−

1

2
(2π) +

1

4
sin(4π)

]

−

[

1

2
cos2 0−

1

2
(0) +

1

4
sin(0)

]

= −π
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Problem 5 Solution

5. Find the minimum and maximum of the function f(x, y) = x+y2 subject to the condition
2x2 + y2 = 1.

Solution: We find the minimum and maximum using the method of Lagrange Multi-

pliers. First, we recognize that 2x2 + y2 = 1 is compact which guarantees the existence
of absolute extrema of f . Then, let g(x, y) = 2x2 + y2 = 1. We look for solutions to the
following system of equations:

fx = λgx, fy = λgy, g(x, y) = 1

which, when applied to our functions f and g, give us:

1 = λ (4x) (1)

2y = λ (2y) (2)

2x2 + y2 = 1 (3)

We begin by noting that Equation (2) gives us:

2y = λ(2y)

2y − λ(2y) = 0

2y(1− λ) = 0

From this equation we either have y = 0 or λ = 1. Let’s consider each case separately.

Case 1: Let y = 0. We find the corresponding x-values using Equation (3).

2x2 + y2 = 1

2x2 + 02 = 1

x2 = 1

2

x = ±
1
√

2

Thus, the points of interest are ( 1
√

2
, 0) and (− 1

√

2
, 0).

Case 2: Let λ = 1. Plugging this into Equation (1) we get:

1 = λ(4x)

1 = 1(4x)

x = 1

4

We find the corresponding y-values using Equation (3).

2x2 + y2 = 1

2
(

1

4

)2

+ y2 = 1
1

8
+ y2 = 1

y2 = 7

8

y = ±

√

7

8
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Thus, the points of interest are (1
4
,

√

7

8
) and (1

4
,−

√

7

8
).

We now evaluate f(x, y) = x+ y2 at each point of interest obtained by Cases 1 and 2.

f( 1
√

2
, 0) = 1

√

2

f(− 1
√

2
, 0) = −

1
√

2

f(1
4
,

√

7

8
) = 9

8

f(1
4
,−

√

7

8
) = 9

8

From the values above we observe that f attains an absolute maximum of 9

8
and an absolute

minimum of − 1
√

2
.
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Figure 1: Shown in the figure are the level curves of f(x, y) = x + y2 and the ellipse
2x2 + y2 = 1 (thick, black curve). Darker colors correspond to smaller values of f(x, y).
Notice that (1) the parabola f(x, y) = x + y2 = 9

8
is tangent to the ellipse at the points

(1
4
,

√

7

8
) and (1

4
,−

√

7

8
) which correspond to the absolute maximum and (2) the parabola

f(x, y) = x+ y2 = −
1
√

2
is tangent to the ellipse at the point (− 1

√

2
, 0) which corresponds to

the absolute minimum.
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Problem 6 Solution

6. For the vector field
−→
F (x, y) = (x+y) ı̂+(x−y) ̂, find a function ϕ(x, y) with gradϕ =

−→
F

or use the partial derivative test to show that such a function does not exist.

Solution: In order for the vector field
−→
F = 〈f(x, y), g(x, y)〉 to have a potential function

ϕ(x, y) such that gradϕ =
−→

F , it must be the case that:

∂f

∂y
=

∂g

∂x

Using f(x, y) = x+ y and g(x, y) = x− y we get:

∂f

∂y
= 1,

∂g

∂x
= 1

which verifies the existence of a potential function for the given vector field.

If gradϕ =
−→
F , then it must be the case that:

∂ϕ

∂x
= f(x, y) (1)

∂ϕ

∂y
= g(x, y) (2)

Using f(x, y) = x+ y and integrating both sides of Equation (1) with respect to x we get:

∂ϕ

∂x
= f(x, y)

∂ϕ

∂x
= x+ y

∫

∂ϕ

∂x
dx =

∫

(x+ y) dx

ϕ(x, y) =
1

2
x2 + xy + h(y) (3)

We obtain the function h(y) using Equation (2). Using g(x, y) = x− y we get the equation:

∂ϕ

∂y
= g(x, y)

∂ϕ

∂y
= x− y

We now use Equation (3) to obtain the left hand side of the above equation. Simplifying we
get:

∂

∂y

(

1

2
x2 + xy + h(y)

)

= x− y

x+ h′(y) = x− y

h′(y) = −y
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Now integrate both sides with respect to y to get:

∫

h′(y) dy =

∫

−y dy

h(y) = −
1

2
y2 + C

Letting C = 0, we find that a potential function for
−→
F is:

ϕ(x, y) =
1

2
x2 + xy −

1

2
y2

2
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