
Math 210, Final Exam, Fall 2007

Problem 1 Solution

1. (a) Compute the integral

∮

C

−→
F • d−→s where C is the circle x2+y2 = 1 of radius 1 centered

at the origin, traversed counterclockwise, starting and ending at the point (1, 0) for

−→
F = 〈P,Q〉 =

〈

−
y

x2 + y2
,

x

x2 + y2

〉

(b) For the vector field in part (a), we know that
∂P

∂y
=

∂Q

∂x
(you are not to check this!.

Is
−→
F conservative? Explain your answer.

Solution: (a) We evaluate the vector line integral using the formula:
∮

C

−→
F • d−→s =

∫

b

a

−→
F • −→r ′(t) dt

A parameterization of C is −→r (t) = 〈cos(t), sin(t)〉, 0 ≤ t ≤ 2π. The derivative is −→r ′(t) =
〈− sin(t), cos(t)〉. Using the fact that x = cos(t) and y = sin(t) from the parameterization,

the vector field
−→
F written in terms of t is:

−→
F =

〈

−
y

x2 + y2
,

x

x2 + y2

〉

−→
F =

〈

−
sin(t)

cos2(t) + sin2(t)
,

cos(t)

cos2(t) + sin2(t)

〉

−→
F = 〈− sin(t), cos(t)〉

Thus, the value of the line integral is:
∮

C

−→
F • d−→s =

∫

2π

0

−→
F • −→r ′(t) dt

=

∫

2π

0

〈− sin(t), cos(t)〉 • 〈− sin(t), cos(t)〉 dt

=

∫

2π

0

(

sin2(t) + cos2(t)
)

dt

=

∫

2π

0

1 dt

= 2π

(b) The vector field is NOT conservative. If it were, then the integral

∮

C

−→
F • d−→s would be

0. However, as we saw in part (a), the value of the integral is 2π.

In this problem, the vector field
−→
F is undefined at the origin (0, 0). Thus, the domain of

−→
F

is not simply connected which means that
−→
F is not conservative.
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Math 210, Final Exam, Fall 2007

Problem 2 Solution

2. A particle is traveling in R
3, with position given at time t, for 0 ≤ t ≤ 3 by

−→r (t) =
〈

1 + t, et, t2
〉

(a) find the velocity of the particle at time t

(b) find the speed of the particle at time t

(c) find the acceleration of the particle at time t

(d) Write down an integral, but do NOT attempt to compute it, for the distance traveled
by the particle between times t = 0 and t = 3.

Solution:

(a) The velocity is the derivative of position.

−→
v (t) = −→

r ′(t) =
〈

1, et, 2t
〉

(b) The speed is the magnitude of velocity.

v(t) =
∣

∣

∣

∣

−→v (t)
∣

∣

∣

∣

v(t) =
√

12 + (et)2 + (2t)2

v(t) =
√
1 + e2t + 4t2

(c) The acceleration is the derivative of velocity.

−→a (t) = −→v ′(t) =
〈

0, et, 2
〉

(d) The distance traveled by the particle is:

L =

∫

3

0

∣

∣

∣

∣

−→r ′(t)
∣

∣

∣

∣ dt

L =

∫

3

0

√
1 + e2t + 4t2 dt
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Math 210, Final Exam, Fall 2007

Problem 3 Solution

3. (a) Find the equation of the tangent plane to the surface zex
2
−y

2

= 2 at the point (1,−1, 2).

(b) If f(x, y, z) = zex
2
−y

2

is the same function as in part (a), compute the directional
derivative of f at the point (1,−1, 2) in the direction of 〈2, 2, 1〉.

Solution: (a) We use the following formula for the equation for the tangent plane:

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0

because the surface equation is given in implicit form. Note that −→n =
−→
∇f(a, b, c) =

〈fx(a, b, c), fy(a, b, c), fz(a, b, c)〉 is a vector normal to the surface f(x, y, z) = C and, thus,
to the tangent plane at the point (a, b, c) on the surface.

The partial derivatives of f(x, y, z) = zex
2
−y

2

are:

fx = 2xzex
2
−y

2

fy = −2yzex
2
−y

2

fz = ex
2
−y

2

Evaluating the partial derivatives at (1,−1, 2) we have:

fx(1,−1, 2) = 2(1)(2)e1
2
−(−1)2 = 4

fy(1,−1, 2) = −2(−1)(2)e1
2
−(−1)2 = 4

fz(1,−1, 2) = e1
2
−(−1)2 = 1

Thus, the tangent plane equation is:

4(x− 1) + 4(y + 1) + (z − 2) = 0

(b) By definition, the directional derivative of f(x, y, z) at (1,−1, 2) in the direction of û is:

Dûf(1,−1, 2) =
−→
∇f(1,−1, 2) • û

From part (b), we have
−→
∇f(1,−1, 2) = 〈4, 4, 1〉. Recalling that û must be a unit vector, we

multiply 〈2, 2, 1〉 by the reciprocal of its magnitude.

û =
1

| 〈2, 2, 1〉 |
〈2, 2, 1〉 =

1

3
〈2, 2, 1〉

1



Therefore, the directional derivative is:

Dûf(1,−1, 2) =
−→
∇f(1,−1, 2) • û

Dûf(1,−1, 2) = 〈4, 4, 1〉 •
1

3
〈2, 2, 1〉

Dûf(1,−1, 2) =
1

3
[(4)(2) + (4)(2) + (1)(1)]

Dûf(1,−1, 2) =
17

3

2



Math 210, Final Exam, Fall 2007

Problem 4 Solution

4. Find the critical points of the function f(x, y) = xy −
x2

2
+

y3

3
− 2y and determine which

are local maxima, local minima, or saddles.

Solution: By definition, an interior point (a, b) in the domain of f is a critical point of f
if either

(1) fx(a, b) = fy(a, b) = 0, or

(2) one (or both) of fx or fy does not exist at (a, b).

The partial derivatives of f(x, y) = xy − x
2

2
+ y

3

3
− 2y are fx = y − x and fy = x + y2 − 2.

These derivatives exist for all (x, y) in R
2. Thus, the critical points of f are the solutions to

the system of equations:

fx = y − x = 0 (1)

fy = x+ y2 − 2 = 0 (2)

Solving Equation (1) for y we get:
y = x (3)

Substituting this into Equation (2) and solving for x we get:

x+ y2 − 2 = 0

x+ (x)2 − 2 = 0

x2 + x− 2 = 0

(x+ 2)(x− 1) = 0

⇐⇒ x = −2 or x = 1

We find the corresponding y-values using Equation (3): y = x.

• If x = −2, then y = −2.

• If x = 1, then y = 1.

Thus, the critical points are (−2,−2) and (1, 1) .

We now use the Second Derivative Test to classify the critical points. The second deriva-
tives of f are:

fxx = −1, fyy = 2y, fxy = 1

The discriminant function D(x, y) is then:

D(x, y) = fxxfyy − f 2

xy

D(x, y) = (−1)(2y)− (1)2

D(x, y) = −2y − 1

1



The values of D(x, y) at the critical points and the conclusions of the Second Derivative Test
are shown in the table below.

(a, b) D(a, b) fxx(a, b) Conclusion

(−2,−2) 3 −1 Local Maximum

(1, 1) −3 −1 Saddle Point

Recall that (a, b) is a saddle point if D(a, b) < 0 and that (a, b) corresponds to a local
maximum of f if D(a, b) > 0 and fxx(a, b) < 0.
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Math 210, Final Exam, Fall 2007

Problem 5 Solution

5. Compute the integral

∫∫

D

ey
3

dA where D is the region in the 1st quadrant of the xy

plane bounded by the y-axis, the parabola x = y2, and the line y = 1. (Hint: it makes a
difference in which order you do this integral).

Solution:

x

y

D

x = y2

y = 1

0

1

0 1

From the figure we see that the region D is bounded on the left by = 0 and on the right by
x = y2. The projection of D onto the y-axis is the interval 0 ≤ y ≤ 1. Using the order of
integration dx dy we have:

∫∫

D

ey
3

dA =

∫

1

0

∫

y
2

0

ey
3

dx dy

=

∫

1

0

ey
3

[

x
]

y
2

0

dy

=

∫

1

0

y2ey
3

dy

=
1

3
ey

3

∣

∣

∣

∣

1

0

=
1

3
e1

3

−
1

3
e0

3

=
1

3
(e− 1)

1
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Problem 6 Solution

6. (a) Let P be the parallelogram in the xy plane with vertices A = (1, 1), B = (2, 3),
C = (1, 4), and D = (0, 2). Compute the area of P .

(b) Let C be the closed curve which is the boundary of the parallelogram P of part (a),
traversed counterclockwise, i.e. it consists of the directed line segments AB, BC, CD, DA.

Use Green’s theorem to compute

∮

C

−y dx+ x dy.

Solution:

(a) The area of a parallelogram spanned by two vectors −→u and −→
v is, by definition:

A =
∣

∣

∣

∣

−→
u ×−→

v
∣

∣

∣

∣

Let −→u =
−→
AB = 〈1, 2〉 and −→v =

−−→
BC = 〈−1, 1〉. The cross product of these two vectors

is −→u ×−→v = 〈0, 0, 3〉. Thus, the area of the parallelogram is

A =
∣

∣

∣

∣

−→u ×−→v
∣

∣

∣

∣ = ||〈0, 0, 3〉|| = 3

(b) Green’s theorem states that:

∮

C

P dx+Qdy =

∫∫

D

(

∂Q

∂x
−

∂P

∂y

)

dA

In this problem we have P = −y and Q = x giving us:

∂Q

∂x
−

∂P

∂y
= 1− (−1) = 2

Thus, the line integral is:

∮

C

−y dx+ x dy =

∫∫

D

2 dA

= 2

∫∫

D

1 dA

= 2× (Area of D)

= 2× 3

= 6
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Problem 7 Solution

7. Let B be the region in R3 bounded by the paraboloid z = x2 + y2, the plane z = 0, and

the cylinder x2+ y2 = 1. Draw a sketch of the region and compute the integral

∫∫∫
B

x2 dV .

Solution: The region D is plotted below.

We use Cylindrical Coordinates to evaluate the triple integral. First, the integrand becomes:

f(x, y, z) = x2

f(r, θ, z) = (r cos θ)2

Next, the equations for the paraboloid and cylinder are then:

Paraboloid : z = r2

Cylinder : r = 1

The surface that bounds D from below is z = 0 (the xy-plane) and the surface that bounds
D from above is z = r2 (the paraboloid). The projection of the region D onto the xy-plane
is the disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Finally, using the fact that dV = r dz dr dθ in Cylindrical Coordinates, the value of the triple
integral is:

1



∫∫∫
D

x2 dV =

∫ 2π

0

∫ 1

0

∫ r2

0

(r cos θ)2r dz dr dθ

=

∫ 2π

0

∫ 1

0

∫ r2

0

r3 cos2 θ dz dr dθ

=

∫ 2π

0

∫ 1

0

r3 cos2 θ
[
z
]r2
0
dr dθ

=

∫ 2π

0

∫ 1

0

r5 cos2 θ dr dθ

=

∫ 2π

0

cos2 θ

[
1

6
r6
]1
0

dθ

=
1

6

∫ 2π

0

cos2 θ dθ

=
1

6

[
1

2
θ +

1

4
sin(2θ)

]2π
0

=
π

6

2
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Problem 8 Solution

8. Consider the vector field
−→
F = 〈x2y, yz, z3〉.

(a) Compute Curl(
−→
F ).

(b) Is
−→
F a conservative vector field? Explain your answer.

(c) Compute Div(
−→
F ).

(d) Compute Div(Curl(
−→
F )).

Solution:

(a) The curl of the vector field is:

−→
∇ ×

−→
F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

∂

∂x

∂

∂y

∂

∂z

x2y yz z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂

∂y
z3 −

∂

∂z
yz

)

ı̂−

(

∂

∂x
z3 −

∂

∂z
x2y

)

̂ +

(

∂

∂x
yz −

∂

∂y
x2y

)

k̂

= (0− y) ı̂− (0− 0) ̂ +
(

0− x2
)

k̂

=
〈

−y, 0,−x2
〉

(b) Since
−→
∇ ×

−→
F 6=

−→
0 , the vector field is not conservative.

(c) The divergence of the vector field is:

−→
∇ •

−→
F =

∂

∂x
x2y +

∂

∂y
yz +

∂

∂z
z3

= 2xy + z + 3z2

(d) The divergence of the curl of the vector field is:

−→
∇ •

(−→
∇ ×

−→
F
)

=
−→
∇ •

〈

−y, 0,−x2
〉

=
∂

∂x
(−y) +

∂

∂y
(0) +

∂

∂z
(−x2)

= 0 + 0 + 0

= 0

1
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Problem 9 Solution

9. Let S be the surface which is the part of the plane 2x−2y+z = 5 above the square in the

xy plane with vertices (0, 0), (1, 0), (1, 1), (0, 1). Compute the integral

∫∫

S

−→
F • d

−→
S where

d
−→
S is the upward pointing normal and

−→
F = 〈x, y, z〉.

Solution: The formula we will use to compute the surface integral of the vector field
−→
F is:

∫∫

S

−→
F • d

−→
S =

∫∫

R

−→
F •

(−→
Tu ×

−→
Tv

)

dA

where the function −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉 with domain R is a parameterization

of the surface S and the vectors
−→
Tu = ∂

−→
r

∂u
and

−→
T v =

∂
−→
r

∂v
are the tangent vectors.

We begin by finding a parameterization of the plane. Let x = u and y = v. Then, z =
5 − 2u + 2v using the equation for the plane. Thus, we have −→r (u, v) = 〈u, v, 5− 2u+ 2v〉.
Furthermore, the domain R is the set of all points (u, v) satisfying 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.
Therefore, a parameterization of S is:

−→r (u, v) = 〈u, v, 5− 2u+ 2v〉 ,

R =
{

(u, v)
∣

∣

∣
0 ≤ u ≤ 1, 0 ≤ v ≤ 1

}

The tangent vectors
−→
Tu and

−→
T v are then:

−→
Tu =

∂−→r

∂u
= 〈1, 0,−2〉

−→
T v =

∂−→r

∂v
= 〈0, 1, 2〉

The cross product of these vectors is:

−→
Tu ×

−→
Tv =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

1 0 −2
0 1 2

∣

∣

∣

∣

∣

∣

= 〈2,−2, 1〉

The vector field
−→
F = 〈x, y, z〉 written in terms of u and v is:

−→
F = 〈x, y, z〉
−→
F = 〈u, v, 5− 2u+ 2v〉

Before computing the surface integral, we note that
−→
Tu ×

−→
T v points upward, as desired,

since the third component of the vector is positive.

1



The value of the surface integral is:

∫∫

S

−→
F • d

−→
S =

∫∫

R

−→
F •

(−→
Tu ×

−→
T v

)

dA

=

∫∫

R

〈u, v, 5− 2u+ 2v〉 • 〈2,−2, 1〉 dA

=

∫∫

R

(2u− 2v + 5− 2u+ 2v) dA

=

∫∫

R

5 dA

= 5

∫∫

R

1 dA

= 5× (Area of R)

= 5× 1

= 5

2
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